Next Article in Journal
A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor
Previous Article in Journal
Genetic and Epigenetic Factors That Predispose to Musculoskeletal Disorders
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy

Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
*
Author to whom correspondence should be addressed.
Genes 2024, 15(9), 1193; https://doi.org/10.3390/genes15091193
Submission received: 18 July 2024 / Revised: 25 August 2024 / Accepted: 4 September 2024 / Published: 11 September 2024
(This article belongs to the Section Molecular Genetics and Genomics)

Abstract

:
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.

1. Introduction

Resistance to single-agent therapies remains a major challenge in cancer therapy. Combination therapies allow for the concomitant targeting of multiple hallmarks of cancer [1,2] and diminish the probability of acquired resistance, but they may also compound undesired side effects. The remarkable and diverse arsenal of therapy strategies and agents that have already been developed generates a daunting number of possible combinations. Moreover, to benefit from the untapped potential of such therapy combinations, a thorough understanding of the molecular mechanisms of action of different therapy modalities and the underpinnings of acquired resistance to such therapies is required. Given the predicted scale and complexity of such data and the marked degree of heterogeneity exhibited by different tumors [3,4], the harnessing of the full potential of combination therapies is expected to require artificial intelligence-based analyses. Furthermore, this convolved scenario also generates complexities for the design of clinical trials aimed at probing the efficacy of such combinations [5,6]. In these contexts, the differences in the susceptibility of distinct tumors to different OVs, and the plurality of modes by which OVs target tumors, are expected to further complicate the selection and evaluation of OVs as combination-therapy agents. In the present review, we introduce OVs and MTAs, focusing on the molecular mechanisms by which they exert their effects on tumor cells. Furthermore, we describe and discuss OV-MTA combinations that have been recently tested.

2. The Combination Factors: Oncolytic Viruses and Microtubule-Targeting Agents

2.1. Oncolytic Viruses and Their Exploitation of the Cancer-Cell Context

Oncolytic viruses are natural or engineered infectious agents capable of selectively replicating in and lysing tumor cells while sparing non-neoplastic tissues [7,8,9,10]. With dependence on OV and/or tumor type, this selectivity may stem from virally encoded elements, tumor-induced modifications to cellular context, or their combination. In this context, tumor-specific promoters, which allow for OV gene expression exclusively in cells exhibiting the activity of cancer-related transcription factors [11,12,13], exemplify the strategy of encoding for selectivity in OV genomes. Conversely, malignancy-induced defects in cell-autonomous immunity, restricting the ability of tumor cells to raise antiviral responses and counter OV infection [7,14,15,16,17,18,19,20,21,22,23,24,25,26], exemplify the contributions of modifications to the cancer-cell context to OV selectivity. Such defects in cell-autonomous immunity commonly arise in the context of the immune editing of tumors, as reductions in the abilities of cancer cells to induce, secrete, or respond to interferon (IFN) may facilitate their evasion from the selective pressures applied by anti-tumor immunity [27,28,29,30,31]. Cancer cells induce defects in IFN signaling and IFN-based antiviral responses through diverse molecular mechanisms. These mechanisms include modifications to the cancer-cell genome (e.g., deletions in the type I IFN gene cluster on chromosome 9), epigenetic silencing of mediators of antiviral responses, and signaling-induced defects to the expression and functions of IFNs and their receptors, pattern-recognition receptors (PRRs) or infection-restricting IFN-stimulated genes (ISGs) [7,14,16,19,20,25,32,33,34,35,36,37,38,39,40,41,42,43]. In addition to the enhancement of the selectivity toward tumor cells, efforts toward making improvements in OV efficacy aim at increasing the abilities of OVs to modify the immune tumor microenvironment and promote anti-tumor immunity. Examples of this latter approach include the arming of OVs with immunostimulatory cytokines and chemokines, including GM-CSF, TNFα, IFNs, and different interleukins (e.g., IL-2, IL-7, or IL-23) [44].
While the therapeutic success of OVs as monotherapies has been limited, they are currently viewed as highly suitable for combination therapies. Prominent in this context are combination regimens of OVs and immune checkpoint inhibitors (ICIs), which aim to harness the immune stimulation via infection and the dis-inhibition of anti-tumor immune responses by ICIs [45]. OV-ICI combinations, involving different OVs and varied tumor types, have been tested in pre-clinical and clinical settings [46,47,48,49,50,51,52]. While pre-clinical studies support the potential of OV-ICI combinations, their clinical benefit has yet to be fully substantiated [51]. An alternative approach for the potentiation of the therapeutic efficacy of OVs involves the combination of OVs and precision-therapy compounds. For example, multiple different oncolytic viruses have been paired with small-molecule kinase inhibitors in pre-clinical settings, yielding promising results for several combinations [53]. While numerous clinical trials involving OVs are being performed, and oncolytic virotherapy received approval in China almost 20 years ago [54], FDA approval has been given only to T-VEC, an oncolytic herpes virus [55].

2.2. Microtubule Targeting Agents as Modifiers in the Cancer-Cell Context

Hyper-proliferation is a central component of tumorigenesis [56,57], and microtubule (MT) dynamics are critical for cell division. Over 50 years ago, vinca alkaloids and taxanes were identified as microtubule-targeting agents (MTAs), and since then, the targeting of MTs and their dynamics remains a central component of therapy for a broad range of indications, including hematological malignancies and solid tumors [58,59,60]. In these contexts, MTAs are commonly integrated into combination chemotherapy regimens, e.g., the use of taxanes in adjuvant therapy for numerous types of solid tumors (e.g., breast, ovarian, bladder, or lung cancer) [60]. MTAs exhibit marked structural diversity, and many MTAs that were tested for anti-malignancy therapy potential were isolated from marine and botanical species [60]. An interesting exception is 2-methoxyestradiol (2ME2), a natural metabolite of 17β-estradiol that is generated via the activity of liver enzymes [61,62]. The binding of numerous MTAs to tubulin has been characterized at high resolution by crystallography (reviewed in [63]), resulting in their classification according to their target sites on tubulin (e.g., the colchicine site) and their effect on microtubule polymerization when tested at high concentration (enhancement vs. inhibition). Notably, at lower and therapy-relevant concentrations, both polymerization inhibitors and polymerization enhancers potently suppress microtubule dynamics, resulting in kinetic stabilization of the microtubules without alterations to the overall microtubule polymer mass [64]. As a result, both classes, i.e., MT-polymerization enhancers and MT-polymerization inhibitors, may act similarly to block mitosis, resulting in the arrest of the cell cycle at the spindle assembly checkpoint (SAC) [65]. In addition to exhibiting distinct pharmacokinetic and bioavailability parameters (e.g., the limited bioavailability of 2ME2, [66]), MTAs also differ by (i) susceptibility to clearance via ABC efflux pumps (e.g., the sensitivity of vinca alkaloids [67,68] and taxanes [69,70] to multidrug resistance (MDR) pumps, as opposed to the insensitivity exhibited by other MTAs, such as 2ME2 [71]); (ii) degree of specificity toward tumor cells, relative to non-tumor cells. In this context, the induction of neutropenia [72] limits the tolerability of MTAs. Interestingly, the differential susceptibility of hematopoietic-specific tubulin to MTAs (e.g., insensitivity of hematopoietic β1 tubulin to 2ME2, [73]) may affect the degree by which distinct MTAs induce myelosuppression [73]. MTA-mediated targeting of stromal cells may also yield therapeutic benefits. Examples of this are the MTA-mediated targeting of the tumor vasculature [74,75] or the MTA-mediated enhancement of non-canonical T-cell-mediated cancer-cell killing [76]. The notion of differences in the cellular effects elicited by distinct MTAs is exemplified by the differential attenuation of inflammatory responses in murine macrophages activated with IFN-γ and lipopolysaccharide upon co-treatment with 2ME2, colchicine, or paclitaxel [77]. 2ME2, which excelled in the reduction of inflammation-related phenomena in vitro [77], also exhibited anti-inflammatory activity in animal models of acute lung injury, rheumatoid arthritis, and chronic airway inflammation [77,78,79]. Such differences in immunomodulation may also be of importance in cancer-therapy scenarios.
Perturbation to mitosis progression, in general, and arrest of cancer cells at the SAC, in particular, have profound implications on the activation and function of tumorigenic signaling pathways. The molecular bases of these perturbations include (but are not limited to) alterations to the trafficking and function of signal-transducing receptors [80,81,82,83,84], mitosis-intrinsic modifications to transcription and translation [85,86,87,88,89], and the crosstalk between the mitotic signaling program and other signaling responses. The latter phenomenon is exemplified by CDK1-mediated phosphorylation of hundreds of cellular factors in mitosis [90,91,92], many of which regulate signal transduction pathways. In the context of MTA-mediated cancer therapy, the effects on signaling pathways that mediate cell stress or cell death are of particular interest. Indeed, numerous studies employing different cancer-cell models and distinct MTAs reported on MTA-mediated activation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) signaling cascade as a critical mechanistic element in the MTA-induced effects, including cell death [93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110].
Mitotic failure typically stems from DNA damage, perturbations to spindle formation or dynamics, or defects in the expression or regulation of executors of cell-cycle checkpoints. The outcomes of such failures are heavily influenced by characteristics of the cycling cell, including its ploidy and ability to execute cell-death programs, parameters which are frequently altered in malignant cells. Thus, in cancer therapy, the manners by which tumor cells resolve or tolerate prolonged arrests in mitosis reflect an integration of tumorigenesis-induced defects to checkpoint-mediated regulation of the cell cycle [111], malignancy-induced defects to cell-death pathways [112], and the nature and potency of the insult imposed by the therapeutic agent. The inherent heterogeneity of cancer cells, including the differences among cell lines employed in studies of mitosis-targeting agents, has yielded contrasting results, leading to difficulty in reaching consensual definitions of mitotic catastrophe and the cellular processes it involves [113,114,115,116,117,118]. In this context, and given the unsustainability of maintenance of the mitosis-arrested state over prolonged periods, cells arrested in mitosis may undergo distinct cell-death processes (e.g., autophagy [113], apoptosis [119,120,121,122], necroptosis [123,124], pyroptosis [125], or necrosis [126,127]) or mitotic-slippage [89,128,129,130,131]. The latter phenomenon allows the cancer cell to avoid cell death upon the exit from drug-induced mitotic arrest, contributing in this manner to MTA resistance, chromosomal instability, and aneuploidy. The “choice of fate” between mitotic slippage and cell death is thought to result from a balance between pro-apoptotic caspase activation and cyclin B1 degradation [132,133,134,135]. In the absence of (sufficient) caspase activation, a reduction in cyclin B1 levels below the mitotic exit threshold induces mitotic slippage. Conversely, caspase activation (i.e., breaching of the apoptosis threshold) before (sufficient) cyclin B1 degradation results in mitotic cell death. Of note, JNK is implicated in all of the above-mentioned death-related cellular outcomes which stem from mitotic arrest at the SAC, including autophagy and autophagic cell death [136,137,138,139], apoptosis [140,141,142], necroptosis [143,144], and pyroptosis [145]. In addition to its intimate connection to the cellular responses to stress which may stem from MTA treatments, JNK has also been found to regulate cell-cycle progression [146,147,148], and thus its excessive activation may contribute to MTA-induced mis-regulation of the cell cycle.
A critical and evermore-appreciated component of cancer therapies pertains to their ability to stimulate anti-tumor immunity. MTAs regulate anti-tumor immunity at different levels. Thus, MTAs contribute to anti-tumor immunity through the formation of micronuclei following chromosome missegregation, a phenomenon that differs in efficacy among MTAs and tumor-cell types [149]. A proposed mechanism for the immune stimulation stemming from the formation of micronuclei involves the accumulation of DNA damage within these micronuclei, their rupture, and the induction of inflammatory responses upon exposure of this DNA to cytosolic DNA sensors (cGAS-STING) [150]. Recently, an alternative model was proposed where immune stimulation stemming from docetaxel treatment depended on cGAS-coated chromatin bridges and a cytokinesis-related tension-dependent mechanism [151]. While these scenarios are relevant for cells that escape the SAC, arrest in mitosis per se may modify cell-autonomous immune responses [152]. For example, the DNA sensor cGAS, which is involved in cell-autonomous immune responses to DNA viruses, was found to be inactivated in mitosis due to phosphorylation, binding to chromatin elements, and mitosis-induced vesiculation of the Golgi [153,154,155,156]. Interestingly, in cells arrested in mitosis, low levels of cGAS-induced phosphorylation of IRF3 were proposed to stimulate apoptosis by inhibiting the anti-apoptotic activities of Bcl-xL [157]. In contrast, the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), an additional mediator of cell-autonomous immunity and regulator of inflammation [158], is activated in mitosis via exposure of PKR to endogenous dsRNAs upon nuclear envelope breakdown [159]. Interestingly, PKR was also shown to be phosphorylated by CDK1 and was proposed as a regulator of the response to paclitaxel in ovarian and breast cancer cells via the repression of the expression of the anti-apoptotic protein Bcl2 [160]. A further connection between MTA-mediated arrest in mitosis, IFN, and cell-death pathways is demonstrated by the stimulation of IFN-induced necroptosis, an immunogenic form of cell death, upon a combination of caspase inhibition and MTA-mediated arrest in mitosis [124]. MTAs may also modulate immune responses via direct effects on immune cells, including in manners that may contribute to tumor eradication [76,161].
MTAs may also alter the cellular context of the interphase cells and thus mediate mitosis-independent MTA effects that contribute to the anti-malignancy efficacy of these compounds on one hand, while possibly eliciting side effects on non-dividing healthy cells on the other [109,161,162,163,164,165,166,167]. Mechanistically, perturbations to microtubule dynamics may directly affect intracellular trafficking and thus modify the placement and function of intracellular organelles, with broad implications in the cellular context. Moreover, taxanes were also shown to modulate the intracellular localization of executors of signaling pathways, as exemplified by the inhibition of ligand-induced nuclear translocation of the androgen receptor and of the transcriptional activation of its target genes in prostate-cancer cells [167]. In addition, and in accordance with the roles of microtubules as regulators of cell morphology, processes that involve alterations to this morphology, such as tumor cell invasiveness, were also shown to be affected by MTAs [164].

3. Testing of OV–MTA Combinations

In recent years, several different OVs have been combined with MTAs in a variety of tumor types, in studies ranging from characterizations of infection and cell death of cells in culture to murine pre-clinical models and clinical trials [168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195]. These studies were not limited to a single type of OV and employed oncolytic variants of adenoviruses [169,170,171,172,173,174,175,176,177,182,183,185,186,192,196,197,198,199,200,201,202,203], reovirus [178,179,180,184,188,191,204], herpes virus [168,181,189,190,205,206,207], vaccinia [193,208], and rhabdoviruses (e.g., oncolytic vesicular stomatitis virus, VSV) [194,195,209]. Several such studies, including the virus, MTA, and cellular models employed, are summarized in Table 1. In a subset of the clinical studies, the OV-MTA combination was supplemented with the nucleoside analog gemcitabine [169,187] or with the inducers of DNA damage, doxorubicin [168,189], or carboplatin [178,188]. These combinations presumably exacerbate cell stress and burden the tumor cell with additional death-promoting stimuli. As such, they may tip the scale of the combinatorial treatment through increases in therapy efficacy and a further reduction in the cancer cell’s ability to develop resistance. Depending on the OV and cancer model, the mechanistic underpinnings associated with OV-MTA therapy efficacy and benefit included the potentiation of viral infection through perturbations to the translation (and thus expression of the protein products) of IFN or antiviral genes [194,195], increased expression of the cellular receptor employed by the virus [177], or the potentiation of cytostatic and cytotoxic phenomena, including mitotic slippage [186,190], apoptosis [168,169,186,191], autophagy [193], and immunogenic cell death (ICD) [192,193]. Of note, ICD and enhanced secretion of cytokines also contribute to non-cell-autonomous benefits of MTA-OV combination through the enhancement of immune stimulation and bystander cytotoxic effects [193,194]. The different scenarios stemming from single vs. combined OV and MTA therapies are schematically depicted in Figure 1.

4. Concluding Remarks

The combination of MTAs and OVs brings together two contrasting forms of cancer therapy with the potential to elicit synergistic anti-tumor effects. A subset of MTAs (e.g., taxanes) have been extensively tested and are broadly employed components of the standard of care for many different tumor types. Thus, many of the clinical requirements for using these MTAs are defined. These established conditions of safety and efficacy can also be employed as a basis for combination therapies involving OVs. In contrast to the broad usage and known limitations (e.g., relatively high frequency of toxicity or acquired resistance) of MTAs, the clinical usage of OVs is limited. Thus, many unknowns are still related to the full extent of their potential and/or restrictions as monotherapies or combination therapy agents. Moreover, given the heterogeneity of OVs, the conditions determined for one OV do not apply to a different OV, even for closely related OVs (e.g., distinct clones of the same virus of origin). This poses a considerable challenge, as OVs are highly malleable through reverse genetics, thus stimulating a constant effort of further improvement via the generation of novel clones.
The current state of the oncolytic virotherapy field is characterized by numerous OVs (based on a broad variety of viruses) being under different stages of pre-clinical development, a significantly reduced number of OVs having reached advanced stages of clinical testing, and only a single OV with FDA approval [213]. As detailed above, in vitro and pre-clinical animal studies strongly indicate the potent effects of MTA-OV combinations. Certain phenomena, such as MTA-mediated arrest at the SAC and OV-mediated elicitation of immune-stimulatory antiviral responses, are expected to be common elements of many different OV-MTA combinations. However, viruses (and thus OVs based on these viruses) are very heterogeneous in structure and infection programs, underscoring the potential for specific features of different OV-MTA combinations. For example, viruses exhibit differential dependence on microtubule-based cytoskeletal dynamics or cell-cycle phases and are expected to be differentially affected by MTAs that stabilize or destabilize microtubules. Moreover, MTAs may differ in their ability to ignite distinct sets of signal transduction pathways (e.g., JNK). This too is expected to have differential consequences for the replication of OVs and their abilities to induce oncolysis. As such, fully harnessing the potential of MTA-OV combinations requires optimization of these combinations (what OV and what MTA) to specific tumor contexts. Similarly, given the potential differences in the outcomes of specific MTA-OV combinations, further addition of therapeutic agents (e.g., DNA damaging agents or immune checkpoint inhibitors) may also be optimized with dependence on the MTA and OV employed. Together, the number of different OVs and MTAs generates an extensive number of options that need to be quantitatively assessed to allow for meaningful comparisons and rational decisions regarding the usage of a particular OV-MTA combination. However, laboratories generally study only small selections of OV types, and the comparison of the results between different studies is difficult due to the lack of standardization in the manners of testing of OVs, in general (e.g., how viral preparations are made, or the viral titers which are employed), and OV-MTA combinations, in particular. Thus, coordination between different laboratories in planning and performing such comparative experiments may be required to generate a reliable database of quantitative assessments of OVs and OV-MTA combinations. In this context, collaborative studies aimed at such comparisons should be stimulated and supported financially.

Author Contributions

S.D. and M.E. jointly contributed to the conceptualization, writing, and editing of the text. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by Israel Science Foundation grant number 1966/18, awarded to M.E.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Jin, H.; Wang, L.; Bernards, R. Rational combinations of targeted cancer therapies: Background, advances and challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef] [PubMed]
  2. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
  3. Aaltonen, L.A.; Abascal, F.; Abeshouse, A.; Aburatani, H.; Adams, D.J.; Agrawal, N.; Ahn, K.S.; Ahn, S.-M.; Aikata, H.; Akbani, R.; et al. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef]
  4. Dentro, S.C.; Leshchiner, I.; Haase, K.; Tarabichi, M.; Wintersinger, J.; Deshwar, A.G.; Yu, K.; Rubanova, Y.; Macintyre, G.; Demeulemeester, J.; et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021, 184, 2239–2254.e2239. [Google Scholar] [CrossRef] [PubMed]
  5. Flaherty, K.T.; Gray, R.; Chen, A.; Li, S.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Mitchell, E.P.; Iafrate, A.J.; Sklar, J.; et al. The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. J. Natl. Cancer Inst. 2020, 112, 1021–1029. [Google Scholar] [CrossRef]
  6. Hainsworth, J.D.; Meric-Bernstam, F.; Swanton, C.; Hurwitz, H.; Spigel, D.R.; Sweeney, C.; Burris, H.; Bose, R.; Yoo, B.; Stein, A.; et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J. Clin. Oncol. 2018, 36, 536–542. [Google Scholar] [CrossRef]
  7. Ehrlich, M.; Bacharach, E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers 2021, 13, 939. [Google Scholar] [CrossRef]
  8. Li, K.; Zhao, Y.; Hu, X.; Jiao, J.; Wang, W.; Yao, H. Advances in the clinical development of oncolytic viruses. Am. J. Transl. Res. 2022, 14, 4192–4206. [Google Scholar]
  9. Duan, S.; Wang, S.; Qiao, L.; Yu, X.; Wang, N.; Chen, L.; Zhang, X.; Zhao, X.; Liu, H.; Wang, T.; et al. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. Small 2023, 19, e2206948. [Google Scholar] [CrossRef]
  10. Shalhout, S.Z.; Miller, D.M.; Emerick, K.S.; Kaufman, H.L. Therapy with oncolytic viruses: Progress and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 160–177. [Google Scholar] [CrossRef]
  11. Hardcastle, J.; Kurozumi, K.; Chiocca, E.A.; Kaur, B. Oncolytic viruses driven by tumor-specific promoters. Curr. Cancer Drug Targets 2007, 7, 181–189. [Google Scholar] [CrossRef] [PubMed]
  12. Cafferata, E.G.; Macció, D.R.; Lopez, M.V.; Viale, D.L.; Carbone, C.; Mazzolini, G.; Podhajcer, O.L. A novel A33 promoter-based conditionally replicative adenovirus suppresses tumor growth and eradicates hepatic metastases in human colon cancer models. Clin. Cancer Res. 2009, 15, 3037–3049. [Google Scholar] [CrossRef] [PubMed]
  13. Weber, H.L.; Gidekel, M.; Werbajh, S.; Salvatierra, E.; Rotondaro, C.; Sganga, L.; Haab, G.A.; Curiel, D.T.; Cafferata, E.G.; Podhajcer, O.L. A Novel CDC25B Promoter-Based Oncolytic Adenovirus Inhibited Growth of Orthotopic Human Pancreatic Tumors in Different Preclinical Models. Clin. Cancer Res. 2015, 21, 1665–1674. [Google Scholar] [CrossRef] [PubMed]
  14. Danziger, O.; Shai, B.; Sabo, Y.; Bacharach, E.; Ehrlich, M. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection. Oncotarget 2016, 7, 52115–52134. [Google Scholar] [CrossRef]
  15. Danziger, O.; Pupko, T.; Bacharach, E.; Ehrlich, M. Interleukin-6 and Interferon-alpha Signaling via JAK1-STAT Differentially Regulate Oncolytic versus Cytoprotective Antiviral States. Front. Immunol. 2018, 9, 94. [Google Scholar] [CrossRef]
  16. Dellac, S.; Ben-Dov, H.; Raanan, A.; Saleem, H.; Zamostiano, R.; Semyatich, R.; Lavi, S.; Witz, I.P.; Bacharach, E.; Ehrlich, M. Constitutive low expression of antiviral effectors sensitizes melanoma cells to a novel oncolytic virus. Int. J. Cancer 2021, 148, 2321–2334. [Google Scholar] [CrossRef]
  17. Stojdl, D.F.; Lichty, B.; Knowles, S.; Marius, R.; Atkins, H.; Sonenberg, N.; Bell, J.C. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 2000, 6, 821–825. [Google Scholar] [CrossRef]
  18. Dunn, G.P.; Sheehan, K.C.; Old, L.J.; Schreiber, R.D. IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res. 2005, 65, 3447–3453. [Google Scholar] [CrossRef]
  19. Noser, J.A.; Mael, A.A.; Sakuma, R.; Ohmine, S.; Marcato, P.; Lee, P.W.; Ikeda, Y. The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: Implication for the defective interferon response in cancer cells. Mol. Ther. 2007, 15, 1531–1536. [Google Scholar] [CrossRef]
  20. Zhang, K.X.; Matsui, Y.; Hadaschik, B.A.; Lee, C.; Jia, W.; Bell, J.C.; Fazli, L.; So, A.I.; Rennie, P.S. Down-regulation of type I interferon receptor sensitizes bladder cancer cells to vesicular stomatitis virus-induced cell death. Int. J. Cancer 2010, 127, 830–838. [Google Scholar] [CrossRef]
  21. Komatsu, Y.; Christian, S.L.; Ho, N.; Pongnopparat, T.; Licursi, M.; Hirasawa, K. Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 2015, 34, 3985–3993. [Google Scholar] [CrossRef] [PubMed]
  22. Pikor, L.A.; Bell, J.C.; Diallo, J.S. Oncolytic Viruses: Exploiting Cancer’s Deal with the Devil. Trends Cancer 2015, 1, 266–277. [Google Scholar] [CrossRef] [PubMed]
  23. Huang, P.Y.; Guo, J.H.; Hwang, L.H. Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol. Ther. 2012, 20, 298–305. [Google Scholar] [CrossRef] [PubMed]
  24. Allagui, F.; Achard, C.; Panterne, C.; Combredet, C.; Labarrière, N.; Dréno, B.; Elgaaied, A.B.; Pouliquen, D.; Tangy, F.; Fonteneau, J.F.; et al. Modulation of the Type I Interferon Response Defines the Sensitivity of Human Melanoma Cells to Oncolytic Measles Virus. Curr. Gene Ther. 2017, 16, 419–428. [Google Scholar] [CrossRef] [PubMed]
  25. Delaunay, T.; Achard, C.; Boisgerault, N.; Grard, M.; Petithomme, T.; Chatelain, C.; Dutoit, S.; Blanquart, C.; Royer, P.J.; Minvielle, S.; et al. Frequent Homozygous Deletions of Type I Interferon Genes in Pleural Mesothelioma Confer Sensitivity to Oncolytic Measles Virus. J. Thorac. Oncol. 2020, 15, 827–842. [Google Scholar] [CrossRef]
  26. Barer, L.; Schröder, S.K.; Weiskirchen, R.; Bacharach, E.; Ehrlich, M. Lipocalin-2 regulates the expression of interferon-stimulated genes and the susceptibility of prostate cancer cells to oncolytic virus infection. Eur. J. Cell Biol. 2023, 102, 151328. [Google Scholar] [CrossRef]
  27. Dunn, G.P.; Koebel, C.M.; Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006, 6, 836–848. [Google Scholar] [CrossRef]
  28. Tshering, L.F.; Luo, F.; Russ, S.; Szenk, M.; Rubel, D.; Tutuska, K.; Rail, J.G.; Balázsi, G.; Shen, M.M.; Talos, F. Immune mechanisms shape the clonal landscape during early progression of prostate cancer. Dev. Cell 2023, 58, 1071–1086.e1078. [Google Scholar] [CrossRef]
  29. Martínez-Sabadell, A.; Arenas, E.J.; Arribas, J. IFNγ Signaling in Natural and Therapy-Induced Antitumor Responses. Clin. Cancer Res. 2022, 28, 1243–1249. [Google Scholar] [CrossRef]
  30. von Locquenghien, M.; Rozalén, C.; Celià-Terrassa, T. Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
  31. Lawson, K.A.; Sousa, C.M.; Zhang, X.; Kim, E.; Akthar, R.; Caumanns, J.J.; Yao, Y.; Mikolajewicz, N.; Ross, C.; Brown, K.R.; et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 2020, 586, 120–126. [Google Scholar] [CrossRef] [PubMed]
  32. Katlinski, K.V.; Gui, J.; Katlinskaya, Y.V.; Ortiz, A.; Chakraborty, R.; Bhattacharya, S.; Carbone, C.J.; Beiting, D.P.; Girondo, M.A.; Peck, A.R.; et al. Inactivation of Interferon Receptor Promotes the Establishment of Immune Privileged Tumor Microenvironment. Cancer Cell 2017, 31, 194–207. [Google Scholar] [CrossRef] [PubMed]
  33. Katlinskaya, Y.V.; Katlinski, K.V.; Yu, Q.; Ortiz, A.; Beiting, D.P.; Brice, A.; Davar, D.; Sanders, C.; Kirkwood, J.M.; Rui, H.; et al. Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Rep. 2016, 15, 171–180. [Google Scholar] [CrossRef] [PubMed]
  34. Klampfer, L.; Huang, J.; Corner, G.; Mariadason, J.; Arango, D.; Sasazuki, T.; Shirasawa, S.; Augenlicht, L. Oncogenic Ki-ras inhibits the expression of interferon-responsive genes through inhibition of STAT1 and STAT2 expression. J. Biol. Chem. 2003, 278, 46278–46287. [Google Scholar] [CrossRef]
  35. Kriegsman, B.A.; Vangala, P.; Chen, B.J.; Meraner, P.; Brass, A.L.; Garber, M.; Rock, K.L. Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression. J. Immunol. 2019, 203, 1999–2010. [Google Scholar] [CrossRef]
  36. Kulaeva, O.I.; Draghici, S.; Tang, L.; Kraniak, J.M.; Land, S.J.; Tainsky, M.A. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene 2003, 22, 4118–4127. [Google Scholar] [CrossRef]
  37. Lee, K.Y.; Geng, H.; Ng, K.M.; Yu, J.; van Hasselt, A.; Cao, Y.; Zeng, Y.X.; Wong, A.H.Y.; Wang, X.; Ying, J.; et al. Epigenetic disruption of interferon-γ response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene 2008, 27, 5267–5276. [Google Scholar] [CrossRef]
  38. Li, Q.; Tainsky, M.A. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS ONE 2011, 6, e28683. [Google Scholar] [CrossRef]
  39. Li, S.; Zhu, M.; Pan, R.; Fang, T.; Cao, Y.Y.; Chen, S.; Zhao, X.; Lei, C.Q.; Guo, L.; Chen, Y.; et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat. Immunol. 2016, 17, 241–249. [Google Scholar] [CrossRef]
  40. Lin, L.; Su, Z.; Lebedeva, I.V.; Gupta, P.; Boukerche, H.; Rai, T.; Barber, G.N.; Dent, P.; Sarkar, D.; Fisher, P.B. Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell Death Differ. 2006, 13, 1982–1993. [Google Scholar] [CrossRef]
  41. Luo, N.; Nixon, M.J.; Gonzalez-Ericsson, P.I.; Sanchez, V.; Opalenik, S.R.; Li, H.; Zahnow, C.A.; Nickels, M.L.; Liu, F.; Tantawy, M.N.; et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed]
  42. Stone, M.L.; Chiappinelli, K.B.; Li, H.; Murphy, L.M.; Travers, M.E.; Topper, M.J.; Mathios, D.; Lim, M.; Shih, I.M.; Wang, T.L.; et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA 2017, 114, E10981–E10990. [Google Scholar] [CrossRef] [PubMed]
  43. Zhang, Q.; Gong, R.; Qu, J.; Zhou, Y.; Liu, W.; Chen, M.; Liu, Y.; Zhu, Y.; Wu, J. Activation of the Ras/Raf/MEK Pathway Facilitates Hepatitis C Virus Replication via Attenuation of the Interferon-JAK-STAT Pathway. J. Virol. 2012, 86, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
  44. Pol, J.G.; Workenhe, S.T.; Konda, P.; Gujar, S.; Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 2020, 56, 4–27. [Google Scholar] [CrossRef]
  45. LaRocca, C.J.; Warner, S.G. Oncolytic viruses and checkpoint inhibitors: Combination therapy in clinical trials. Clin. Transl. Med. 2018, 7, 35. [Google Scholar] [CrossRef]
  46. Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef]
  47. Samson, A.; Scott, K.J.; Taggart, D.; West, E.J.; Wilson, E.; Nuovo, G.J.; Thomson, S.; Corns, R.; Mathew, R.K.; Fuller, M.J.; et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl. Med. 2018, 10, eaam7577. [Google Scholar] [CrossRef]
  48. Shen, Y.; Song, W.; Lin, D.; Zhang, X.; Wang, M.; Li, Y.; Yang, Z.; Guo, S.; Wang, Z.; Sheng, J.; et al. VG161 activates systemic antitumor immunity in pancreatic cancer models as a novel oncolytic herpesvirus expressing multiple immunomodulatory transgenes. J. Med. Virol. 2023, 95, e28108. [Google Scholar] [CrossRef]
  49. Kim, S.I.; Park, A.K.; Chaurasiya, S.; Kang, S.; Lu, J.; Yang, A.; Sivanandam, V.; Zhang, Z.; Woo, Y.; Priceman, S.J.; et al. Recombinant Orthopoxvirus Primes Colon Cancer for Checkpoint Inhibitor and Cross-Primes T Cells for Antitumor and Antiviral Immunity. Mol. Cancer Ther. 2021, 20, 173–182. [Google Scholar] [CrossRef]
  50. Zuo, S.; Wei, M.; Xu, T.; Kong, L.; He, B.; Wang, S.; Wang, S.; Wu, J.; Dong, J.; Wei, J. An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade. J. Immunother. Cancer 2021, 9, e002843. [Google Scholar] [CrossRef]
  51. Chesney, J.A.; Ribas, A.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma. J. Clin. Oncol. 2023, 41, 528–540. [Google Scholar] [CrossRef] [PubMed]
  52. Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective Response Rate Among Patients With Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 402–408. [Google Scholar] [CrossRef]
  53. Gilchrist, V.H.; Jémus-Gonzalez, E.; Said, A.; Alain, T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev. 2020, 56, 83–93. [Google Scholar] [CrossRef] [PubMed]
  54. Liang, M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr. Cancer Drug Targets 2018, 18, 171–176. [Google Scholar] [CrossRef] [PubMed]
  55. Poh, A. First Oncolytic Viral Therapy for Melanoma. Cancer Discov. 2016, 6, 6. [Google Scholar] [CrossRef]
  56. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
  57. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
  58. Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef]
  59. Noble, R.L.; Beer, C.T.; Cutts, J.H. Role of chance observations in chemotherapy: Vinca rosea. Ann. N. Y. Acad. Sci. 1958, 76, 882–894. [Google Scholar] [CrossRef]
  60. Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef]
  61. Lao, K.; Wang, Y.; Chen, M.; Zhang, J.; You, Q.; Xiang, H. Design, synthesis and biological evaluation of novel 2-methoxyestradiol analogs as dual selective estrogen receptor modulators (SERMs) and antiangiogenic agents. Eur. J. Med. Chem. 2017, 139, 390–400. [Google Scholar] [CrossRef] [PubMed]
  62. D’Amato, R.J.; Lin, C.M.; Flynn, E.; Folkman, J.; Hamel, E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 1994, 91, 3964–3968. [Google Scholar] [CrossRef] [PubMed]
  63. Steinmetz, M.O.; Prota, A.E. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol. 2018, 28, 776–792. [Google Scholar] [CrossRef] [PubMed]
  64. Yvon, A.M.; Wadsworth, P.; Jordan, M.A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 1999, 10, 947–959. [Google Scholar] [CrossRef]
  65. Gascoigne, K.E.; Taylor, S.S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 2009, 122, 2579–2585. [Google Scholar] [CrossRef]
  66. Ireson, C.R.; Chander, S.K.; Purohit, A.; Perera, S.; Newman, S.P.; Parish, D.; Leese, M.P.; Smith, A.C.; Potter, B.V.; Reed, M.J. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br. J. Cancer 2004, 90, 932–937. [Google Scholar] [CrossRef]
  67. Bruggemann, E.P.; Currier, S.J.; Gottesman, M.M.; Pastan, I. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J. Biol. Chem. 1992, 267, 21020–21026. [Google Scholar] [CrossRef]
  68. Breuninger, L.M.; Paul, S.; Gaughan, K.; Miki, T.; Chan, A.; Aaronson, S.A.; Kruh, G.D. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995, 55, 5342–5347. [Google Scholar]
  69. Hopper-Borge, E.; Chen, Z.S.; Shchaveleva, I.; Belinsky, M.G.; Kruh, G.D. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): Resistance to docetaxel. Cancer Res. 2004, 64, 4927–4930. [Google Scholar] [CrossRef]
  70. Huisman, M.T.; Chhatta, A.A.; van Tellingen, O.; Beijnen, J.H.; Schinkel, A.H. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int. J. Cancer 2005, 116, 824–829. [Google Scholar] [CrossRef]
  71. Schumacher, G.; Hoffmann, J.; Cramer, T.; Spinelli, A.; Jacob, D.; Bahra, M.; Pratschke, J.; Pfitzmann, R.; Schmidt, S.; Lage, H. Antineoplastic activity of 2-methoxyestradiol in human pancreatic and gastric cancer cells with different multidrug-resistant phenotypes. J. Gastroenterol. Hepatol. 2007, 22, 1469–1473. [Google Scholar] [CrossRef] [PubMed]
  72. Crombag, M.-R.B.S.; Koolen, S.L.W.; Wijngaard, S.; Joerger, M.; Dorlo, T.P.C.; van Erp, N.P.; Mathijssen, R.H.J.; Beijnen, J.H.; Huitema, A.D.R. Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel? Pharm. Res. 2019, 36, 163. [Google Scholar] [CrossRef] [PubMed]
  73. Escuin, D.; Burke, P.A.; McMahon-Tobin, G.; Hembrough, T.; Wang, Y.; Alcaraz, A.A.; Leandro-García, L.J.; Rodríguez-Antona, C.; Snyder, J.P.; Lavallee, T.M.; et al. The hematopoietic-specific beta1-tubulin is naturally resistant to 2-methoxyestradiol and protects patients from drug-induced myelosuppression. Cell Cycle 2009, 8, 3914–3924. [Google Scholar] [CrossRef] [PubMed]
  74. Strieth, S.; Eichhorn, M.E.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Dellian, M. Neovascular targeting chemotherapy: Encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int. J. Cancer 2004, 110, 117–124. [Google Scholar] [CrossRef]
  75. Mabjeesh, N.J.; Escuin, D.; LaVallee, T.M.; Pribluda, V.S.; Swartz, G.M.; Johnson, M.S.; Willard, M.T.; Zhong, H.; Simons, J.W.; Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003, 3, 363–375. [Google Scholar] [CrossRef]
  76. Vennin, C.; Cattaneo, C.M.; Bosch, L.; Vegna, S.; Ma, X.; Damstra, H.G.J.; Martinovic, M.; Tsouri, E.; Ilic, M.; Azarang, L.; et al. Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity. Cancer Cell 2023, 41, 1170–1185.e1112. [Google Scholar] [CrossRef]
  77. Shand, F.H.; Langenbach, S.Y.; Keenan, C.R.; Ma, S.P.; Wheaton, B.J.; Schuliga, M.J.; Ziogas, J.; Stewart, A.G. In vitro and in vivo evidence for anti-inflammatory properties of 2-methoxyestradiol. J. Pharmacol. Exp. Ther. 2011, 336, 962–972. [Google Scholar] [CrossRef]
  78. Huerta-Yepez, S.; Baay-Guzman, G.J.; Garcia-Zepeda, R.; Hernandez-Pando, R.; Vega, M.I.; Gonzalez-Bonilla, C.; Bonavida, B. 2-Methoxyestradiol (2-ME) reduces the airway inflammation and remodeling in an experimental mouse model. Clin. Immunol. 2008, 129, 313–324. [Google Scholar] [CrossRef]
  79. Plum, S.M.; Park, E.J.; Strawn, S.J.; Moore, E.G.; Sidor, C.F.; Fogler, W.E. Disease modifying and antiangiogenic activity of 2-methoxyestradiol in a murine model of rheumatoid arthritis. BMC Musculoskelet. Disord. 2009, 10, 46. [Google Scholar] [CrossRef]
  80. Hirschhorn, T.; Barizilay, L.; Smorodinsky, N.I.; Ehrlich, M. Differential regulation of Smad3 and of the type II transforming growth factor-beta receptor in mitosis: Implications for signaling. PLoS ONE 2012, 7, e43459. [Google Scholar] [CrossRef]
  81. Chetrit, D.; Barzilay, L.; Horn, G.; Bielik, T.; Smorodinsky, N.I.; Ehrlich, M. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis. J. Biol. Chem. 2011, 286, 5392–5403. [Google Scholar] [CrossRef] [PubMed]
  82. Boucrot, E.; Howes, M.T.; Kirchhausen, T.; Parton, R.G. Redistribution of caveolae during mitosis. J. Cell Sci. 2011, 124, 1965–1972. [Google Scholar] [CrossRef] [PubMed]
  83. Fürthauer, M.; González-Gaitán, M. Endocytosis and mitosis: A two-way relationship. Cell Cycle 2009, 8, 3311–3318. [Google Scholar] [CrossRef] [PubMed]
  84. Fielding, A.B.; Willox, A.K.; Okeke, E.; Royle, S.J. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl. Acad. Sci. USA 2012, 109, 6572–6577. [Google Scholar] [CrossRef]
  85. Palozola, K.C.; Donahue, G.; Liu, H.; Grant, G.R.; Becker, J.S.; Cote, A.; Yu, H.; Raj, A.; Zaret, K.S. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 2017, 358, 119–122. [Google Scholar] [CrossRef]
  86. Sivan, G.; Kedersha, N.; Elroy-Stein, O. Ribosomal slowdown mediates translational arrest during cellular division. Mol. Cell Biol. 2007, 27, 6639–6646. [Google Scholar] [CrossRef]
  87. Aviner, R.; Hofmann, S.; Elman, T.; Shenoy, A.; Geiger, T.; Elkon, R.; Ehrlich, M.; Elroy-Stein, O. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis. Nucleic Acids Res. 2017, 45, 5945–5957. [Google Scholar] [CrossRef]
  88. Aviner, R.; Shenoy, A.; Elroy-Stein, O.; Geiger, T. Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis. PLoS Genet. 2015, 11, e1005554. [Google Scholar] [CrossRef]
  89. Blagosklonny, M.V. Mitotic arrest and cell fate: Why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 2007, 6, 70–74. [Google Scholar] [CrossRef]
  90. Petrone, A.; Adamo, M.E.; Cheng, C.; Kettenbach, A.N. Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics. Mol. Cell. Proteom. 2016, 15, 2448–2461. [Google Scholar] [CrossRef]
  91. Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal 2010, 3, ra3. [Google Scholar] [CrossRef] [PubMed]
  92. Dephoure, N.; Zhou, C.; Villén, J.; Beausoleil, S.A.; Bakalarski, C.E.; Elledge, S.J.; Gygi, S.P. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA 2008, 105, 10762–10767. [Google Scholar] [CrossRef] [PubMed]
  93. Fan, M.; Goodwin, M.; Vu, T.; Brantley-Finley, C.; Gaarde, W.A.; Chambers, T.C. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J. Biol. Chem. 2000, 275, 29980–29985. [Google Scholar] [CrossRef] [PubMed]
  94. Chu, R.; Upreti, M.; Ding, W.X.; Yin, X.M.; Chambers, T.C. Regulation of Bax by c-Jun NH2-terminal kinase and Bcl-xL in vinblastine-induced apoptosis. Biochem. Pharmacol. 2009, 78, 241–248. [Google Scholar] [CrossRef]
  95. Chiu, W.H.; Luo, S.J.; Chen, C.L.; Cheng, J.H.; Hsieh, C.Y.; Wang, C.Y.; Huang, W.C.; Su, W.C.; Lin, C.F. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem. Pharmacol. 2012, 83, 1159–1171. [Google Scholar] [CrossRef]
  96. Zhang, L.; Yang, Z.; Granieri, L.; Pasculescu, A.; Datti, A.; Asa, S.L.; Xu, Z.; Ezzat, S. High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor. Oncotarget 2016, 7, 19948–19959. [Google Scholar] [CrossRef]
  97. Huang, Z.; Xu, Y.; Peng, W. Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways. Mol. Med. Rep. 2015, 12, 5939–5944. [Google Scholar] [CrossRef]
  98. Feng, R.; Li, S.; Lu, C.; Andreas, C.; Stolz, D.B.; Mapara, M.Y.; Lentzsch, S. Targeting the microtubular network as a new antimyeloma strategy. Mol. Cancer Ther. 2011, 10, 1886–1896. [Google Scholar] [CrossRef]
  99. Sánchez-Pérez, T.; Ortiz-Ferrón, G.; López-Rivas, A. Mitotic arrest and JNK-induced proteasomal degradation of FLIP and Mcl-1 are key events in the sensitization of breast tumor cells to TRAIL by antimicrotubule agents. Cell Death Differ. 2010, 17, 883–894. [Google Scholar] [CrossRef]
  100. Yu-Wei, D.; Li, Z.S.; Xiong, S.M.; Huang, G.; Luo, Y.F.; Huo, T.Y.; Zhou, M.H.; Zheng, Y.W. Paclitaxel induces apoptosis through the TAK1-JNK activation pathway. FEBS Open Bio 2020, 10, 1655–1667. [Google Scholar] [CrossRef]
  101. Selimovic, D.; Hassan, M.; Haikel, Y.; Hengge, U.R. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell. Signal 2008, 20, 311–322. [Google Scholar] [CrossRef] [PubMed]
  102. Zhang, X.; Ling, M.T.; Wang, X.; Wong, Y.C. Inactivation of Id-1 in prostate cancer cells: A potential therapeutic target in inducing chemosensitization to taxol through activation of JNK pathway. Int. J. Cancer 2006, 118, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
  103. Lan, Y.Y.; Chen, Y.H.; Liu, C.; Tung, K.L.; Wu, Y.T.; Lin, S.C.; Wu, C.H.; Chang, H.Y.; Chen, Y.C.; Huang, B.M. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol. Lett. 2021, 22, 705. [Google Scholar] [CrossRef] [PubMed]
  104. Su, C.C.; Lin, J.W.; Chang, K.Y.; Wu, C.T.; Liu, S.H.; Chang, K.C.; Liu, J.M.; Lee, K.I.; Fang, K.M.; Chen, Y.W. Involvement of AMPKα and MAPK-ERK/-JNK Signals in Docetaxel-Induced Human Tongue Squamous Cell Carcinoma Cell Apoptosis. Int. J. Mol. Sci. 2022, 23, 13857. [Google Scholar] [CrossRef]
  105. Mingo-Sion, A.M.; Marietta, P.M.; Koller, E.; Wolf, D.M.; Van Den Berg, C.L. Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 2004, 23, 596–604. [Google Scholar] [CrossRef]
  106. Huang, Y.; Sheikh, M.S.; Fornace, A.J., Jr.; Holbrook, N.J. Serine protease inhibitor TPCK prevents Taxol-induced cell death and blocks c-Raf-1 and Bcl-2 phosphorylation in human breast carcinoma cells. Oncogene 1999, 18, 3431–3439. [Google Scholar] [CrossRef]
  107. Kolomeichuk, S.N.; Terrano, D.T.; Lyle, C.S.; Sabapathy, K.; Chambers, T.C. Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 2008, 275, 1889–1899. [Google Scholar] [CrossRef]
  108. Notte, A.; Ninane, N.; Arnould, T.; Michiels, C. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: Role of autophagy and JNK activation. Cell Death Dis. 2013, 4, e638. [Google Scholar] [CrossRef]
  109. Wang, T.-H.; Wang, H.-S.; Ichijo, H.; Giannakakou, P.; Foster, J.S.; Fojo, T.; Wimalasena, J. Microtubule-interfering Agents Activate c-Jun N-terminal Kinase/Stress-activated Protein Kinase through Both Ras and Apoptosis Signal-regulating Kinase Pathways*. J. Biol. Chem. 1998, 273, 4928–4936. [Google Scholar] [CrossRef]
  110. Stone, A.A.; Chambers, T.C. Microtubule Inhibitors Elicit Differential Effects on MAP Kinase (JNK, ERK, and p38) Signaling Pathways in Human KB-3 Carcinoma Cells. Exp. Cell Res. 2000, 254, 110–119. [Google Scholar] [CrossRef]
  111. Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef] [PubMed]
  112. Yuan, J.; Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 2024, 25, 379–395. [Google Scholar] [CrossRef] [PubMed]
  113. Sorokina, I.V.; Denisenko, T.V.; Imreh, G.; Tyurin-Kuzmin, P.A.; Kaminskyy, V.O.; Gogvadze, V.; Zhivotovsky, B. Involvement of autophagy in the outcome of mitotic catastrophe. Sci. Rep. 2017, 7, 14571. [Google Scholar] [CrossRef] [PubMed]
  114. Denisenko, T.V.; Sorokina, I.V.; Gogvadze, V.; Zhivotovsky, B. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updates 2016, 24, 1–12. [Google Scholar] [CrossRef]
  115. Roninson, I.B.; Broude, E.V.; Chang, B.-D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Updates 2001, 4, 303–313. [Google Scholar] [CrossRef]
  116. Kimura, M.; Yoshioka, T.; Saio, M.; Banno, Y.; Nagaoka, H.; Okano, Y. Mitotic catastrophe and cell death induced by depletion of centrosomal proteins. Cell Death Dis. 2013, 4, e603. [Google Scholar] [CrossRef]
  117. Vitale, I.; Galluzzi, L.; Castedo, M.; Kroemer, G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 2011, 12, 385–392. [Google Scholar] [CrossRef]
  118. Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell death by mitotic catastrophe: A molecular definition. Oncogene 2004, 23, 2825–2837. [Google Scholar] [CrossRef]
  119. Bekier, M.E.; Fischbach, R.; Lee, J.; Taylor, W.R. Length of mitotic arrest induced by microtubule-stabilizing drugs determines cell death after mitotic exit. Mol. Cancer Ther. 2009, 8, 1646–1654. [Google Scholar] [CrossRef]
  120. Gangemi, R.M.; Tiso, M.; Marchetti, C.; Severi, A.B.; Fabbi, M. Taxol cytotoxicity on human leukemia cell lines is a function of their susceptibility to programmed cell death. Cancer Chemother. Pharmacol. 1995, 36, 385–392. [Google Scholar] [CrossRef]
  121. Jordan, M.A.; Wendell, K.; Gardiner, S.; Derry, W.B.; Copp, H.; Wilson, L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 1996, 56, 816–825. [Google Scholar] [PubMed]
  122. Milross, C.G.; Mason, K.A.; Hunter, N.R.; Chung, W.K.; Peters, L.J.; Milas, L. Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. J. Natl. Cancer Inst. 1996, 88, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
  123. Egorshina, A.Y.; Zamaraev, A.V.; Kaminskyy, V.O.; Radygina, T.V.; Zhivotovsky, B.; Kopeina, G.S. Necroptosis as a Novel Facet of Mitotic Catastrophe. Int. J. Mol. Sci. 2022, 23, 3733. [Google Scholar] [CrossRef] [PubMed]
  124. Frank, T.; Tuppi, M.; Hugle, M.; Dötsch, V.; van Wijk, S.J.L.; Fulda, S. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019, 26, 2046–2060. [Google Scholar] [CrossRef] [PubMed]
  125. Wang, X.; Li, H.; Li, W.; Xie, J.; Wang, F.; Peng, X.; Song, Y.; Tan, G. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy. Cell Biol. Toxicol. 2020, 36, 437–457. [Google Scholar] [CrossRef] [PubMed]
  126. Mason, K.A.; Hunter, N.R.; Milas, M.; Abbruzzese, J.L.; Milas, L. Docetaxel enhances tumor radioresponse in vivo. Clin. Cancer Res. 1997, 3, 2431–2438. [Google Scholar]
  127. Schimming, R.; Mason, K.A.; Hunter, N.; Weil, M.; Kishi, K.; Milas, L. Lack of correlation between mitotic arrest or apoptosis and antitumor effect of docetaxel. Cancer Chemother. Pharmacol. 1999, 43, 165–172. [Google Scholar] [CrossRef]
  128. Nakayama, Y.; Inoue, T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016, 21, 663. [Google Scholar] [CrossRef]
  129. Sinha, D.; Duijf, P.H.G.; Khanna, K.K. Mitotic slippage: An old tale with a new twist. Cell Cycle 2019, 18, 7–15. [Google Scholar] [CrossRef]
  130. Mosca, L.; Ilari, A.; Fazi, F.; Assaraf, Y.G.; Colotti, G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updates 2021, 54, 100742. [Google Scholar] [CrossRef]
  131. Haschka, M.; Karbon, G.; Fava, L.L.; Villunger, A. Perturbing mitosis for anti-cancer therapy: Is cell death the only answer? EMBO Rep. 2018, 19, e45440. [Google Scholar] [CrossRef]
  132. Sakurikar, N.; Eichhorn, J.M.; Chambers, T.C. Cyclin-dependent kinase-1 (Cdk1)/cyclin B1 dictates cell fate after mitotic arrest via phosphoregulation of antiapoptotic Bcl-2 proteins. J. Biol. Chem. 2012, 287, 39193–39204. [Google Scholar] [CrossRef] [PubMed]
  133. Huang, H.C.; Mitchison, T.J.; Shi, J. Stochastic competition between mechanistically independent slippage and death pathways determines cell fate during mitotic arrest. PLoS ONE 2010, 5, e15724. [Google Scholar] [CrossRef] [PubMed]
  134. Gascoigne, K.E.; Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008, 14, 111–122. [Google Scholar] [CrossRef] [PubMed]
  135. Cheng, B.; Crasta, K. Consequences of mitotic slippage for antimicrotubule drug therapy. Endocr. Relat. Cancer 2017, 24, T97–T106. [Google Scholar] [CrossRef] [PubMed]
  136. Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene 2010, 29, 2070–2082. [Google Scholar] [CrossRef]
  137. Zhou, Y.-Y.; Li, Y.; Jiang, W.-Q.; Zhou, L.-F. MAPK/JNK signalling: A potential autophagy regulation pathway. Biosci. Rep. 2015, 35, e00199. [Google Scholar] [CrossRef]
  138. Lorin, S.; Borges, A.; Ribeiro Dos Santos, L.; Souquère, S.; Pierron, G.; Ryan, K.M.; Codogno, P.; Djavaheri-Mergny, M. c-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells. Cancer Res. 2009, 69, 6924–6931. [Google Scholar] [CrossRef]
  139. Lorin, S.; Pierron, G.; Ryan, K.M.; Codogno, P.; Djavaheri-Mergny, M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 2010, 6, 153–154. [Google Scholar] [CrossRef]
  140. Dhanasekaran, D.N.; Reddy, E.P. JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer 2017, 8, 682–694. [Google Scholar] [CrossRef]
  141. Tournier, C.; Hess, P.; Yang, D.D.; Xu, J.; Turner, T.K.; Nimnual, A.; Bar-Sagi, D.; Jones, S.N.; Flavell, R.A.; Davis, R.J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000, 288, 870–874. [Google Scholar] [CrossRef] [PubMed]
  142. Behrens, A.; Sibilia, M.; Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 1999, 21, 326–329. [Google Scholar] [CrossRef] [PubMed]
  143. Kamata, H.; Honda, S.; Maeda, S.; Chang, L.; Hirata, H.; Karin, M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120, 649–661. [Google Scholar] [CrossRef] [PubMed]
  144. Sun, W.; Wu, X.; Gao, H.; Yu, J.; Zhao, W.; Lu, J.J.; Wang, J.; Du, G.; Chen, X. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic. Biol. Med. 2017, 108, 433–444. [Google Scholar] [CrossRef]
  145. Lupfer, C.R.; Anand, P.K.; Liu, Z.; Stokes, K.L.; Vogel, P.; Lamkanfi, M.; Kanneganti, T.D. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog. 2014, 10, e1004410. [Google Scholar] [CrossRef]
  146. Gutierrez, G.J.; Tsuji, T.; Chen, M.; Jiang, W.; Ronai, Z.A. Interplay between Cdh1 and JNK activity during the cell cycle. Nat. Cell Biol. 2010, 12, 686–695. [Google Scholar] [CrossRef]
  147. Gutierrez, G.J.; Tsuji, T.; Cross, J.V.; Davis, R.J.; Templeton, D.J.; Jiang, W.; Ronai, Z.A. JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G(2)/M DNA damage checkpoint. J. Biol. Chem. 2010, 285, 14217–14228. [Google Scholar] [CrossRef]
  148. Cosolo, A.; Jaiswal, J.; Csordás, G.; Grass, I.; Uhlirova, M.; Classen, A.K. JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress. Elife 2019, 8, e41036. [Google Scholar] [CrossRef]
  149. Pineda, J.J.; Miller, M.A.; Song, Y.; Kuhn, H.; Mikula, H.; Tallapragada, N.; Weissleder, R.; Mitchison, T.J. Site occupancy calibration of taxane pharmacology in live cells and tissues. Proc. Natl. Acad. Sci. USA 2018, 115, E11406–E11414. [Google Scholar] [CrossRef]
  150. Mitchison, T.J.; Pineda, J.; Shi, J.; Florian, S. Is inflammatory micronucleation the key to a successful anti-mitotic cancer drug? Open Biol. 2017, 7, 170182. [Google Scholar] [CrossRef]
  151. Flynn, P.J.; Koch, P.D.; Mitchison, T.J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2103585118. [Google Scholar] [CrossRef] [PubMed]
  152. Randow, F.; MacMicking, J.D.; James, L.C. Cellular self-defense: How cell-autonomous immunity protects against pathogens. Science 2013, 340, 701–706. [Google Scholar] [CrossRef] [PubMed]
  153. Zhong, L.; Hu, M.M.; Bian, L.J.; Liu, Y.; Chen, Q.; Shu, H.B. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov. 2020, 6, 26. [Google Scholar] [CrossRef] [PubMed]
  154. Li, T.; Huang, T.; Du, M.; Chen, X.; Du, F.; Ren, J.; Chen, Z.J. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 2021, 371, eabc5386. [Google Scholar] [CrossRef] [PubMed]
  155. Uhlorn, B.L.; Gamez, E.R.; Li, S.; Campos, S.K. Attenuation of cGAS/STING activity during mitosis. Life Sci. Alliance 2020, 3, e201900636. [Google Scholar] [CrossRef]
  156. Zhong, L.; Shu, H.B. Mitotic inactivation of the cGAS–MITA/STING pathways. J. Mol. Cell Biol. 2021, 13, 721–727. [Google Scholar] [CrossRef]
  157. Zierhut, C.; Yamaguchi, N.; Paredes, M.; Luo, J.D.; Carroll, T.; Funabiki, H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell 2019, 178, 302–315.e23. [Google Scholar] [CrossRef]
  158. Gal-Ben-Ari, S.; Barrera, I.; Ehrlich, M.; Rosenblum, K. PKR: A Kinase to Remember. Front. Mol. Neurosci. 2018, 11, 480. [Google Scholar] [CrossRef]
  159. Kim, Y.; Lee, J.H.; Park, J.E.; Cho, J.; Yi, H.; Kim, V.N. PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator. Genes Dev. 2014, 28, 1310–1322. [Google Scholar] [CrossRef]
  160. Yin, L.; Zeng, Y.; Zeng, R.; Chen, Y.; Wang, T.L.; Rodabaugh, K.J.; Yu, F.; Natarajan, A.; Karpf, A.R.; Dong, J. Protein kinase RNA-activated controls mitotic progression and determines paclitaxel chemosensitivity through B-cell lymphoma 2 in ovarian cancer. Oncogene 2021, 40, 6772–6785. [Google Scholar] [CrossRef]
  161. Lanni, J.S.; Lowe, S.W.; Licitra, E.J.; Liu, J.O.; Jacks, T. p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA 1997, 94, 9679–9683. [Google Scholar] [CrossRef] [PubMed]
  162. Herbst, R.S.; Khuri, F.R. Mode of action of docetaxel—A basis for combination with novel anticancer agents. Cancer Treat. Rev. 2003, 29, 407–415. [Google Scholar] [CrossRef] [PubMed]
  163. Jang, H.J.; Hwang, S.; Cho, K.Y.; Kim, D.K.; Chay, K.O.; Kim, J.K. Taxol induces oxidative neuronal cell death by enhancing the activity of NADPH oxidase in mouse cortical cultures. Neurosci. Lett. 2008, 443, 17–22. [Google Scholar] [CrossRef] [PubMed]
  164. Tran, T.A.; Gillet, L.; Roger, S.; Besson, P.; White, E.; Le Guennec, J.Y. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness. Biochem. Biophys Res. Commun. 2009, 379, 304–308. [Google Scholar] [CrossRef]
  165. Dark, G.G.; Hill, S.A.; Prise, V.E.; Tozer, G.M.; Pettit, G.R.; Chaplin, D.J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997, 57, 1829–1834. [Google Scholar]
  166. Ganansia-Leymarie, V.; Bischoff, P.; Bergerat, J.P.; Holl, V. Signal transduction pathways of taxanes-induced apoptosis. Curr. Med. Chem. Anticancer Agents 2003, 3, 291–306. [Google Scholar] [CrossRef]
  167. Darshan, M.S.; Loftus, M.S.; Thadani-Mulero, M.; Levy, B.P.; Escuin, D.; Zhou, X.K.; Gjyrezi, A.; Chanel-Vos, C.; Shen, R.; Tagawa, S.T.; et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011, 71, 6019–6029. [Google Scholar] [CrossRef]
  168. Lin, S.F.; Gao, S.P.; Price, D.L.; Li, S.; Chou, T.C.; Singh, P.; Huang, Y.Y.; Fong, Y.; Wong, R.J. Synergy of a herpes oncolytic virus and paclitaxel for anaplastic thyroid cancer. Clin. Cancer Res. 2008, 14, 1519–1528. [Google Scholar] [CrossRef]
  169. Mato-Berciano, A.; Raimondi, G.; Maliandi, M.V.; Alemany, R.; Montoliu, L.; Fillat, C. A NOTCH-sensitive uPAR-regulated oncolytic adenovirus effectively suppresses pancreatic tumor growth and triggers synergistic anticancer effects with gemcitabine and nab-paclitaxel. Oncotarget 2017, 8, 22700–22715. [Google Scholar] [CrossRef]
  170. Cao, L.; Zeng, Q.; Xu, C.; Shi, S.; Zhang, Z.; Sun, X. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12. Mol. Pharm. 2013, 10, 1804–1814. [Google Scholar] [CrossRef]
  171. Kim, I.W.; Yoon, A.R.; Hong, J.; Kasala, D.; Yun, C.O. Synergistic antitumor immune response mediated by paclitaxel-conjugated nanohybrid oncolytic adenovirus with dendritic cell therapy. Front. Immunol. 2024, 15, 1355566. [Google Scholar] [CrossRef] [PubMed]
  172. Fang, L.; Cheng, Q.; Bai, J.; Qi, Y.D.; Liu, J.J.; Li, L.T.; Zheng, J.N. An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Mol. Med. Rep. 2013, 8, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
  173. Yu, D.C.; Chen, Y.; Dilley, J.; Li, Y.; Embry, M.; Zhang, H.; Nguyen, N.; Amin, P.; Oh, J.; Henderson, D.R. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 2001, 61, 517–525. [Google Scholar] [PubMed]
  174. Chen, P.; Luo, S.; Wen, Y.J.; Li, Y.H.; Li, J.; Wang, Y.S.; Du, L.C.; Zhang, P.; Tang, J.; Yang, D.B.; et al. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer. Cancer Sci. 2014, 105, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
  175. Garofalo, M.; Villa, A.; Rizzi, N.; Kuryk, L.; Rinner, B.; Cerullo, V.; Yliperttula, M.; Mazzaferro, V.; Ciana, P. Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice. J. Control. Release 2019, 294, 165–175. [Google Scholar] [CrossRef]
  176. Wang, J.; Li, Y.; Li, S.; Yao, W.; Liu, X.; Zhu, Y.; Li, W.; Sun, L.; Jin, N.; Li, X. Anti-tumor Synergistic Effect of a Dual Cancer-Specific Recombinant Adenovirus and Paclitaxel on Breast Cancer. Front. Oncol. 2020, 10, 244. [Google Scholar] [CrossRef]
  177. Hossain, E.; Habiba, U.; Yanagawa-Matsuda, A.; Alam, A.; Ahmed, I.; Alam, M.T.; Yasuda, M.; Higashino, F. Advantages of Using Paclitaxel in Combination with Oncolytic Adenovirus Utilizing RNA Destabilization Mechanism. Cancers 2020, 12, 1210. [Google Scholar] [CrossRef]
  178. Mahalingam, D.; Fountzilas, C.; Moseley, J.; Noronha, N.; Tran, H.; Chakrabarty, R.; Selvaggi, G.; Coffey, M.; Thompson, B.; Sarantopoulos, J. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother. Pharmacol. 2017, 79, 697–703. [Google Scholar] [CrossRef]
  179. Bernstein, V.; Ellard, S.L.; Dent, S.F.; Tu, D.; Mates, M.; Dhesy-Thind, S.K.; Panasci, L.; Gelmon, K.A.; Salim, M.; Song, X.; et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: Final analysis of Canadian Cancer Trials Group IND.213. Breast Cancer Res. Treat. 2018, 167, 485–493. [Google Scholar] [CrossRef]
  180. Comins, C.; Spicer, J.; Protheroe, A.; Roulstone, V.; Twigger, K.; White, C.M.; Vile, R.; Melcher, A.; Coffey, M.C.; Mettinger, K.L.; et al. REO-10: A phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin. Cancer Res. 2010, 16, 5564–5572. [Google Scholar] [CrossRef]
  181. Passer, B.J.; Cheema, T.; Wu, S.; Wu, C.L.; Rabkin, S.D.; Martuza, R.L. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 2013, 20, 17–24. [Google Scholar] [CrossRef] [PubMed]
  182. Moreno, V.; Barretina-Ginesta, M.-P.; García-Donas, J.; Jayson, G.C.; Roxburgh, P.; Vázquez, R.M.; Michael, A.; Antón-Torres, A.; Brown, R.; Krige, D.; et al. Safety and efficacy of the tumor-selective adenovirus enadenotucirev with or without paclitaxel in platinum-resistant ovarian cancer: A phase 1 clinical trial. J. Immunother. Cancer 2021, 9, e003645. [Google Scholar] [CrossRef] [PubMed]
  183. Ishikawa, W.; Kikuchi, S.; Ogawa, T.; Tabuchi, M.; Tazawa, H.; Kuroda, S.; Noma, K.; Nishizaki, M.; Kagawa, S.; Urata, Y.; et al. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. Mol. Ther. Oncolytics 2020, 18, 262–271. [Google Scholar] [CrossRef] [PubMed]
  184. Cohn, D.E.; Sill, M.W.; Walker, J.L.; O’Malley, D.; Nagel, C.I.; Rutledge, T.L.; Bradley, W.; Richardson, D.L.; Moxley, K.M.; Aghajanian, C. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2017, 146, 477–483. [Google Scholar] [CrossRef]
  185. Musher, B.L.; Rowinsky, E.K.; Smaglo, B.G.; Abidi, W.; Othman, M.; Patel, K.; Jawaid, S.; Jing, J.; Brisco, A.; Leen, A.M.; et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): Results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol. 2024, 25, 488–500. [Google Scholar] [CrossRef]
  186. Ingemarsdotter, C.K.; Baird, S.K.; Connell, C.M.; Öberg, D.; Halldén, G.; McNeish, I.A. Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic slippage and apoptosis in ovarian cancer. Oncogene 2010, 29, 6051–6063. [Google Scholar] [CrossRef]
  187. Garcia-Carbonero, R.; Bazan-Peregrino, M.; Gil-Martín, M.; Álvarez, R.; Macarulla, T.; Riesco-Martinez, M.C.; Verdaguer, H.; Guillén-Ponce, C.; Farrera-Sal, M.; Moreno, R.; et al. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J. Immunother. Cancer 2022, 10, e003255. [Google Scholar] [CrossRef]
  188. Karapanagiotou, E.M.; Roulstone, V.; Twigger, K.; Ball, M.; Tanay, M.; Nutting, C.; Newbold, K.; Gore, M.E.; Larkin, J.; Syrigos, K.N.; et al. Phase I/II Trial of Carboplatin and Paclitaxel Chemotherapy in Combination with Intravenous Oncolytic Reovirus in Patients with Advanced Malignancies. Clin. Cancer Res. 2012, 18, 2080–2089. [Google Scholar] [CrossRef]
  189. Soliman, H.; Hogue, D.; Han, H.; Mooney, B.; Costa, R.; Lee, M.C.; Niell, B.; Williams, A.; Chau, A.; Falcon, S.; et al. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: A phase 2 trial. Nat. Med. 2023, 29, 450–457. [Google Scholar] [CrossRef]
  190. Passer, B.J.; Castelo-Branco, P.; Buhrman, J.S.; Varghese, S.; Rabkin, S.D.; Martuza, R.L. Oncolytic herpes simplex virus vectors and taxanes synergize to promote killing of prostate cancer cells. Cancer Gene Ther. 2009, 16, 551–560. [Google Scholar] [CrossRef]
  191. Heinemann, L.; Simpson, G.R.; Boxall, A.; Kottke, T.; Relph, K.L.; Vile, R.; Melcher, A.; Prestwich, R.; Harrington, K.J.; Morgan, R.; et al. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer. BMC Cancer 2011, 11, 221. [Google Scholar] [CrossRef] [PubMed]
  192. Pakola, S.; Quixabeira, D.C.A.; Kudling, T.V.; Clubb, J.H.A.; Grönberg-Vähä-Koskela, S.; Basnet, S.; Jirovec, E.; Arias, V.; Haybout, L.; Heiniö, C.; et al. An oncolytic adenovirus coding for a variant interleukin 2 cytokine improves response to chemotherapy through enhancement of effector lymphocyte cytotoxicity, fibroblast compartment modulation and mitotic slippage. Front. Immunol. 2023, 14, 1171083. [Google Scholar] [CrossRef] [PubMed]
  193. Huang, B.; Sikorski, R.; Kirn, D.H.; Thorne, S.H. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Ther. 2011, 18, 164–172. [Google Scholar] [CrossRef] [PubMed]
  194. Arulanandam, R.; Batenchuk, C.; Varette, O.; Zakaria, C.; Garcia, V.; Forbes, N.E.; Davis, C.; Krishnan, R.; Karmacharya, R.; Cox, J.; et al. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat. Commun. 2015, 6, 6410. [Google Scholar] [CrossRef] [PubMed]
  195. Bressy, C.; Droby, G.N.; Maldonado, B.D.; Steuerwald, N.; Grdzelishvili, V.Z. Cell Cycle Arrest in G(2)/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J. Virol. 2019, 93, e01885-18. [Google Scholar] [CrossRef]
  196. Song, X.; Wang, H.; Jia, R.; Cun, B.; Zhao, X.; Zhou, Y.; Xu, X.; Qian, G.; Ge, S.; Fan, X. Combined treatment with an oncolytic adenovirus and antitumor activity of vincristine against retinoblastoma cells. Int. J. Mol. Sci. 2012, 13, 10736–10749. [Google Scholar] [CrossRef]
  197. AbouEl Hassan, M.A.; Braam, S.R.; Kruyt, F.A. Paclitaxel and vincristine potentiate adenoviral oncolysis that is associated with cell cycle and apoptosis modulation, whereas they differentially affect the viral life cycle in non-small-cell lung cancer cells. Cancer Gene Ther. 2006, 13, 1105–1114. [Google Scholar] [CrossRef]
  198. Fujiwara, T.; Kagawa, S.; Kishimoto, H.; Endo, Y.; Hioki, M.; Ikeda, Y.; Sakai, R.; Urata, Y.; Tanaka, N.; Fujiwara, T. Enhanced antitumor efficacy of telomerase-selective oncolytic adenoviral agent OBP-401 with docetaxel: Preclinical evaluation of chemovirotherapy. Int. J. Cancer 2006, 119, 432–440. [Google Scholar] [CrossRef]
  199. Garofalo, M.; Saari, H.; Somersalo, P.; Crescenti, D.; Kuryk, L.; Aksela, L.; Capasso, C.; Madetoja, M.; Koskinen, K.; Oksanen, T.; et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Release 2018, 283, 223–234. [Google Scholar] [CrossRef]
  200. Kuryk, L.; Mathlouthi, S.; Wieczorek, M.; Gad, B.; Rinner, B.; Malfanti, A.; Mastrotto, F.; Salmaso, S.; Caliceti, P.; Garofalo, M. Priming with oncolytic adenovirus followed by anti-PD-1 and paclitaxel treatment leads to improved anti-cancer efficacy in the 3D TNBC model. Eur. J. Pharm. Biopharm. 2024, 199, 114300. [Google Scholar] [CrossRef]
  201. Kasala, D.; Lee, S.H.; Hong, J.W.; Choi, J.W.; Nam, K.; Chung, Y.H.; Kim, S.W.; Yun, C.O. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 2017, 145, 207–222. [Google Scholar] [CrossRef] [PubMed]
  202. Li, X.; Liu, Y.; Tang, Y.; Roger, P.; Jeng, M.H.; Kao, C. Docetaxel increases antitumor efficacy of oncolytic prostate-restricted replicative adenovirus by enhancing cell killing and virus distribution. J. Gene Med. 2010, 12, 516–527. [Google Scholar] [CrossRef] [PubMed]
  203. Mao, L.; Yu, H.; Ma, S.; Xu, Z.; Wei, F.; Yang, C.; Zheng, J. Combination of oncolytic adenovirus targeting SATB1 and docetaxel for the treatment of castration-resistant prostate cancer. J. Cancer 2021, 12, 1846–1852. [Google Scholar] [CrossRef] [PubMed]
  204. Sei, S.; Mussio, J.K.; Yang, Q.E.; Nagashima, K.; Parchment, R.E.; Coffey, M.C.; Shoemaker, R.H.; Tomaszewski, J.E. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol. Cancer 2009, 8, 47. [Google Scholar] [CrossRef] [PubMed]
  205. Cinatl, J., Jr.; Cinatl, J.; Michaelis, M.; Kabickova, H.; Kotchetkov, R.; Vogel, J.U.; Doerr, H.W.; Klingebiel, T.; Driever, P.H. Potent oncolytic activity of multimutated herpes simplex virus G207 in combination with vincristine against human rhabdomyosarcoma. Cancer Res. 2003, 63, 1508–1514. [Google Scholar]
  206. Zeng, W.G.; Li, J.J.; Hu, P.; Lei, L.; Wang, J.N.; Liu, R.B. An oncolytic herpes simplex virus vector, G47Δ, synergizes with paclitaxel in the treatment of breast cancer. Oncol. Rep. 2013, 29, 2355–2361. [Google Scholar] [CrossRef]
  207. Deng, X.; Shen, Y.; Yi, M.; Zhang, C.; Zhao, B.; Zhong, G.; Weiyang, L.; Xue, D.; Leng, Q.; Ding, J.; et al. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. J. Med. Virol. 2023, 95, e28768. [Google Scholar] [CrossRef]
  208. Binz, E.; Berchtold, S.; Beil, J.; Schell, M.; Geisler, C.; Smirnow, I.; Lauer, U.M. Chemovirotherapy of Pancreatic Adenocarcinoma by Combining Oncolytic Vaccinia Virus GLV-1h68 with nab-Paclitaxel Plus Gemcitabine. Mol. Ther. Oncolytics 2017, 6, 10–21. [Google Scholar] [CrossRef]
  209. Bourgeois-Daigneault, M.C.; St-Germain, L.E.; Roy, D.G.; Pelin, A.; Aitken, A.S.; Arulanandam, R.; Falls, T.; Garcia, V.; Diallo, J.S.; Bell, J.C. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res. 2016, 18, 83. [Google Scholar] [CrossRef]
  210. Anjum, S.; Naseer, F.; Ahmad, T.; Liaquat, A.; Abduh, M.S.; Kousar, K. Co-delivery of oncolytic virus and chemotherapeutic modality: Vincristine against prostate cancer treatment: A potent viro-chemotherapeutic approach. J. Med. Virol. 2024, 96, e29748. [Google Scholar] [CrossRef]
  211. Moehler, M.; Sieben, M.; Roth, S.; Springsguth, F.; Leuchs, B.; Zeidler, M.; Dinsart, C.; Rommelaere, J.; Galle, P.R. Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer 2011, 11, 464. [Google Scholar] [CrossRef] [PubMed]
  212. Lal, G.; Rajala, M.S. Combination of Oncolytic Measles Virus Armed With BNiP3, a Pro-apoptotic Gene and Paclitaxel Induces Breast Cancer Cell Death. Front. Oncol. 2018, 8, 676. [Google Scholar] [CrossRef] [PubMed]
  213. Zhang, T.; Jou, T.H.; Hsin, J.; Wang, Z.; Huang, K.; Ye, J.; Yin, H.; Xing, Y. Talimogene Laherparepvec (T-VEC): A Review of the Recent Advances in Cancer Therapy. J. Clin. Med. 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Mechanisms of action of MTAs, OVs, and their combination for enhancement of tumor clearance. The top panel schematically depicts events following MTA-based treatment of cancer cells. MTAs arrest cancer cells at the SAC, leading either to apoptosis (mitotic cell death) or to the evasion of cell death by mitotic slippage. The latter phenomenon is associated with acquired resistance to MTAs. The middle panel represents the working principle of OVs, which selectively infect and kill cancer cells and, in doing so, activate anti-tumor immunity. However, cancer cells exhibit differential susceptibility to OVs, and a subset of malignant cells are resistant to this form of therapy. The lower panel schematically shows the potential synergistic effects of MTA-OV combinations. These combinations may lead to increased cell death via the augmentation of different cell death mechanisms, including apoptosis and oncolysis. Moreover, cancer cells treated with MTA-OV combinations may be especially immunogenic due to the combined effects of increased viral replication, its accompanying increase in pathogen-associated molecular patterns, and the enhanced exposure of danger-associated molecular patterns originating from the dying cells. This enhancement in immunogenicity is expected to increase the infiltration of cytotoxic immune cells and promote their anti-tumor activities, leading to improved clearance of malignant cells. Created with BioRender.com.
Figure 1. Mechanisms of action of MTAs, OVs, and their combination for enhancement of tumor clearance. The top panel schematically depicts events following MTA-based treatment of cancer cells. MTAs arrest cancer cells at the SAC, leading either to apoptosis (mitotic cell death) or to the evasion of cell death by mitotic slippage. The latter phenomenon is associated with acquired resistance to MTAs. The middle panel represents the working principle of OVs, which selectively infect and kill cancer cells and, in doing so, activate anti-tumor immunity. However, cancer cells exhibit differential susceptibility to OVs, and a subset of malignant cells are resistant to this form of therapy. The lower panel schematically shows the potential synergistic effects of MTA-OV combinations. These combinations may lead to increased cell death via the augmentation of different cell death mechanisms, including apoptosis and oncolysis. Moreover, cancer cells treated with MTA-OV combinations may be especially immunogenic due to the combined effects of increased viral replication, its accompanying increase in pathogen-associated molecular patterns, and the enhanced exposure of danger-associated molecular patterns originating from the dying cells. This enhancement in immunogenicity is expected to increase the infiltration of cytotoxic immune cells and promote their anti-tumor activities, leading to improved clearance of malignant cells. Created with BioRender.com.
Genes 15 01193 g001
Table 1. Studies involving OV-MTA combinations.
Table 1. Studies involving OV-MTA combinations.
Oncolytic VirusCompoundCancer Type/Cell LineRef.
Oncolytic Measles Virus (OMV)VincristineHuman prostate cancer cells (PC3)[210]
Oncolytic Adenovirus SG600VincristineHuman retinoblastoma cells (HXO-RB44)[196]
Oncolytic adenovirus Ad5VincristineNon-small-cell lung cancer (NSCLC)[197]
Oncolytic Herpes simplex virus (G207)VincristineHuman rhabdomyosarcoma cells (KFR, KF-RMS-1)[205]
Oncolytic parvovirus H-1PVVincristineHuman melanoma cells (Mz-Mel, SK29-Mel-1, SK29-Mel-1.22)[211]
Oncolytic adenovirus OBP-401VinorelbineHuman non-small-cell lung cancer (H1299) and human colorectal carcinoma (SW620) cells[198]
Oncolytic Vesicular Stomatitis Virus VSV-Δ51Vinorelbine/colchicineHuman renal carcinoma cells (768-O), a mouse model of triple-negative breast cancer (4T1)[194]
Oncolytic Herpes Simplex Virus (NV1023) and human IL12 producing variant (NV1042)VinblastineHuman prostate cancer cell lines (CWR22, PC3), in vivo xenograft (CWR22)[181]
Oncolytic Reovirus Type 3 Dearing strain (ReoT3D)VinblastineNon-small-cell lung cancer cells (EKVX, NCL-H322M, NCL-H226)[204]
Oncolytic Rhabdovirus Maraba MG-1 virusPaclitaxelMurine mammary carcinoma cells (4T1, EMT6, EO771), mouse tumor models (4T1, EMT6), human breast cancer cells (S578T, BT-549 and MDA-MB-231)[209]
Oncolytic adenovirus AD5D24-CpGPaclitaxelHuman lung cancer cells (A549)[199]
Oncolytic Herpes simplex virus (G207), Oncolytic Herpes Simplex Virus (NV1023)PaclitaxelHuman anaplastic thyroid cancer cells (KAT-4, DRO90-1)[168]
Oncolytic Herpes Simplex virus (G47∆)PaclitaxelHuman breast cancer (MCF-7 and MDA-MB-468 cell lines)[206]
Oncolytic Vaccinia virus (vvDD)PaclitaxelHuman colorectal carcinoma cells (HCT-116), human breast cancer cells (MCF-7), human ovarian cancer cells (UCI-101)[193]
Oncolytic Vaccinia virus (GLV-1h68)PaclitaxelHuman pancreatic adenocarcinoma cells (AsPc-1, Panc-1)[208]
Oncolytic Herpes simplex virus type I (VG161)PaclitaxelMouse breast cancer tumor model EMT6[207]
Oncolytic adenovirus (dl922-947)PaclitaxelHuman ovarian cancer cells (A2780CP, IGROV1)[186]
Oncolytic Herpes simplex virus (G47∆)PaclitaxelHuman Prostate cancer cells (LNCaP, DU145)[190]
Oncolytic adenovirus (AdV5/3-D24-ICOSL-CD40L,)PaclitaxelHuman breast cancer cells (MCF-7, MDA-MB-231, MDA-MB-468)[200]
Oncolytic adenovirus (OBP-401)PaclitaxelHuman gastric cancer cells (GCIY, KATOIII)[183]
Oncolytic adenovirus (Ad-fosARE)PaclitaxelHuman lung cancer cells (A549, H1299), human cervical carcinoma cells (HeLa, HeLa S3, C-33), human osteosarcoma cells (U-2-OS) human hepatoma cells (HepG2)[177]
Oncolytic adenovirus (oAd-vp53)PaclitaxelHuman breast cancer cells (MCF-7, SKBR-3), human ovarian cancer cells (MDAH 2774), human lung cancer cells (H460)[201]
Oncolytic recombinant measles virus (rMV-BNiP3)PaclitaxelHuman breast cancer cells (MCF-7, MDA-MB-231)[212]
Oncolytic adenovirus (PRRA)DocetaxelHuman prostate cancer cells (CWR22rv, C4-2 cell), CWR22rv subcutaneous tumor xenograft mouse model[202]
Oncolytic adenovirus (OBP-401)Docetaxel/vinorelbineHuman non-small cell lung cancer cells (A549, H1299, H226Br), human colorectal carcinoma cells (SW620, DLD-1), human gastric cancer cells (MKN28), human esophageal cancer cells (T.Tn, TE8), human prostate cancer cells (LNCaP) and human hepatic cancer cells (HepG2), human H1299 xenograft mouse model[198]
Oncolytic adenovirus (ZD55-SATB1)DocetaxelHuman prostate cancer cells (PC3 and DU145), PC3 xenograft[203]
Oncolytic Reovirus Type 3 Dearing (ReoT3D)DocetaxelHuman prostate cancer cells (PC3 and DU145), PC3 xenograft[191]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

De, S.; Ehrlich, M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes 2024, 15, 1193. https://doi.org/10.3390/genes15091193

AMA Style

De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes. 2024; 15(9):1193. https://doi.org/10.3390/genes15091193

Chicago/Turabian Style

De, Sucheta, and Marcelo Ehrlich. 2024. "Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy" Genes 15, no. 9: 1193. https://doi.org/10.3390/genes15091193

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop