Pharmacogenetics of the Treatment of Neglected Diseases
Abstract
:1. Introduction
2. HIV
3. Malaria
4. Tuberculosis
5. General Considerations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Souza, W. Doenças Negligenciadas; Brazilian Academy of Sciences: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Metzger, I.F.; Souza-Costa, D.C.; Tanus-Santos, J.E. Farmacogenética: Princípios, Aplicações e Perspectivas. Med. B Aires 2006, 39, 515–521. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2017, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Pinho, J.R.R. Precision Medicine. Einstein 2017, 15, VII–X. [Google Scholar] [CrossRef]
- Rodrigues-Soares, F.; Suarez-Kurtz, G. Pharmacogenomics Research and Clinical Implementation in Brazil. Basic Clin. Pharmacol. Toxicol. 2019, 124, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Doogue, M.P.; Polasek, T.M. The ABCD of Clinical Pharmacokinetics. Ther. Adv. Drug. Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Turpeinen, M.; Klein, K.; Schwab, M. Functional Pharmacogenetics/Genomics of Human Cytochromes P450 Involved in Drug Biotransformation. Anal. Bioanal. Chem. 2008, 392, 1093–1108. [Google Scholar] [CrossRef]
- Tornio, A.; Backman, J.T. Cytochrome P450 in Pharmacogenetics: An Update, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 83. [Google Scholar] [CrossRef]
- Scudeler, M.M.; Rodrigues-Soares, F. Farmacogenética Na América Latina. Acta Biol. Bras. 2020, 3, 85–100. [Google Scholar]
- Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet 2019, 394, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Pinto Neto, L.F.; De Barros Perini, F.; Aragón, M.G.; Freitas, M.A.; Miranda, A.E. Protocolo Brasileiro Para Infecções Sexualmente Transmissíveis 2020: Infecção Pelo HIV Em Adolescentes e Adultos. Epidemiol. Serviços Saúde 2021, 30, e2020588. [Google Scholar] [CrossRef]
- Departamento de HIV/Aids, Tuberculose, Hepatites Virais e Infecções Sexualmente Transmisséveis.; Secretaria de Vigilância em Saúde e Ambiente; Ministério da Saúde. Epidemiological Report–HIV & AIDS 2023; Ministério da Saúde: Brasília, Brazil, 2023. [Google Scholar]
- Ferreira, R.C.S.; Riffel, A.; Sant’Ana, A.E.G. HIV: Mecanismo de Replicação, Alvos Farmacológicos e Inibição Por Produtos Derivados de Plantas. Quim. Nova 2010, 33, 1743–1755. [Google Scholar] [CrossRef]
- Ministério da Saúde. Aids/HIV. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aids-hiv (accessed on 17 September 2024).
- Maartens, G.; Celum, C.; Lewin, S.R. HIV Infection: Epidemiology, Pathogenesis, Treatment, and Prevention. Lancet 2014, 384, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Langford, S.E.; Ananworanich, J.; Cooper, D.A. Predictors of Disease Progression in HIV Infection: A Review. AIDS Res. Ther. 2007, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Center of Disease Control and Prevention. Clinical Guidance for PrEP. Available online: https://www.cdc.gov/hivnexus/hcp/prep/index.html (accessed on 18 September 2024).
- Ministério da Saúde; Secretaria de Vigilância em Saúde; Departamento de Doenças de Condições Crônicas e Infecções Sexualmente Transmissíveis. Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections; Ministério da Saúde: Brasília, Brazil, 2022. [Google Scholar]
- Department of Health and Human Services. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Available online: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv (accessed on 17 September 2024).
- Guidelines–CPIC. Available online: https://cpicpgx.org/guidelines/ (accessed on 28 November 2024).
- Martin, M.A.; Klein, T.E.; Dong, B.J.; Pirmohamed, M.; Haas, D.W.; Kroetz, D.L. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing. Clin. Pharmacol. Ther. 2012, 91, 734–738. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Kroetz, D.L.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Abacavir Pathway. Pharmacogenet Genom. 2014, 24, 276–282. [Google Scholar] [CrossRef]
- Gammal, R.; Court, M.; Haidar, C.; Iwuchukwu, O.; Gaur, A.; Alvarellos, M.; Guillemette, C.; Lennox, J.; Whirl-Carrillo, M.; Brummel, S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Desta, Z.; Gammal, R.S.; Gong, L.; Whirl-Carrillo, M.; Gaur, A.H.; Sukasem, C.; Hockings, J.; Myers, A.; Swart, M.; Tyndale, R.F.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clin. Pharmacol. Ther. 2019, 106, 726–733. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Plasmodium Knowlesi: The Fifth Human Malaria Parasite. Clin. Infect. Dis. 2008, 46, 172–173. [Google Scholar] [CrossRef]
- Ta, T.H.; Hisam, S.; Lanza, M.; Jiram, A.I.; Ismail, N.; Rubio, J.M. First Case of a Naturally Acquired Human Infection with Plasmodium Cynomolgi. Malar. J. 2014, 13, 68. [Google Scholar] [CrossRef]
- Brasil, P.; Zalis, M.G.; de Pina-Costa, A.; Siqueira, A.M.; Júnior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; de Alvarenga, D.A.M.; da Silva Santelli, A.C.F.; et al. Outbreak of Human Malaria Caused by Plasmodium Simium in the Atlantic Forest in Rio de Janeiro: A Molecular Epidemiological Investigation. Lancet Glob. Health 2017, 5, e1038–e1046. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- De Niz, M.; Burda, P.C.; Kaiser, G.; Del Portillo, H.A.; Spielmann, T.; Frischknecht, F.; Heussler, V.T. Progress in Imaging Methods: Insights Gained into Plasmodium Biology. Nat. Rev. Microbiol. 2017, 15, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Lima-Junior, J.d.C.; Pratt-Riccio, L.R. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. Front. Immunol. 2016, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde; Secretaria de Vigilância em Saúde, Departamento de Imunização e Doenças Transmissíveis. Guia de Tratamento Da Malária No Brasil, 2nd ed.; Ministério da Saúde: Brasília, Brazil, 2021. [Google Scholar]
- Chu, C.S.; Freedman, D.O. Tafenoquine and G6PD: A Primer for Clinicians. J. Travel Med. 2019, 26, taz023. [Google Scholar] [CrossRef]
- Kane, M. Primaquine Therapy and G6PD and CYP2D6 Genotype; Pratt, V.M., Scott, S.A., Pirmohamed, M., Eds.; National Center for Biotechnology Information: Bethesda, MA, USA, 2012. [Google Scholar]
- Pett, H.; Bradley, J.; Okebe, J.; Dicko, A.; Tiono, A.B.; Gonçalves, B.P.; Stone, W.; Chen, I.; Lanke, K.; Neuvonen, M.; et al. CYP2D6 Polymorphisms and the Safety and Gametocytocidal Activity of Single-Dose Primaquine for Plasmodium falciparum. Antimicrob. Agents Chemother. 2019, 63, e00538-19. [Google Scholar] [CrossRef]
- Gammal, R.S.; Pirmohamed, M.; Somogyi, A.A.; Morris, S.A.; Formea, C.M.; Elchynski, A.L.; Oshikoya, K.A.; McLeod, H.L.; Haidar, C.E.; Whirl-Carrillo, M.; et al. Expanded Clinical Pharmacogenetics Implementation Consortium Guideline for Medication Use in the Context of G6PD Genotype. Clin. Pharmacol. Ther. 2023, 113, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Pernaute-Lau, L.; Morris, U.; Msellem, M.; Mårtensson, A.; Björkman, A.; Gil, J.P. Influence of Cytochrome P450 (CYP) 2C8 Polymorphisms on the Efficacy and Tolerability of Artesunate-amodiaquine Treatment of Uncomplicated Plasmodium Falciparum Malaria in Zanzibar. Malar. J. 2021, 20, 90. [Google Scholar] [CrossRef]
- Mutagonda, R.F.; Minzi, O.M.S.; Massawe, S.N.; Asghar, M.; Färnert, A.; Kamuhabwa, A.A.R.; Aklillu, E. Pregnancy and CYP3A5 Genotype Affect Day 7 Plasma Lumefantrine Concentrations. Drug Metab. Dispos. 2019, 47, 1415–1424. [Google Scholar] [CrossRef]
- Thomford, N.E.; Kellermann, T.; Biney, R.P.; Dixon, C.; Nyarko, S.B.; Ateko, R.O.; Ekor, M.; Kyei, G.B. Therapeutic Efficacy of Generic Artemether–Lumefantrine in the Treatment of Uncomplicated Malaria in Ghana: Assessing Anti-Malarial Efficacy amidst Pharmacogenetic Variations. Malar. J. 2024, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Choi, H.; Park, S.Y.; Kwak, Y.G.; Song, J.E.; Shin, S.Y.; Baek, J.H.; Shin, H.I.L.; Cho, S.H.; Lee, S.E.; et al. Association between CYP2D6 Phenotype and Recurrence of Plasmodium vivax Infection in South Korean Patients. Malar. J. 2022, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dowd, S.; Chen, N.; Gatton, M.L.; Edstein, M.D.; Cheng, Q. Cytochrome P450 2D6 Profiles and Anti-Relapse Efficacy of Tafenoquine against Plasmodium vivax in Australian Defence Force Personnel. Antimicrob. Agents Chemother. 2023, 67, e0101423. [Google Scholar] [CrossRef]
- Spring, M.D.; Sousa, J.C.; Li, Q.; Darko, C.A.; Morrison, M.N.; Marcsisin, S.R.; Mills, K.T.; Potter, B.M.; Paolino, K.M.; Twomey, P.S.; et al. Determination of Cytochrome P450 Isoenzyme 2D6 (CYP2D6) Genotypes and Pharmacogenomic Impact on Primaquine Metabolism in an Active-Duty US Military Population. J. Infect. Dis. 2019, 220, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Silvino, A.C.R.; Costa, G.L.; De Araújo, F.C.F.; Ascher, D.B.; Pires, D.E.V.; Fontes, C.J.F.; Carvalho, L.H.; De Brito, C.F.A.; Sousa, T.N. Variation in Human Cytochrome P-450 Drug-Metabolism Genes: A Gateway to the Understanding of Plasmodium vivax Relapses. PLoS ONE 2016, 11, e0160172. [Google Scholar] [CrossRef]
- Sortica, V.A.; Lindenau, J.D.; Cunha, M.G.; Ohnishi, M.D.; Ventura, A.M.R.; Ribeiro-dos-Santos, Â.K.; Santos, S.E.; Guimarães, L.S.; Hutz, M.H. The Effect of SNPs in CYP450 in Chloroquine/Primaquine Plasmodium vivax Malaria Treatment. Pharmacogenomics 2016, 17, 1903–1911. [Google Scholar] [CrossRef]
- Brasil, L.W.; Rodrigues-Soares, F.; Santoro, A.B.; Almeida, A.C.G.; Kühn, A.; Ramasawmy, R.; Lacerda, M.V.G.; Monteiro, W.M.; Suarez-Kurtz, G. CYP2D6 Activity and the Risk of Recurrence of Plasmodium Vivax Malaria in the Brazilian Amazon: A Prospective Cohort Study. Malar. J. 2018, 17, 57. [Google Scholar] [CrossRef]
- Almeida, A.C.G.; Puça, M.C.B.; Figueiredo, E.F.G.; Barbosa, L.R.; Salazar, Y.E.A.R.; Silva, E.L.; Brito, M.A.M.; Siqueira, A.M.; Vieira, J.L.F.; Lacerda, M.V.G.; et al. Influence of CYP2C8, CYP3A4, and CYP3A5 Host Genotypes on Early Recurrence of Plasmodium vivax. Antimicrob. Agents Chemother. 2020, 64, e02125-19. [Google Scholar] [CrossRef]
- Cardoso, J.L.M.; Salazar, Y.E.A.R.; Almeida, A.C.G.; Barbosa, L.R.A.; Silva, E.L.; Rodrigues, M.G.A.; Rodrigues-Soares, F.; Sampaio, V.S.; Siqueira, A.M.; Lacerda, M.V.G.; et al. Influence of CYP2D6, CYP3A4 and CYP2C19 Genotypes on Recurrence of Plasmodium vivax. Front. Trop. Dis. 2022, 3, 845451. [Google Scholar] [CrossRef]
- De Barros Puça, M.C.S.; Rodrigues, D.F.; Salazar, Y.E.A.R.; Louzada, J.; Fontes, C.J.F.; Daher, A.; Pereira, D.B.; Vieira, J.L.F.; Carvalho, L.H.; de Brito, C.F.A.; et al. Monoamine Oxidase-A (MAO-A) Low-Expression Variants and Increased Risk of Plasmodium vivax Malaria Relapses. J. Antimicrob. Chemother. 2024, 79, 1985–1989. [Google Scholar] [CrossRef]
- Silvino, A.C.R.; Kano, F.S.; Costa, M.A.; Fontes, C.J.F.; Soares, I.S.; de Brito, C.F.A.; Carvalho, L.H.; Sousa, T.N. Novel Insights into Plasmodium vivax Therapeutic Failure: CYP2D6 Activity and Time of Exposure to Malaria Modulate the Risk of Recurrence. Antimicrob. Agents Chemother. 2020, 64, e02056-19. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, M.M.; Almeida, A.C.G.; Silva, G.S.; Oliveira, A.C.; Mwangi, V.I.; Shuan, A.C.; Barbosa, L.R.A.; Rodrigues-Soares, F.; Melo, G.C. Association of CYP2C19, CYP2D6 and CYP3A4 Genetic Variants on Primaquine Hemolysis in G6PD-Deficient Patients. Pathogens 2023, 12, 895. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Dunlap, N.E.; Bass, J.; Fujiwara, P.; Hopewell, P.; Horsburgh, C.R.; Salfinger, M.; Simone, P.M. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. Am. J. Respir. Crit. Care Med. 2012, 161, 1376–1395. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. Updated Guidelines for the Use of Nucleic Acid Amplification Tests in the Diagnosis of Tuberculosis. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5801a3.htm?s_cid=mm5801a3_e (accessed on 19 September 2024).
- Center for Disease Control and Prevention. Targeted Tuberculin Testing and Treatment of Latent Tuberculosis Infection. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4906a1.htm (accessed on 19 September 2024).
- Miwa, B.; Scudeler, M.M.; Pinto, A.J.B.; Manóchio, C.; Torres-Loureiro, S.; Belfort-Almeida, G.; Faleiros, H.; Rodrigues-Soares, F. Pharmacogenetics of tuberculosis. Acta Biol. Bras. 2024, 7, 108–125. [Google Scholar] [CrossRef]
- Shabani, S.; Farnia, P.; Ghanavi, J.; Velayati, A.A.; Farnia, P. Pharmacogenetic Study of Drugs Affecting Mycobacterium Tuberculosis. Int. J. Mycobacteriology 2024, 13, 206–212. [Google Scholar] [CrossRef]
- Sileshi, T.; Makonnen, E.; Telele, N.F.; Barclay, V.; Zumla, A.; Aklillu, E. Variability in Plasma Rifampicin Concentrations and Role of SLCO1B1, ABCB1, AADAC2 and CES2 Genotypes in Ethiopian Patients with Tuberculosis. Infect. Dis. 2024, 56, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Valverde, L.; Levano, K.S.; Tarazona, D.D.; Capristano, S.; Zegarra-Chapoñan, R.; Sanchez, C.; Yufra-Picardo, V.M.; Tarazona-Santos, E.; Ugarte-Gil, C.; Guio, H. NAT2 and CYP2E1 Polymorphisms and Antituberculosis Drug-Induced Hepatotoxicity in Peruvian Patients. Mol. Genet. Genomic. Med. 2022, 10, e1987. [Google Scholar] [CrossRef]
- Ulanova, V.; Kivrane, A.; Viksna, A.; Pahirko, L.; Freimane, L.; Sadovska, D.; Ozere, I.; Cirule, A.; Sevostjanovs, E.; Grinberga, S.; et al. Effect of NAT2, GSTM1 and CYP2E1 Genetic Polymorphisms on Plasma Concentration of Isoniazid and Its Metabolites in Patients with Tuberculosis, and the Assessment of Exposure-Response Relationships. Front. Pharmacol. 2024, 15, 1332752. [Google Scholar] [CrossRef] [PubMed]
- Pourmohamadi, N.; Toutkaboni, M.P.A.; Roodbari, N.H.; Tabarsi, P.; Baniasadi, S. Association of Cytochrome P450 2E1 and N-Acetyltransferase 2 Genotypes with Serum Isoniazid Level and Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Cross-Sectional Study. Iran. J. Med. Sci. 2023, 48, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.W.; Abdelwahab, M.T.; van Beek, S.W.; Baker, P.; Maartens, G.; Bradford, Y.; Ritchie, M.D.; Wasserman, S.; Meintjes, G.; Beeri, K.; et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J. Infect. Dis. 2022, 226, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Sukri, A.; Salleh, M.Z.; Masimirembwa, C.; Teh, L.K. A Systematic Review on the Cost Effectiveness of Pharmacogenomics in Developing Countries: Implementation Challenges. Pharmacogenomics J. 2022, 22, 147–159. [Google Scholar] [CrossRef]
- Rens, N.E.; Uyl-de Groot, C.A.; Goldhaber-Fiebert, J.D.; Croda, J.; Andrews, J.R. Cost-Effectiveness of a Pharmacogenomic Test for Stratified Isoniazid Dosing in Treatment of Active Tuberculosis. Clin. Infect. Dis. 2020, 71, 3136–3143. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.A.; Alsaidi, A.T.; Verbyla, A.; Cruz, A.; Macfarlane, C.; Bauer, J.; Patel, J.N. Cost Effectiveness of Pharmacogenetic Testing for Drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines: A Systematic Review. Clin. Pharmacol. Ther. 2022, 112, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
Drug | Gene | Likely Phenotype | Genotypes/Diplotypes | Recommendations |
---|---|---|---|---|
Abacavir | HLA-B | Very low risk of hypersensitivity | Absence of *57:01 alleles (reported as “negative” on a genotyping test). *X/*Xa | Use abacavir per standard dosing guidelines. |
High risk of hypersensitivity | Presence of at least one *57:01 allele (reported as “positive” on a genotyping test). *57:01/*X *57:01/*57:01 | Abacavir is not recommended. | ||
Atazanavir | UGT1A1 | Normal metabolizer | An individual carrying two reference function (*1) and/or increased function alleles (*36). Alternatively identified by homozygosity for rs887829 C/C. *1/*1; *1/*36; *36/*36; rs887829 C/C | There is no need to avoid prescribing atazanavir based on UGT1A1 genetic test result. Inform the patient that some patients stop atazanavir because of jaundice (yellow eyes and skin), but that this patient’s genotype makes this unlikely (less than about a 1 in 20 chance of stopping atazanavir because of jaundice). |
Intermediate metabolizer | An individual carrying one reference function (*1) or increased function allele (*36) plus one decreased function allele (*6, *28, *37). Alternatively identified by heterozygosity for rs887829 C/T. *1/*28; *1/*37; *36/*28; *36/*37; rs887829 C/T, *1/*6 | There is no need to avoid prescribing atazanavir based on UGT1A1 genetic test result. Inform the patient that some patients stop atazanavir because of jaundice (yellow eyes and skin), but that this patient’s genotype makes this unlikely (less than about a 1 in 20 chance of stopping atazanavir because of jaundice). | ||
Poor metabolizer | An individual carrying two decreased function alleles (*6, *28, *37). Alternatively identified by homozygosity for rs887829 T/T (*80/*80). *28/*28; *28/*37; *37/*37; rs887829 T/T (*80/*80), *6/*6 | Consider an alternative agent, particularly where jaundice would be of concern to the patient. If atazanavir is to be prescribed, there is a high likelihood of developing jaundice that will result in atazanavir discontinuation (at least 20% and as high as 60%). | ||
Efavirenz | CYP2B6 | Ultrarapid metabolizer | An individual carrying two increased function alleles. *4/*4, *22/*22, *4/*22 | Initiate efavirenz with standard dosing (600 mg/day). |
Rapid metabolizer | An individual carrying one normal function allele and one increased function allele. *1/*4, *1/*22 | Initiate efavirenz with standard dosing (600 mg/day). | ||
Normal metabolizer | An individual carrying two normal function alleles. *1/*1 | Initiate efavirenz with standard dosing (600 mg/day). | ||
Intermediate metabolizer | An individual carrying one normal function allele and one decreased function allele OR one normal function allele and one no-function allele OR one increased function allele and one decreased function allele OR one increased function allele and one no-function allele. *1/*6, *1/*18, *4/*6, *4/*18, *6/*22, *18/*22 | Consider initiating efavirenz with decreased dose of 400 mg/day. | ||
Poor metabolizer | An individual carrying two decreased function alleles OR two no-function alleles OR one decreased function allele and one no-function allele. *6/*6, *18/*18, *6/*18 | Consider initiating efavirenz with decreased dose of 400 or 200 mg/day. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, T.B.; de Oliveira, A.C.; Melo, G.C.d.; Rodrigues-Soares, F. Pharmacogenetics of the Treatment of Neglected Diseases. Genes 2025, 16, 54. https://doi.org/10.3390/genes16010054
Cabral TB, de Oliveira AC, Melo GCd, Rodrigues-Soares F. Pharmacogenetics of the Treatment of Neglected Diseases. Genes. 2025; 16(1):54. https://doi.org/10.3390/genes16010054
Chicago/Turabian StyleCabral, Tiffany Borges, Amanda Carvalho de Oliveira, Gisely Cardoso de Melo, and Fernanda Rodrigues-Soares. 2025. "Pharmacogenetics of the Treatment of Neglected Diseases" Genes 16, no. 1: 54. https://doi.org/10.3390/genes16010054
APA StyleCabral, T. B., de Oliveira, A. C., Melo, G. C. d., & Rodrigues-Soares, F. (2025). Pharmacogenetics of the Treatment of Neglected Diseases. Genes, 16(1), 54. https://doi.org/10.3390/genes16010054