Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Library Preparation, NGS Sequencing, and Mitogenome Assemblage for C. coturnix
2.3. Detecting Selection Pressure
2.4. Genetic Distance and Phylogenetic Analyses
2.5. Divergence Time Estimation
2.6. Ancestral Range Estimation
3. Results
3.1. Gene Arrangement, Nucleotide Composition, and Codon Usage Analysis
3.2. Selection Pressure
3.3. Phylogenetic Analyses
3.4. Divergence Time Estimation
3.5. Ancestral Range Reconstruction of Coturnix
4. Discussion
4.1. Nucleotide Composition, Codon Usage, and Selection Analysis
4.2. Phylogenetics and Divergence Dating
4.3. Biogeography
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnsgard, P.A. The Quails, Partridges, and Francolins of the World; Oxford University Press: Oxford, UK, 1988; ISBN 978-0-19-857193-3. [Google Scholar]
- Sanchez-Donoso, I.; Ravagni, S.; Rodríguez-Teijeiro, J.D.; Christmas, M.J.; Huang, Y.; Maldonado-Linares, A.; Puigcerver, M.; Jiménez-Blasco, I.; Andrade, P.; Gonçalves, D.; et al. Massive Genome Inversion Drives Coexistence of Divergent Morphs in Common Quails. Curr. Biol. 2022, 32, 462–469.e6. [Google Scholar] [CrossRef] [PubMed]
- McGowan, P.J.K.; Kirwan, G.M. Japanese Quail (Coturnix japonica), Version 1.0. Birds World 2020. [Google Scholar] [CrossRef]
- McGowan, P.J.K.; Kirwan, G.M.; de Juana, E.; Boesman, P.F.D. Common Quail (Coturnix coturnix), Version 1.1. Birds World 2023. [Google Scholar] [CrossRef]
- Duchêne, S.; Archer, F.I.; Vilstrup, J.; Caballero, S.; Morin, P.A. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation. PLoS ONE 2011, 6, e27138. [Google Scholar] [CrossRef]
- Zang, W.; Jiang, Z.; Ericson, P.G.P.; Song, G.; Drovetski, S.V.; Saitoh, T.; Lei, F.; Qu, Y. Evolutionary Relationships of Mitogenomes in a Recently Radiated Old World Avian Family. Avian Res. 2023, 14, 100097. [Google Scholar] [CrossRef]
- Kimball, R.T.; Hosner, P.A.; Braun, E.L. A Phylogenomic Supermatrix of Galliformes (Landfowl) Reveals Biased Branch Lengths. Mol. Phylogenet. Evol. 2021, 158, 107091. [Google Scholar] [CrossRef]
- Kimball, R.T.; Guido, M.; Hosner, P.A.; Braun, E.L. When Good Mitochondria Go Bad: Cyto-Nuclear Discordance in Landfowl (Aves: Galliformes). Gene 2021, 801, 145841. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Hosner, P.A.; Dittmann, D.L.; O’Neill, J.P.; Birks, S.M.; Braun, E.L.; Kimball, R.T. Divergence Time Estimation of Galliformes Based on the Best Gene Shopping Scheme of Ultraconserved Elements. BMC Ecol. Evol. 2021, 21, 209. [Google Scholar] [CrossRef]
- Stein, R.W.; Brown, J.W.; Mooers, A.Ø. A Molecular Genetic Time Scale Demonstrates Cretaceous Origins and Multiple Diversification Rate Shifts within the Order Galliformes (Aves). Mol. Phylogenet. Evol. 2015, 92, 155–164. [Google Scholar] [CrossRef]
- Wang, N.; Kimball, R.T.; Braun, E.L.; Liang, B.; Zhang, Z. Ancestral Range Reconstruction of Galliformes: The Effects of Topology and Taxon Sampling. J. Biogeogr. 2017, 44, 122–135. [Google Scholar] [CrossRef]
- Grimmett, R.; Inskipp, C.; Inskipp, T. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives; Bloomsbury Publishing: London, UK, 2016; ISBN 978-1-4081-6265-1. [Google Scholar]
- Sambrook, J. Molecular Cloning: A Laboratory Manual. Vol. 3; Cold Spring Harbor: Long Island, NY, USA, 1989; ISBN 978-0-87969-577-4. [Google Scholar]
- Dey, P.; Ray, S.D.; Manchi, S.; Pramod, P.; Kochiganti, V.H.S.; Singh, R.P. Whole Genome Sequencing and Microsatellite Motif Discovery of Farmed Japanese Quail (Coturnix japonica): A First Record from India. Proc. Indian Natl. Sci. Acad. 2022, 88, 688–695. [Google Scholar] [CrossRef]
- Dey, P.; Sharma, S.K.; Sarkar, I.; Ray, S.D.; Pramod, P.; Kochiganti, V.H.S.; Quadros, G.; Rathore, S.S.; Singh, V.; Singh, R.P. Complete Mitogenome of Endemic Plum-Headed Parakeet Psittacula Cyanocephala-Characterization and Phylogenetic Analysis. PLoS ONE 2021, 16, e0241098. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Ray, S.D.; Pramod, P.; Singh, R.P. Dataset from Genome Sequencing, Assembly and Mining of Microsatellite Markers in Barred-Button Quail (Turnix Suscitator). Data Brief. 2023, 48, 109288. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.; Dey, P.; Kumari, D.; Ray, S.D.; Quadros, G.; Sastry Kochiganti, V.H.; Singh, R.P. Genome Survey Sequencing and Mining of Genome-Wide Microsatellite Markers in Yellow-Billed Babbler (Turdoides affinis). Heliyon 2023, 9, e12735. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.D.; Dey, P.; Sarkar, I.; Sharma, S.K.; Quadros, G.; Pramod, P.; Kochiganti, V.H.S.; Singh, R.P. Complete Mitogenome of Common Myna (Acridotheres tristis)–Characterization and Phylogenetic Implications. Biologia 2023, 78, 1079–1091. [Google Scholar] [CrossRef]
- Nishibori, M.; Hayashi, T.; Tsudzuki, M.; Yamamoto, Y.; Yasue, H. Complete Sequence of the Japanese Quail (Coturnix japonica) Mitochondrial Genome and Its Genetic Relationship with Related Species. Anim. Genet. 2001, 32, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of Nucleotide Composition at Fourfold Degenerate Sites of Animal Mitochondrial Genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Puigbò, P.; Bravo, I.G.; Garcia-Vallve, S. CAIcal: A Combined Set of Tools to Assess Codon Usage Adaptation. Biol. Direct 2008, 3, 38. [Google Scholar] [CrossRef]
- Yang, Z. PAML: A Program Package for Phylogenetic Analysis by Maximum Likelihood. Bioinformatics 1997, 13, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-Y.; Liang, L.; Sun, Y.-B.; Yue, B.-S.; Yang, X.-J.; Murphy, R.W.; Zhang, Y.-P. A Mitogenomic Perspective on the Ancient, Rapid Radiation in the Galliformes with an Emphasis on the Phasianidae. BMC Evol. Biol. 2010, 10, 132. [Google Scholar] [CrossRef]
- Nishibori, M.; Tsudzuki, M.; Hayashi, T.; Yamamoto, Y.; Yasue, H. Complete Nucleotide Sequence of the Coturnix Chinensis (Blue-Breasted Quail) Mitochondorial Genome and a Phylogenetic Analysis With Related Species. J. Hered. 2002, 93, 439–444. [Google Scholar] [CrossRef]
- An, B.; Zhang, L.; Ruan, L.; Liu, N.; Zhang, Z.; Abutalip, A.; Suo, Y. The Complete Mitochondrial Genome of Himalayan Snowcock (Tetraogallus himalayensis). Mitochondrial DNA Part. A 2016, 27, 3751–3752. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, X.; Irwin, D.M.; Shen, Y.; Zhang, Y. Mitogenomic Analyses Propose Positive Selection in Mitochondrial Genes for High-Altitude Adaptation in Galliform Birds. Mitochondrion 2014, 18, 70–75. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Chen, C.; Arab, D.A.; Du, Z.; He, Y.; Ho, S.Y.W. EasyCodeML: A Visual Tool for Analysis of Selection Using CodeML. Ecol. Evol. 2019, 9, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef]
- Smith, M.D.; Wertheim, J.O.; Weaver, S.; Murrell, B.; Scheffler, K.; Kosakovsky Pond, S.L. Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Mol. Biol. Evol. 2015, 32, 1342–1353. [Google Scholar] [CrossRef]
- Murrell, B.; Weaver, S.; Smith, M.D.; Wertheim, J.O.; Murrell, S.; Aylward, A.; Eren, K.; Pollner, T.; Martin, D.P.; Smith, D.M.; et al. Gene-Wide Identification of Episodic Selection. Mol. Biol. Evol. 2015, 32, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Kan, X.-Z.; Yang, J.-K.; Li, X.-F.; Chen, L.; Lei, Z.-P.; Wang, M.; Qian, C.-J.; Gao, H.; Yang, Z.-Y. Phylogeny of Major Lineages of Galliform Birds (Aves: Galliformes) Based on Complete Mitochondrial Genomes. Genet. Mol. Res. 2010, 9, 1625–1633. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree 2010. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 29 May 2024).
- Hosner, P.A.; Braun, E.L.; Kimball, R.T. Rapid and Recent Diversification of Curassows, Guans, and Chachalacas (Galliformes: Cracidae) out of Mesoamerica: Phylogeny Inferred from Mitochondrial, Intron, and Ultraconserved Element Sequences. Mol. Phylogenet Evol. 2016, 102, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; Maio, N.D.; et al. BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef]
- Matzke, N.J. Model Selection in Historical Biogeography Reveals That Founder-Event Speciation Is a Crucial Process in Island Clades. Syst. Biol. 2014, 63, 951–970. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing; R Core Team: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 24 April 2024).
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R Language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Holt, B.G.; Lessard, J.-P.; Borregaard, M.K.; Fritz, S.A.; Araújo, M.B.; Dimitrov, D.; Fabre, P.-H.; Graham, C.H.; Graves, G.R.; Jønsson, K.A.; et al. An Update of Wallace’s Zoogeographic Regions of the World. Science 2013, 339, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Billerman, S.; Keeney, B.; Rodewald, P.; Schulkenberg, T. Birds of the World (2022)-Comprehensive Life Histories for All Bird Species and Families. Available online: https://birdsoftheworld.org/bow/home (accessed on 24 April 2024).
- Clark, J.R.; Ree, R.H.; Alfaro, M.E.; King, M.G.; Wagner, W.L.; Roalson, E.H. A Comparative Study in Ancestral Range Reconstruction Methods: Retracing the Uncertain Histories of Insular Lineages. Syst. Biol. 2008, 57, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F. Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Syst. Biol. 1997, 46, 195–203. [Google Scholar] [CrossRef]
- Landis, M.J.; Matzke, N.J.; Moore, B.R.; Huelsenbeck, J.P. Bayesian Analysis of Biogeography When the Number of Areas Is Large. Syst. Biol. 2013, 62, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, O.; Kroh, A.; Haring, E. Mind the Gap! The Mitochondrial Control Region and Its Power as a Phylogenetic Marker in Echinoids. BMC Evol. Biol. 2018, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, P.; Morais, R. Sequence and Gene Organization of the Chicken Mitochondrial Genome. A Novel Gene Order in Higher Vertebrates. J. Mol. Biol. 1990, 212, 599–634. [Google Scholar] [CrossRef] [PubMed]
- Gibb, G.C.; Kardailsky, O.; Kimball, R.T.; Braun, E.L.; Penny, D. Mitochondrial Genomes and Avian Phylogeny: Complex Characters and Resolvability without Explosive Radiations. Mol. Biol. Evol. 2007, 24, 269–280. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y. Next-Generation Resequencing the Complete Mitochondrial Genome of Japanese Quail (Coturnix japonica). Mitochondrial DNA Part B 2016, 1, 937–938. [Google Scholar] [CrossRef]
- Adawaren, E.O.; Du Plessis, M.; Suleman, E.; Kindler, D.; Oosthuizen, A.O.; Mukandiwa, L.; Naidoo, V. The Complete Mitochondrial Genome of Gyps coprotheres (Aves, Accipitridae, Accipitriformes): Phylogenetic Analysis of Mitogenome among Raptors. PeerJ 2020, 8, e10034. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Yu, J.; Liu, J.; Zhang, Y.; Ma, R.; Zhou, Y.; Zhu, B.; Wei, W.; Liu, J.; Qi, G. Complete Mitochondrial Genome and Phylogenetic Analysis of Tarsiger indicus (Aves: Passeriformes: Muscicapidae). Genes 2024, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon Usage Bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Nielsen, R. Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Mol. Biol. Evol. 2002, 19, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Rheindt, F.E.; Edwards, S.V. Genetic Introgression: An Integral but Neglected Component of Speciation in Birds. Ornithology 2011, 128, 620–632. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, C.; Sun, L.; Zhang, Y.; Xie, W.; Zhang, B.; Chang, Q. The Mitochondrial Genome of Pin-Tailed Snipe Gallinago Stenura, and Its Implications for the Phylogeny of Charadriiformes. PLoS ONE 2017, 12, e0175244. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, C.; Pan, T.; Liu, W.; Li, K.; Hu, C.; Chang, Q. The Mitochondrial Genome of the Kentish Plover Charadrius alexandrinus (Charadriiformes: Charadriidae) and Phylogenetic Analysis of Charadrii. Genes Genom. 2018, 40, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.N.; Viana, M.C.; Furtado, C.; Schrago, C.G.; Seuánez, H.N. Positive Selection along the Evolution of Primate Mitogenomes. Mitochondrion 2013, 13, 846–851. [Google Scholar] [CrossRef]
- Morales, H.E.; Pavlova, A.; Joseph, L.; Sunnucks, P. Positive and Purifying Selection in Mitochondrial Genomes of a Bird with Mitonuclear Discordance. Mol. Ecol. 2015, 24, 2820–2837. [Google Scholar] [CrossRef]
- Noll, D.; Leon, F.; Brandt, D.; Pistorius, P.; Le Bohec, C.; Bonadonna, F.; Trathan, P.N.; Barbosa, A.; Rey, A.R.; Dantas, G.P.M.; et al. Positive Selection over the Mitochondrial Genome and Its Role in the Diversification of Gentoo Penguins in Response to Adaptation in Isolation. Sci. Rep. 2022, 12, 3767. [Google Scholar] [CrossRef] [PubMed]
- Zwonitzer, K.D.; Iverson, E.N.K.; Sterling, J.E.; Weaver, R.J.; Maclaine, B.A.; Havird, J.C. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes. Am. Nat. 2023, 202, E121–E129. [Google Scholar] [CrossRef] [PubMed]
- McGowan, P.J.K.; Kirwan, G.M. Blue-Breasted Quail (Synoicus chinensis), Version 1.0. Birds World 2020. [Google Scholar] [CrossRef]
- McGowan, P.J.K.; Kirwan, G.M. Brown Quail (Synoicus ypsilophorus), Version 1.0. Birds World 2020. [Google Scholar] [CrossRef]
- Shen, Y.-Y.; Dai, K.; Cao, X.; Murphy, R.W.; Shen, X.-J.; Zhang, Y.-P. The Updated Phylogenies of the Phasianidae Based on Combined Data of Nuclear and Mitochondrial DNA. PLoS ONE 2014, 9, e95786. [Google Scholar] [CrossRef] [PubMed]
- Behrensmeyer, A.K. Terrestrial Ecosystems through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Pelegrin, J.S.; Cantalapiedra, J.L.; Gamboa, S.; Menéndez, I.; Hernández Fernández, M. Phylogenetic Biome Conservatism as a Key Concept for an Integrative Understanding of Evolutionary History: Galliformes and Falconiformes as Study Cases. Zool. J. Linn. Soc. 2023, 198, 47–71. [Google Scholar] [CrossRef]
- Nadachowska-Brzyska, K.; Li, C.; Smeds, L.; Zhang, G.; Ellegren, H. Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences. Curr. Biol. 2015, 25, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Claramunt, S.; Cracraft, J. A New Time Tree Reveals Earth History’s Imprint on the Evolution of Modern Birds. Sci. Adv. 2015, 1, e1501005. [Google Scholar] [CrossRef] [PubMed]
- Willeit, M.; Ganopolski, A.; Calov, R.; Brovkin, V. Mid-Pleistocene Transition in Glacial Cycles Explained by Declining CO2 and Regolith Removal. Sci. Adv. 2019, 5, eaav7337. [Google Scholar] [CrossRef]
- Matzke, N. Probabilistic Historical Biogeography: New Models for Founder-Event Speciation, Imperfect Detection, and Fossils Allow Improved Accuracy and Model-Testing. Front. Biogeogr. 2013, 5, 242–248. [Google Scholar] [CrossRef]
- Hall, R. The Plate Tectonics of Cenozoic SE Asia and the Distribution of Land and Sea. In Biogeography and Geological Evolution of SE Asia; Backhuys Publishers: Leiden, The Netherlands, 1998. [Google Scholar]
- Sheldon, F.H.; Lim, H.C.; Moyle, R.G. Return to the Malay Archipelago: The Biogeography of Sundaic Rainforest Birds. J. Ornithol. 2015, 156, 91–113. [Google Scholar] [CrossRef]
- Stein, R.W. Multistage Scenarios for the Evolution of Polymorphisms in Birds. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, USA, 2013. [Google Scholar]
- Chen, Y. On the Historical Biogeography of Global Galliformes: Ancestral Range and Diversification Patterns. Avian Res. 2014, 5, 3. [Google Scholar] [CrossRef]
- Hosner, P.A.; Tobias, J.A.; Braun, E.L.; Kimball, R.T. How Do Seemingly Non-Vagile Clades Accomplish Trans-Marine Dispersal? Trait and Dispersal Evolution in the Landfowl (Aves: Galliformes). Proc. R. Soc. B Biol. Sci. 2017, 284, 20170210. [Google Scholar] [CrossRef] [PubMed]
- Crowe, T.M.; Bowie, R.C.K.; Bloomer, P.; Mandiwana, T.G.; Hedderson, T.A.J.; Randi, E.; Pereira, S.L.; Wakeling, J. Phylogenetics, Biogeography and Classification of, and Character Evolution in, Gamebirds (Aves: Galliformes): Effects of Character Exclusion, Data Partitioning and Missing Data. Cladistics 2006, 22, 495–532. [Google Scholar] [CrossRef] [PubMed]
- Masters, J.C.; Génin, F.; Zhang, Y.; Pellen, R.; Huck, T.; Mazza, P.P.A.; Rabineau, M.; Doucouré, M.; Aslanian, D. Biogeographic Mechanisms Involved in the Colonization of Madagascar by African Vertebrates: Rifting, Rafting and Runways. J. Biogeogr. 2021, 48, 492–510. [Google Scholar] [CrossRef]
- Sanmartín, I. Historical Biogeography: Evolution in Time and Space. Evol. Educ. Outreach 2012, 5, 555–568. [Google Scholar] [CrossRef]
- Drury, J.P.; Cowen, M.C.; Grether, G.F. Competition and Hybridization Drive Interspecific Territoriality in Birds. Proc. Natl. Acad. Sci. USA 2020, 117, 12923–12930. [Google Scholar] [CrossRef] [PubMed]
- Guillaumet, A.; Russell, I.J. Bird Communities in a Changing World: The Role of Interspecific Competition. Diversity 2022, 14, 857. [Google Scholar] [CrossRef]
- Deng, T.; Wu, F.; Zhou, Z.; Su, T. Tibetan Plateau: An Evolutionary Junction for the History of Modern Biodiversity. Sci. China Earth Sci. 2020, 63, 172–187. [Google Scholar] [CrossRef]
- Scordato, E.S.C.; Smith, C.C.R.; Semenov, G.A.; Liu, Y.; Wilkins, M.R.; Liang, W.; Rubtsov, A.; Sundev, G.; Koyama, K.; Turbek, S.P.; et al. Migratory Divides Coincide with Reproductive Barriers across Replicated Avian Hybrid Zones above the Tibetan Plateau. Ecol. Lett. 2020, 23, 231–241. [Google Scholar] [CrossRef]
- Klaus, S.; Morley, R.J.; Plath, M.; Zhang, Y.-P.; Li, J.-T. Biotic Interchange between the Indian Subcontinent and Mainland Asia through Time. Nat. Commun. 2016, 7, 12132. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.; Marra, P.P. Birds of Two Worlds: The Ecology and Evolution of Migration; JHU Press: Baltimore, MD, USA, 2005; ISBN 978-0-8018-8107-7. [Google Scholar]
- Barilani, M.; Deregnaucourt, S.; Gallego, S.; Galli, L.; Mucci, N.; Piombo, R.; Puigcerver, M.; Rimondi, S.; Rodríguez-Teijeiro, J.; Spanò, S.; et al. Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biol. Conserv. 2005, 126, 445–455. [Google Scholar] [CrossRef]
- Chazara, O.; Minvielle, F.; Roux, D.; Bed’hom, B.; Feve, K.; Coville, J.-L.; Kayang, B.B.; Lumineau, S.; Vignal, A.; Boutin, J.-M.; et al. Evidence for introgressive hybridization of wild common quail (Coturnix coturnix) by domesticated Japanese quail (Coturnix japonica) in France. Conserv. Genet. 2010, 11, 1051–1062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, P.; Ray, S.D.; Kochiganti, V.H.S.; Pukazhenthi, B.S.; Koepfli, K.-P.; Singh, R.P. Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails. Genes 2024, 15, 742. https://doi.org/10.3390/genes15060742
Dey P, Ray SD, Kochiganti VHS, Pukazhenthi BS, Koepfli K-P, Singh RP. Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails. Genes. 2024; 15(6):742. https://doi.org/10.3390/genes15060742
Chicago/Turabian StyleDey, Prateek, Swapna Devi Ray, Venkata Hanumat Sastry Kochiganti, Budhan S. Pukazhenthi, Klaus-Peter Koepfli, and Ram Pratap Singh. 2024. "Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails" Genes 15, no. 6: 742. https://doi.org/10.3390/genes15060742
APA StyleDey, P., Ray, S. D., Kochiganti, V. H. S., Pukazhenthi, B. S., Koepfli, K.-P., & Singh, R. P. (2024). Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails. Genes, 15(6), 742. https://doi.org/10.3390/genes15060742