Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies
Abstract
:1. Introduction
2. Risk Assessment
2.1. Age
2.2. Gender
2.3. Family History
2.4. The Effect of Ascertainment Bias
2.5. Other Genetic Factors
3. Genetic Risk Models That Include Individuals with Hereditary Cancer
Genetic Risk Model | Risk Factors Included | Exclusion Criteria | Strengths | Limitations |
---|---|---|---|---|
Tyrer–Cuzick/IBIS [76,84,91,92,93,94,95,96,97] | Age at menarche, age at first live birth, age at menopause, parity, height, BMI, atypical hyperplasia/lobular carcinoma in situ, use of HRT, benign breast disease, family history of breast and ovarian cancer in first- and second-degree relatives, and age at diagnoses, mammographic breast density, PRS313 | None | The model combines genetic segregation model for familial risk and regression model for other risk factors; can be used in women younger than 35 years of age | Requires detailed genetic history and needs a computer program |
Boadicea [77,84,85,98] | Hormonal, reproductive, and lifestyle risk factors, pedigree-level family history information, breast density, breast tumor pathology, and genetic testing results on rare P/LP variants in high- and moderate-risk genes (BRCA1, BRCA2, PALB2, CHEK2, and ATM), besides PRS313 | None | Family history is not limited to certain relatives or degrees. Most suitable for high-risk women | Requires detailed family history |
ASK2ME [87] | Age, gender, prior cancers, prior surgeries, and gene of interest | None | ASK2ME focuses on 28 cancer predisposition genes | The outputs do not currently include confidence intervals for the estimates and do not yet estimate the risk of a second cancer of a given organ when a prior cancer has occurred. ASK2ME assumes that for most genes, all P/LP variants in each gene will have the same implications for risk |
BRCA-Crisk [83] | BRCA1/BRCA2 carriers with breast cancer | Individuals diagnosed with stage IV breast cancer, or synchronous CBC, or who underwent CRRM | Access the absolute cumulative risk of developing CBC for BRCA1 and BRCA2 carriers with breast cancer | The analysis combined BRCA1 and BRCA2 breast cancer patients |
4. Primary and Secondary Prevention
4.1. Lifestyle and Reproductive Factors
4.2. Chemoprevention
4.3. Risk-Reducing Surgeries
4.3.1. Risk-Reducing Bilateral Salpingo-Oophorectomy and Breast Cancer Risk Reduction
4.3.2. Risk-Reducing Mastectomy in Unaffected Individuals
4.3.3. Contralateral Risk-Reducing Mastectomy
4.4. Surveillance Programs
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Velentzis, L.S.; Freeman, V.; Campbell, D.; Hughes, S.; Luo, Q.; Steinberg, J.; Egger, S.; Mann, G.B.; Nickson, C. Breast Cancer Risk Assessment Tools for Stratifying Women into Risk Groups: A Systematic Review. Cancers 2023, 15, 1124. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk Factors and Preventions of Breast Cancer. Int. J. Biol. Sci. 2017, 13, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Azzollini, J.; Fontana, L.; Manoukian, S. Hereditary Breast CancerBreast cancer: BRCA and Other Susceptibility GenesSusceptibility genes. In Breast MRI for High-Risk Screening; Sardanelli, F., Podo, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 23–41. [Google Scholar]
- Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [PubMed]
- National Comprehensive Cancer Network. Genetic/Familial High-Risk Assessment: Breast, Ovarian, Pancreatic, and Prostate (Version 2.2025). 2024. Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bopp.pdf (accessed on 27 November 2024).
- Graffeo, R.; Rana, H.Q.; Conforti, F.; Bonanni, B.; Cardoso, M.J.; Paluch-Shimon, S.; Pagani, O.; Goldhirsch, A.; Partridge, A.H.; Lambertini, M.; et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022, 65, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hollestelle, A.; Wasielewski, M.; Martens, J.W.; Schutte, M. Discovering moderate-risk breast cancer susceptibility genes. Curr. Opin. Genet. Dev. 2010, 20, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wynn, J.; Shang, N.; Liu, C.; Fedotov, A.; Hallquist, M.L.G.; Buchanan, A.H.; Williams, M.S.; Smith, M.E.; Hoell, C.; et al. Penetrance of Breast Cancer Susceptibility Genes From the eMERGE III Network. JNCI Cancer Spectr. 2021, 5, pkab044. [Google Scholar] [CrossRef] [PubMed]
- Meshkani, Z.; Aboutorabi, A.; Moradi, N.; Langarizadeh, M.; Motlagh, A.G. Population or family history based BRCA gene tests of breast cancer? A systematic review of economic evaluations. Hered. Cancer Clin. Pract. 2021, 19, 35. [Google Scholar] [CrossRef] [PubMed]
- Golmard, L.; Delnatte, C.; Laugé, A.; Moncoutier, V.; Lefol, C.; Abidallah, K.; Tenreiro, H.; Copigny, F.; Giraudeau, M.; Christophe, G.; et al. Breast and ovarian cancer predisposition due to de novo BRCA1 and BRCA2 mutations. Oncogene 2015, 35, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Kingdom, R.; Wright, C.F. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front. Genet. 2022, 13, 920390. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Zhang, J.; Mackall, M.; Bristow, S.L.; Malhotra, M.; ElNaggar, A.; Souter, V.; Liu, M.C.; Pothuri, B. A targeted panel of actionable high-risk hereditary cancer predisposition genes to identify patients with pathogenic/likely pathogenic variants (PVs) irrespective of meeting established NCCN testing criteria. J. Clin. Oncol. 2024, 42 (Suppl. S16), 10596. [Google Scholar] [CrossRef]
- O’Leary, E.; Iacoboni, D.; Holle, J.; Michalski, S.T.; Esplin, E.D.; Yang, S.; Ouyang, K. Expanded Gene Panel Use for Women With Breast Cancer: Identification and Intervention Beyond Breast Cancer Risk. Ann. Surg. Oncol. 2017, 24, 3060–3066. [Google Scholar] [CrossRef]
- Bellhouse, S.; Hawkes, R.E.; Howell, S.J.; Gorman, L.; French, D.P. Breast Cancer Risk Assessment and Primary Prevention Advice in Primary Care: A Systematic Review of Provider Attitudes and Routine Behaviours. Cancers 2021, 13, 4150. [Google Scholar] [CrossRef]
- Pruthi, S.; Mussallem, D.M.; Cornell, L.F.; Klassen, C.L.; Kling, J.M. Reducing Breast Cancer Incidence and Mortality: Rethinking an Approach to Risk Assessment and Prevention. JCO Oncol. Pract. 2021, 17, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Mutation Detection in Patients with Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. Jama 2017, 318, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Sessa, C.; Balmaña, J.; Bober, S.L.; Cardoso, M.J.; Colombo, N.; Curigliano, G.; Domchek, S.M.; Evans, D.G.; Fischerova, D.; Harbeck, N.; et al. Risk reduction and screening of cancer in hereditary breast-ovarian cancer syndromes: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; et al. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef]
- Easton, D.F.; Pharoah, P.D.P.; Antoniou, A.C.; Tischkowitz, M.; Tavtigian, S.V.; Nathanson, K.L.; Devilee, P.; Meindl, A.; Couch, F.J.; Southey, M.; et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. N. Engl. J. Med. 2015, 372, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Rolfes, M.; Borde, J.; Möllenhoff, K.; Kayali, M.; Ernst, C.; Gehrig, A.; Sutter, C.; Ramser, J.; Niederacher, D.; Horváth, J.; et al. Prevalence of Cancer Predisposition Germline Variants in Male Breast Cancer Patients: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancers 2022, 14, 3292. [Google Scholar] [CrossRef] [PubMed]
- Meijers-Heijboer, H.; van den Ouweland, A.; Klijn, J.; Wasielewski, M.; de Snoo, A.; Oldenburg, R.; Hollestelle, A.; Houben, M.; Crepin, E.; van Veghel-Plandsoen, M.; et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 2002, 31, 55–59. [Google Scholar] [PubMed]
- Pritzlaff, M.; Summerour, P.; McFarland, R.; Li, S.; Reineke, P.; Dolinsky, J.S.; Goldgar, D.E.; Shimelis, H.; Couch, F.J.; Chao, E.C.; et al. Male breast cancer in a multi-gene panel testing cohort: Insights and unexpected results. Breast Cancer Res. Treat. 2017, 161, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001, 358, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Robson, M. Management of Women with Breast Cancer and Pathogenic Variants in Genes Other Than BRCA1 or BRCA2. J. Clin. Oncol. 2021, 39, 2528–2534. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.B.; Rosenthal, E.; Cummings, S.; Bernhisel, R.; Kidd, J.; Hughes, E.; Gutin, A.; Meek, S.; Slavin, T.P.; Kurian, A.W. The association between age at breast cancer diagnosis and prevalence of pathogenic variants. Breast Cancer Res. Treat. 2023, 199, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Weedon, M.N.; Green, H.D.; Mallabar-Rimmer, B.; Harrison, J.W.; Wood, A.R.; Ruth, K.S.; Tyrrell, J.; Wright, C.F. Influence of family history on penetrance of hereditary cancers in a population setting. eClinicalMedicine 2023, 64, 102159. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Casadei, S.; Heikkinen, T.; Barrowdale, D.; Pylkäs, K.; Roberts, J.; Lee, A.; Subramanian, D.; De Leeneer, K.; Fostira, F.; et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014, 371, 497–506. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Jakubowska, A.; Huzarski, T.; Byrski, T.; Gronwald, J.; Masojć, B.; Deebniak, T.; Górski, B.; Blecharz, P.; et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J. Clin. Oncol. 2011, 29, 3747–3752. [Google Scholar] [CrossRef]
- Weitzel, J.N.; Lagos, V.I.; Cullinane, C.A.; Gambol, P.J.; Culver, J.O.; Blazer, K.R.; Palomares, M.R.; Lowstuter, K.J.; MacDonald, D.J. Limited Family Structure and BRCA Gene Mutation Status in Single Cases of Breast Cancer. JAMA 2007, 297, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.; Pharoah, P.D.; Narod, S.; Risch, H.A.; Eyfjord, J.E.; Hopper, J.L.; Loman, N.; Olsson, H.; Johannsson, O.; Borg, A.; et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: A combined analysis of 22 studies. Am. J. Hum. Genet. 2003, 72, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.R.; Hsu, L.; Brohet, R.M.; Mourits, M.J.; de Vries, J.; Malone, K.E.; Oosterwijk, J.C.; de Bock, G.H. Bias Correction Methods Explain Much of the Variation Seen in Breast Cancer Risks of BRCA1/2 Mutation Carriers. J. Clin. Oncol. 2015, 33, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T. Factors that modify breast cancer risk in women. In UpToDate; Post, T., Ed.; UpToDate: Waltham, MA, USA, 2023. [Google Scholar]
- Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 1998, 62, 676–689. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Durocher, F.; Smith, P.; Simard, J.; Easton, D.F. BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families. Breast Cancer Res. 2006, 8, R3. [Google Scholar] [CrossRef]
- Villani, A.; Shore, A.; Wasserman, J.D.; Stephens, D.; Kim, R.H.; Druker, H.; Gallinger, B.; Naumer, A.; Kohlmann, W.; Novokmet, A.; et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016, 17, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Freycon, C.; Maxwell, K.N.; Nichols, K.E.; Schiffman, J.D.; Evans, D.G.; Achatz, M.I.; Savage, S.A.; Weitzel, J.N.; Garber, J.E.; et al. Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA Oncol. 2021, 7, 1800–1805. [Google Scholar] [CrossRef]
- Amadou, A.; Achatz, M.I.W.; Hainaut, P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: Temporal phases of Li-Fraumeni syndrome. Curr. Opin. Oncol. 2018, 30, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Easton, D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet. 2001, 68, 410–419. [Google Scholar] [CrossRef]
- Chen, S.; Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 2007, 25, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Engel, C.; de la Hoya, M.; Peterlongo, P.; Yannoukakos, D.; Livraghi, L.; Radice, P.; Thomassen, M.; Hansen, T.V.O.; Gerdes, A.-M.; et al. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet. Med. 2022, 24, 119–129. [Google Scholar] [CrossRef]
- Yadav, S.; Boddicker, N.J.; Na, J.; Polley, E.C.; Hu, C.; Hart, S.N.; Gnanaolivu, R.D.; Larson, N.; Holtegaard, S.; Huang, H.; et al. Contralateral Breast Cancer Risk Among Carriers of Germline Pathogenic Variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2. J. Clin. Oncol. 2023, 41, 1703–1713. [Google Scholar] [CrossRef]
- Goldgar, D.E.; Healey, S.; Dowty, J.G.; Da Silva, L.; Chen, X.; Spurdle, A.B.; Terry, M.B.; Daly, M.J.; Buys, S.M.; Southey, M.C.; et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011, 13, R73. [Google Scholar] [CrossRef]
- Hu, C.; Huang, H.; Na, J.; Lumby, C.; Abozaid, M.; Holdren, M.A.; Rao, T.J.; Karam, R.; Pesaran, T.; Weyandt, J.D.; et al. Functional analysis and clinical classification of 462 germline BRCA2 missense variants affecting the DNA binding domain. Am. J. Human Genet. 2024, 111, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, K.; Hall, P.; Gonzalez-Neira, A.; Ghoussaini, M.; Dennis, J.; Milne, R.L.; Schmidt, M.K.; Chang-Claude, J.; Bojesen, S.E.; Bolla, M.K.; et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 2013, 45, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Pal, T.; Mundt, E.; Richardson, M.E.; Chao, E.; Pesaran, T.; Slavin, T.P.; Couch, F.J.; Monteiro, A.N.A. Reduced penetrance BRCA1 and BRCA2 pathogenic variants in clinical germline genetic testing. npj Precis. Oncol. 2024, 8, 247. [Google Scholar] [CrossRef]
- Hall, M.J.; Bernhisel, R.; Hughes, E.; Larson, K.; Rosenthal, E.T.; Singh, N.A.; Lancaster, J.M.; Kurian, A.W. Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and Moderate Risks for Multiple Cancers. Cancer Prev. Res. 2021, 14, 433–440. [Google Scholar] [CrossRef]
- Hakkaart, C.; Pearson, J.F.; Marquart, L.; Dennis, J.; Wiggins, G.A.R.; Barnes, D.R.; Robinson, B.A.; Mace, P.D.; Aittomäki, K.; Andrulis, I.L.; et al. Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers. Commun. Biol. 2022, 5, 1061. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C.; Marquart, L.; Pearson, J.F.; Wiggins, G.A.; O’Mara, T.A.; Parsons, M.T.; Barrowdale, D.; McGuffog, L.; Dennis, J.; Benitez, J.; et al. Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. Eur. J. Hum. Genet. 2017, 25, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Thakur, C.; Qiu, Y.; Fu, Y.; Bi, Z.; Zhang, W.; Ji, H.; Chen, F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front. Oncol. 2022, 12, 971288. [Google Scholar] [CrossRef]
- Park, H.L. Epigenetic Biomarkers for Environmental Exposures and Personalized Breast Cancer Prevention. Int. J. Environ. Res. Public Health 2020, 17, 1181. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.; Arranz-Ledo, M.; Lastra, E.; Abella, L.E.; Ferreira, R.; Orozco, M.; Hernández, L.; Martínez, N.; Durán, M. Increased Co-Occurrence of Pathogenic Variants in Hereditary Breast and Ovarian Cancer and Lynch Syndromes: A Consequence of Multigene Panel Genetic Testing? Int. J. Mol. Sci. 2022, 23, 11499. [Google Scholar] [CrossRef]
- Le Page, C.; Rahimi, K.; Rodrigues, M.; Heinzelmann-Schwarz, V.; Recio, N.; Tommasi, S.; Bataillon, G.; Portelance, L.; Golmard, L.; Meunier, L.; et al. Clinicopathological features of women with epithelial ovarian cancer and double heterozygosity for BRCA1 and BRCA2: A systematic review and case report analysis. Gynecol. Oncol. 2020, 156, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Rebbeck, T.R.; Friebel, T.M.; Mitra, N.; Wan, F.; Chen, S.; Andrulis, I.L.; Apostolou, P.; Arnold, N.; Arun, B.K.; Barrowdale, D.; et al. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Res. 2016, 18, 112. [Google Scholar] [CrossRef]
- Lavie, O.; Narod, S.; Lejbkowicz, F.; Dishon, S.; Goldberg, Y.; Gemer, O.; Rennert, G. Double heterozygosity in the BRCA1 and BRCA2 genes in the Jewish population. Ann. Oncol. 2011, 22, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Giacomazzi, J.; Selistre, S.; Duarte, J.; Ribeiro, J.P.; Vieira, P.J.C.; de Souza Macedo, G.; Rossi, C.; Czepielewski, M.; Netto, C.B.O.; Hainaut, P.; et al. TP53p.R337H is a conditional cancer-predisposing mutation: Further evidence from a homozygous patient. BMC Cancer 2013, 13, 187. [Google Scholar] [CrossRef]
- Huijts, P.E.A.; Hollestelle, A.; Balliu, B.; Houwing-Duistermaat, J.J.; Meijers, C.M.; Blom, J.C.; Ozturk, B.; Krol-Warmerdam, E.M.M.; Wijnen, J.; Berns, E.M.J.J.; et al. CHEK2*1100delC homozygosity in the Netherlands—Prevalence and risk of breast and lung cancer. Eur. J. Human Genet. 2014, 22, 46–51. [Google Scholar] [CrossRef]
- Adank, M.A.; Jonker, M.A.; Kluijt, I.; van Mil, S.E.; Oldenburg, R.A.; Mooi, W.J.; Hogervorst, F.B.; van den Ouweland, A.M.; Gille, J.J.; Schmidt, M.K.; et al. CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J. Med. Genet. 2011, 48, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Rainville, I.; Hatcher, S.; Rosenthal, E.; Larson, K.; Bernhisel, R.; Meek, S.; Gorringe, H.; Mundt, E.; Manley, S. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res. Treat. 2020, 180, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.; Astiazaran-Symonds, E.; Amendola, L.M.; Balmaña, J.; Foulkes, W.D.; James, P.; Klugman, S.; Ngeow, J.; Schmutzler, R.; Voian, N.; et al. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100870. [Google Scholar] [CrossRef] [PubMed]
- Kamal, L.; Pierce, S.B.; Canavati, C.; Rayyan, A.A.; Jaraysa, T.; Lobel, O.; Lolas, S.; Norquist, B.M.; Rabie, G.; Zahdeh, F.; et al. Helicase-inactivating BRIP1 mutation yields Fanconi anemia with microcephaly and other congenital abnormalities. Cold Spring Harb. Mol. Case Stud. 2020, 6, a005652. [Google Scholar] [CrossRef] [PubMed]
- Niraj, J.; Färkkilä, A.; D’Andrea, A.D. The Fanconi Anemia Pathway in Cancer. Annu. Rev. Cancer Biol. 2019, 3, 457–478. [Google Scholar] [CrossRef]
- Reid, S.; Schindler, D.; Hanenberg, H.; Barker, K.; Hanks, S.; Kalb, R.; Neveling, K.; Kelly, P.; Seal, S.; Freund, M.; et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 2007, 39, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Howell, S.; Evans, D.G. Polygenic risk scores and breast cancer risk prediction. Breast 2023, 67, 71–77. [Google Scholar] [CrossRef]
- Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 2020, 52, 572–581. [Google Scholar] [CrossRef]
- Skol, A.D.; Sasaki, M.M.; Onel, K. The genetics of breast cancer risk in the post-genome era: Thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res. 2016, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Politopoulos, I. The genetics of breast cancer: Risk factors for disease. Appl. Clin. Genet. 2011, 4, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.H.; Wang, Q.; Bolla, M.K.; et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; McGuffog, L.; Barrowdale, D.; Lee, A.; Soucy, P.; Dennis, J.; Domchek, S.M.; Robson, M.; Spurdle, A.B.; Ramus, S.J.; et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 2017, 109, djw302. [Google Scholar] [CrossRef]
- Gallagher, S.; Hughes, E.; Wagner, S.; Tshiaba, P.; Rosenthal, E.; Roa, B.B.; Kurian, A.W.; Domchek, S.M.; Garber, J.; Lancaster, J.; et al. Association of a Polygenic Risk Score with Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw. Open 2020, 3, e208501. [Google Scholar] [CrossRef] [PubMed]
- Tyrer, J.; Duffy, S.W.; Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 2004, 23, 1111–1130. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Babb de Villiers, C.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 2019, 21, 1708–1718. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H. Twenty-five years of breast cancer risk models and their applications. J. Natl. Cancer Inst. 2015, 107, djv042. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Battaglia, O.; Pellegrino, G.; Mangione, E.; Petitto, S.; Fiol Manna, E.D.; Cazzaniga, L.; Nicosia, L.; Lazzeroni, M.; Corso, G.; et al. Advances in breast cancer risk modeling: Integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment. Future Oncol. 2023, 19, 2547–2564. [Google Scholar] [CrossRef]
- Zhang, X.; Rice, M.; Tworoger, S.S.; Rosner, B.A.; Eliassen, A.H.; Tamimi, R.M.; Joshi, A.D.; Lindstrom, S.; Qian, J.; Colditz, G.A.; et al. Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case-control study. PLoS Med. 2018, 15, e1002644. [Google Scholar] [CrossRef]
- Shieh, Y.; Hu, D.; Ma, L.; Huntsman, S.; Gard, C.C.; Leung, J.W.; Tice, J.A.; Vachon, C.M.; Cummings, S.R.; Kerlikowske, K.; et al. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res. Treat. 2016, 159, 513–525. [Google Scholar] [CrossRef]
- The Ask2Me.Org. Available online: https://ask2me.org/ (accessed on 27 November 2024).
- Sun, J.; Chu, F.; Pan, J.; Zhang, Y.; Yao, L.; Chen, J.; Hu, L.; Zhang, J.; Xu, Y.; Wang, X.; et al. BRCA-CRisk: A Contralateral Breast Cancer Risk Prediction Model for BRCA Carriers. J. Clin. Oncol. 2023, 41, 991–999. [Google Scholar] [CrossRef]
- Pal Choudhury, P.; Brook, M.N.; Hurson, A.N.; Lee, A.; Mulder, C.V.; Coulson, P.; Schoemaker, M.J.; Jones, M.E.; Swerdlow, A.J.; Chatterjee, N.; et al. Comparative validation of the BOADICEA and Tyrer-Cuzick breast cancer risk models incorporating classical risk factors and polygenic risk in a population-based prospective cohort of women of European ancestry. Breast Cancer Res. 2021, 23, 22. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Pharoah, P.P.; Smith, P.; Easton, D.F. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 2004, 91, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Cintolo-Gonzalez, J.A.; Braun, D.; Blackford, A.L.; Mazzola, E.; Acar, A.; Plichta, J.K.; Griffin, M.; Hughes, K.S. Breast cancer risk models: A comprehensive overview of existing models, validation, and clinical applications. Breast Cancer Res. Treat. 2017, 164, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Yang, J.; Griffin, M.; Parmigiani, G.; Hughes, K.S. A Clinical Decision Support Tool to Predict Cancer Risk for Commonly Tested Cancer-Related Germline Mutations. J. Genet. Couns. 2018, 27, 1187–1199. [Google Scholar] [CrossRef]
- Louro, J.; Posso, M.; Hilton Boon, M.; Román, M.; Domingo, L.; Castells, X.; Sala, M. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br. J. Cancer 2019, 121, 76–85. [Google Scholar] [CrossRef]
- Kim, G.; Bahl, M. Assessing Risk of Breast Cancer: A Review of Risk Prediction Models. J. Breast Imaging 2021, 3, 144–155. [Google Scholar] [CrossRef]
- Mbuya-Bienge, C.; Pashayan, N.; Kazemali, C.D.; Lapointe, J.; Simard, J.; Nabi, H. A Systematic Review and Critical Assessment of Breast Cancer Risk Prediction Tools Incorporating a Polygenic Risk Score for the General Population. Cancers 2023, 15, 5380. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Kuchenbäcker, K.; Engel, C.; Zachariae, S.; Rhiem, K.; Meindl, A.; Rahner, N.; Dikow, N.; Plendl, H.; Debatin, I.; et al. Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: A study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J. Med. Genet. 2013, 50, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Brentnall, A.R.; Cuzick, J. Risk Models for Breast Cancer and Their Validation. Stat. Sci. 2020, 35, 14–30. [Google Scholar] [CrossRef]
- Brentnall, A.R.; Cuzick, J.; Buist, D.S.M.; Bowles, E.J.A. Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density. JAMA Oncol. 2018, 4, e180174. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Brentnall, A.R.; Segal, C.; Byers, H.; Reuter, C.; Detre, S.; Lopez-Knowles, E.; Sestak, I.; Howell, A.; Powles, T.J.; et al. Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J. Clin. Oncol. 2017, 35, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Brentnall, A.R.; Cohn, W.F.; Knaus, W.A.; Yaffe, M.J.; Cuzick, J.; Harvey, J.A. A Case-Control Study to Add Volumetric or Clinical Mammographic Density into the Tyrer-Cuzick Breast Cancer Risk Model. J. Breast Imaging 2019, 1, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Brentnall, A.R.; Harkness, E.F.; Astley, S.M.; Donnelly, L.S.; Stavrinos, P.; Sampson, S.; Fox, L.; Sergeant, J.C.; Harvie, M.N.; Wilson, M.; et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Vilmun, B.M.; Vejborg, I.; Lynge, E.; Lillholm, M.; Nielsen, M.; Nielsen, M.B.; Carlsen, J.F. Impact of adding breast density to breast cancer risk models: A systematic review. Eur. J. Radiol. 2020, 127, 109019. [Google Scholar] [CrossRef]
- Lee, A.J.; Cunningham, A.P.; Kuchenbaecker, K.B.; Mavaddat, N.; Easton, D.F.; Antoniou, A.C. BOADICEA breast cancer risk prediction model: Updates to cancer incidences, tumour pathology and web interface. Br. J. Cancer 2014, 110, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Steward, W.P.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Landis-Piwowar, K.R.; Iyer, N.R. Cancer chemoprevention: Current state of the art. Cancer Growth Metastasis 2014, 7, 19–25. [Google Scholar] [CrossRef]
- Poorolajal, J.; Heidarimoghis, F.; Karami, M.; Cheraghi, Z.; Gohari-Ensaf, F.; Shahbazi, F.; Zareie, B.; Ameri, P.; Sahraee, F. Factors for the Primary Prevention of Breast Cancer: A Meta-Analysis of Prospective Cohort Studies. J. Res. Health Sci. 2021, 21, e00520. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.Y.; Stoll, C.R.; Anandarajah, A.; Doering, M.; Colditz, G.A. Modifiable risk factors in women at high risk of breast cancer: A systematic review. Breast Cancer Res. 2023, 25, 45. [Google Scholar] [CrossRef] [PubMed]
- Coletta, A.M.; Peterson, S.K.; Gatus, L.A.; Krause, K.J.; Schembre, S.M.; Gilchrist, S.C.; Arun, B.; You, Y.N.; Rodriguez-Bigas, M.A.; Strong, L.L.; et al. Diet, weight management, physical activity and Ovarian & Breast Cancer Risk in women with BRCA1/2 pathogenic Germline gene variants: Systematic review. Hered. Cancer Clin. Pract. 2020, 18, 5. [Google Scholar]
- Pasanisi, P.; Bruno, E.; Venturelli, E.; Manoukian, S.; Barile, M.; Peissel, B.; De Giacomi, C.; Bonanni, B.; Berrino, J.; Berrino, F. Serum levels of IGF-I and BRCA penetrance: A case control study in breast cancer families. Fam. Cancer 2011, 10, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Bruno, E.; Oliverio, A.; Paradiso, A.V.; Daniele, A.; Tommasi, S.; Tufaro, A.; Terribile, D.A.; Magno, S.; Filippone, A.; Venturelli, E.; et al. A Mediterranean Dietary Intervention in Female Carriers of BRCA Mutations: Results from an Italian Prospective Randomized Controlled Trial. Cancers 2020, 12, 3732. [Google Scholar] [CrossRef]
- Kiechle, M.; Dukatz, R.; Yahiaoui-Doktor, M.; Berling, A.; Basrai, M.; Staiger, V.; Niederberger, U.; Marter, N.; Lammert, J.; Grill, S.; et al. Feasibility of structured endurance training and Mediterranean diet in BRCA1 and BRCA2 mutation carriers—An interventional randomized controlled multicenter trial (LIBRE-1). BMC Cancer 2017, 17, 752. [Google Scholar] [CrossRef]
- Kotsopoulos, J.; Lubinski, J.; Salmena, L.; Lynch, H.T.; Kim-Sing, C.; Foulkes, W.D.; Ghadirian, P.; Neuhausen, S.L.; Demsky, R.; Tung, N.; et al. Breastfeeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2012, 14, R42. [Google Scholar] [CrossRef]
- Khincha, P.P.; Best, A.F.; Fraumeni, J.F., Jr.; Loud, J.T.; Savage, S.A.; Achatz, M.I. Reproductive factors associated with breast cancer risk in Li-Fraumeni syndrome. Eur. J. Cancer 2019, 116, 199–206. [Google Scholar] [CrossRef]
- Marchetti, C.; De Felice, F.; Boccia, S.; Sassu, C.; Di Donato, V.; Perniola, G.; Palaia, I.; Monti, M.; Muzii, L.; Tombolini, V.; et al. Hormone replacement therapy after prophylactic risk-reducing salpingo-oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers: A meta-analysis. Crit. Rev. Oncol./Hematol. 2018, 132, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.D.; Fu, R.; Zakher, B.; Pappas, M.; McDonagh, M. Medication Use for the Risk Reduction of Primary Breast Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2019, 322, 868–886. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, K.; Fabian, C.J.; Bantug, E.; Brewster, A.M.; Davidson, N.E.; DeCensi, A.; Floyd, J.D.; Garber, J.E.; Hofstatter, E.W.; Khan, S.A.; et al. Use of Endocrine Therapy for Breast Cancer Risk Reduction: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2019, 37, 3152–3165. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; et al. Tamoxifen for Prevention of Breast Cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. JNCI J. Natl. Cancer Inst. 1998, 90, 1371–1388. [Google Scholar] [CrossRef] [PubMed]
- King, M.C.; Wieand, S.; Hale, K.; Lee, M.; Walsh, T.; Owens, K.; Tait, J.; Ford, L.; Dunn, B.K.; Costantino, J.; et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 2001, 286, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Gronwald, J.; Huzarski, T.; Aeilts, A.; Randall Armel, S.; Karlan, B.; Singer, C.F.; Eisen, A.; Tung, N.; Olopade, O.; et al. Tamoxifen and the risk of breast cancer in women with a BRCA1 or BRCA2 mutation. Breast Cancer Res. Treat. 2023, 201, 257–264. [Google Scholar] [CrossRef]
- Kotsopoulos, J. BRCA Mutations and Breast Cancer Prevention. Cancers 2018, 10, 524. [Google Scholar] [CrossRef]
- Lazzeroni, M.; Puntoni, M.; Guerrieri-Gonzaga, A.; Serrano, D.; Boni, L.; Buttiron Webber, T.; Fava, M.; Briata, I.M.; Giordano, L.; Digennaro, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Recurrence in Breast Noninvasive Neoplasia: A 10-Year Follow-Up of TAM-01 Study. J. Clin. Oncol. 2023, 41, 3116–3121. [Google Scholar] [CrossRef] [PubMed]
- Hammarström, M.; Gabrielson, M.; Crippa, A.; Discacciati, A.; Eklund, M.; Lundholm, C.; Bäcklund, M.; Wengström, Y.; Borgquist, S.; Bergqvist, J.; et al. Side effects of low-dose tamoxifen: Results from a six-armed randomised controlled trial in healthy women. Br. J. Cancer 2023, 129, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Tin Tin, S.; Reeves, G.K.; Key, T.J. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: Findings from the UK Biobank. Br. J. Cancer 2021, 125, 126–134. [Google Scholar] [CrossRef]
- Low Dose TamOxifen and LifestylE Changes for bReast cANcer prevenTion (TOLERANT). Available online: https://clinicaltrials.gov/ (accessed on 27 November 2024).
- Pujol, P.; Roca, L.; Lortholary, A.; Lasset, C.; Dugast, C.; Berthet, P.; Tennevet, I.; Fricker, J.-P.; Nathalie, C.-B.; Gesta, P.; et al. Five year letrozole versus placebo in BRCA1/2 germline mutations carriers: Final results of LIBER, a double-blind randomized phase III breast cancer prevention trial. J. Clin. Oncol. 2020, 38 (Suppl. 15), 1534. [Google Scholar] [CrossRef]
- Nemati Shafaee, M.; Goutsouliak, K.; Lin, H.; Bevers, T.B.; Gutierrez-Barrera, A.; Bondy, M.; Arun, B. Aromatase inhibitors and contralateral breast cancer in BRCA mutation carriers. Breast Cancer Res. Treat. 2022, 196, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Blair, V.R.; McLeod, M.; Carneiro, F.; Coit, D.G.; D’Addario, J.L.; van Dieren, J.M.; Harris, K.L.; Hoogerbrugge, N.; Oliveira, C.; van der Post, R.S.; et al. Hereditary diffuse gastric cancer: Updated clinical practice guidelines. Lancet Oncol. 2020, 21, e386–e397. [Google Scholar] [CrossRef] [PubMed]
- King, T.A.; Pilewskie, M.; Muhsen, S.; Patil, S.; Mautner, S.K.; Park, A.; Oskar, S.; Guerini-Rocco, E.; Boafo, C.; Gooch, J.C.; et al. Lobular Carcinoma in Situ: A 29-Year Longitudinal Experience Evaluating Clinicopathologic Features and Breast Cancer Risk. J. Clin. Oncol. 2015, 33, 3945–3952. [Google Scholar] [CrossRef]
- Metcalfe, K.A.; Birenbaum-Carmeli, D.; Lubinski, J.; Gronwald, J.; Lynch, H.; Moller, P.; Ghadirian, P.; Foulkes, W.D.; Klijn, J.; Friedman, E.; et al. International variation in rates of uptake of preventive options in BRCA1 and BRCA2 mutation carriers. Int. J. Cancer 2008, 122, 2017–2022. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.; Goessl, C.; Domchek, S. Olaparib for Metastatic Germline BRCA-Mutated Breast Cancer. N. Engl. J. Med. 2017, 377, 1792–1793. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- Eikesdal, H.P.; Yndestad, S.; Blix, E.S.; Lundgren, S.; Vagstad, G.; Espelid, H.; Gilje, B.; Janssen, E.A.; Geisler, J.; Aas, T.; et al. Neoadjuvant olaparib monotherapy in primary triple negative breast cancer. Ann. Oncol. 2019, 30, v60. [Google Scholar] [CrossRef]
- Spring, L.M.; Han, H.; Liu, M.C.; Hamilton, E.; Irie, H.; Santa-Maria, C.A.; Reeves, J.; Pan, P.; Shan, M.; Tang, Y.; et al. Neoadjuvant study of niraparib in patients with HER2-negative, BRCA-mutated, resectable breast cancer. Nat. Cancer 2022, 3, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. npj Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef]
- Chang, X.-F.; Ren, X.-L.; Yang, J.-Q.; Shi, J.-J.; Bai, J.-H.; Cui, M.-S.; Dong, W.-W. Evaluation of efficacy and safety of PARP inhibitors in breast cancer: A systematic review and meta-analysis. Breast 2021, 59, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Singer, C.; Narod, S.A. Can we prevent BRCA1-associated breast cancer by RANKL inhibition? Breast Cancer Res. Treat. 2017, 161, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Gronwald, J.; Karlan, B.Y.; Huzarski, T.; Tung, N.; Moller, P.; Armel, S.; Lynch, H.T.; Senter, L.; Eisen, A.; et al. Hormone Replacement Therapy After Oophorectomy and Breast Cancer Risk Among BRCA1 Mutation Carriers. JAMA Oncol. 2018, 4, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Sigl, V.; Owusu-Boaitey, K.; Joshi, P.A.; Kavirayani, A.; Wirnsberger, G.; Novatchkova, M.; Kozieradzki, I.; Schramek, D.; Edokobi, N.; Hersl, J.; et al. RANKL/RANK control Brca1 mutation. Cell Res. 2016, 26, 761–774. [Google Scholar] [CrossRef]
- Garber, J.E. BRCA-P: A Randomized, Double-Blind, Placebo-Controlled, Multi-Center, International Phase 3 Study to Determine the Preventive Effect of Denosumab on Breast Cancer in Women Carrying a BRCA1 Germline Mutation. Available online: https://clinicaltrials.gov/study/NCT04711109?cond=Breast%20Cancer&term=prevention%20and%20hereditary&page=2&rank=19 (accessed on 27 November 2024).
- Kiechle, M. Prospective Randomized Multicenter Trial to Assess the Efficacy of a Structured Physical Exercise Training and Mediterranean Diet in Women with BRCA1/2 Mutations. Available online: https://clinicaltrials.gov/study/NCT02516540?cond=Breast%20Cancer&term=prevention%20and%20hereditary&page=2&rank=14 (accessed on 27 November 2024).
- Franceschini, G.; Masetti, R. What the Surgeons Should Know About the Bilateral Prophylactic Mastectomy in BRCA Mutation Carriers. Eur. J. Breast Health 2019, 15, 135–136. [Google Scholar] [CrossRef]
- Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S.K.; Raikou, M.; et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet 2021, 397, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Eleje, G.U.; Eke, A.C.; Ezebialu, I.U.; Ikechebelu, J.I.; Ugwu, E.O.; Okonkwo, O.O. Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst. Rev. 2018, 8, Cd012464. [Google Scholar] [CrossRef] [PubMed]
- Stuursma, A.; van der Vegt, B.; Jansen, L.; Berger, L.P.V.; Mourits, M.J.E.; de Bock, G.H. The Effect of Risk-Reducing Salpingo-Oophorectomy on Breast Cancer Incidence and Histopathological Features in Women with a BRCA1 or BRCA2 Germline Pathogenic Variant. Cancers 2023, 15, 2095. [Google Scholar] [CrossRef]
- Gaba, F.; Blyuss, O.; Tan, A.; Munblit, D.; Oxley, S.; Khan, K.; Legood, R.; Manchanda, R. Breast Cancer Risk and Breast-Cancer-Specific Mortality following Risk-Reducing Salpingo-Oophorectomy in BRCA Carriers: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 1625. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Gronwald, J.; Huzarski, T.; Møller, P.; Pal, T.; McCuaig, J.M.; Singer, C.F.; Karlan, B.Y.; Aeilts, A.; Eng, C.; et al. Bilateral Oophorectomy and All-Cause Mortality in Women with BRCA1 and BRCA2 Sequence Variations. JAMA Oncol. 2024, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Carbine, N.E.; Lostumbo, L.; Wallace, J.; Ko, H. Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst. Rev. 2018, 4, Cd002748. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Robson, M.E.; Sacchini, V. Points to Consider Regarding Risk-Reducing Mastectomy in High-, Moderate-, and Low-Penetrance Gene Carriers. Ann. Surg. Oncol. 2022, 29, 5821–5825. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.C.; Sellers, T.A.; Schaid, D.J.; Frank, T.S.; Soderberg, C.L.; Sitta, D.L.; Frost, M.H.; Grant, C.S.; Donohue, J.H.; Woods, J.E.; et al. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J. Natl. Cancer Inst. 2001, 93, 1633–1637. [Google Scholar] [CrossRef]
- Metcalfe, K.; Huzarski, T.; Gronwald, J.; Kotsopoulos, J.; Kim, R.; Moller, P.; Pal, T.; Aeilts, A.; Eisen, A.; Karlan, B.; et al. Risk-reducing mastectomy and breast cancer mortality in women with a BRCA1 or BRCA2 pathogenic variant: An international analysis. Br. J. Cancer 2024, 130, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Tischkowitz, M.; Balmaña, J.; Foulkes, W.D.; James, P.; Ngeow, J.; Schmutzler, R.; Voian, N.; Wick, M.J.; Stewart, D.R.; Pal, T. Management of individuals with germline variants in PALB2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1416–1423. [Google Scholar] [CrossRef]
- Kratz, C.P.; Achatz, M.I.; Brugières, L.; Frebourg, T.; Garber, J.E.; Greer, M.-L.C.; Hansford, J.R.; Janeway, K.A.; Kohlmann, W.K.; McGee, R.; et al. Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clin. Cancer Res. 2017, 23, e38–e45. [Google Scholar] [CrossRef] [PubMed]
- Teoh, V.; Tasoulis, M.K.; Gui, G. Contralateral Prophylactic Mastectomy in Women with Unilateral Breast Cancer Who Are Genetic Carriers, Have a Strong Family History or Are just Young at Presentation. Cancers 2020, 12, 140. [Google Scholar] [CrossRef]
- Comeaux, J.G.; Culver, J.O.; Lee, J.E.; Dondanville, D.; McArthur, H.L.; Quinn, E.; Gorman, N.; Ricker, C.; Li, M.; Lerman, C. Risk-reducing mastectomy decisions among women with mutations in high- and moderate- penetrance breast cancer susceptibility genes. Mol. Genet. Genom. Med. 2022, 10, e2031. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.M.; Boughey, J.C.; Pierce, L.J.; Robson, M.E.; Bedrosian, I.; Dietz, J.R.; Dragun, A.; Gelpi, J.B.; Hofstatter, E.W.; Isaacs, C.J.; et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 2020, 38, 2080–2106. [Google Scholar] [CrossRef]
- Schmidt, M.K.; Kelly, J.E.; Brédart, A.; Cameron, D.A.; de Boniface, J.; Easton, D.F.; Offersen, B.V.; Poulakaki, F.; Rubio, I.T.; Sardanelli, F.; et al. EBCC-13 manifesto: Balancing pros and cons for contralateral prophylactic mastectomy. Eur. J. Cancer 2023, 181, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Morra, A.; Mavaddat, N.; Muranen, T.A.; Ahearn, T.U.; Allen, J.; Andrulis, I.L.; Auvinen, P.; Becher, H.; Behrens, S.; Blomqvist, C.; et al. The impact of coding germline variants on contralateral breast cancer risk and survival. Am. J. Hum. Genet. 2023, 110, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, K.; Lubinski, J.; Soukupová, J. Surgical treatment of women with breast cancer and a BRCA1 mutation: An international analysis of the impact of bilateral mastectomy on survival. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2023. [Google Scholar]
- National Institute for Health and Care Excellence. Familial Breast Cancer: Classification, Care and Managing Breast Cancer and Related Risks in People with a Family History of Breast Cancer [Internet]; National Institute for Health and Care Excellence: London, UK, 2019. [Google Scholar]
- Balic, M.; Thomssen, C.; Gnant, M.; Harbeck, N. St. Gallen/Vienna 2023: Optimization of Treatment for Patients with Primary Breast Cancer—A Brief Summary of the Consensus Discussion. Breast Care 2023, 18, 213–222. [Google Scholar] [CrossRef]
- Gu, K.J.; Li, G. An Overview of Cancer Prevention: Chemoprevention and Immunoprevention. J. Cancer Prev. 2020, 25, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Li, J.; Gao, Y.; Yang, K.; He, J.; Li, N.; Tian, J. A systematic review of recommendations on screening strategies for breast cancer due to hereditary predisposition: Who, When, and How? Cancer Med. 2021, 10, 3437–3448. [Google Scholar] [CrossRef]
- Lubinski, J.; Kotsopoulos, J.; Moller, P.; Pal, T.; Eisen, A.; Peck, L.; Karlan, B.Y.; Aeilts, A.; Eng, C.; Bordeleau, L.; et al. MRI Surveillance and Breast Cancer Mortality in Women with BRCA1 and BRCA2 Sequence Variations. JAMA Oncol. 2024, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Guindalini, R.S.C.; Zheng, Y.; Abe, H.; Whitaker, K.; Yoshimatsu, T.F.; Walsh, T.; Schacht, D.; Kulkarni, K.; Sheth, D.; Verp, M.S.; et al. Intensive Surveillance with Biannual Dynamic Contrast-Enhanced Magnetic Resonance Imaging Downstages Breast Cancer in BRCA1 Mutation Carriers. Clin. Cancer Res. 2019, 25, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Lowry, K.P.; Geuzinge, H.A.; Stout, N.K.; Alagoz, O.; Hampton, J.; Kerlikowske, K.; de Koning, H.J.; Miglioretti, D.L.; van Ravesteyn, N.T.; Schechter, C.; et al. Breast Cancer Screening Strategies for Women with ATM, CHEK2, and PALB2 Pathogenic Variants: A Comparative Modeling Analysis. JAMA Oncol. 2022, 8, 587–596. [Google Scholar] [CrossRef]
- Hoxhaj, A.; Drissen, M.M.C.M.; Vos, J.R.; Bult, P.; Mann, R.M.; Hoogerbrugge, N. The yield and effectiveness of breast cancer surveillance in women with PTEN Hamartoma Tumor Syndrome. Cancer 2022, 128, 2883–2891. [Google Scholar] [CrossRef]
- Blondeaux, E.; Arecco, L.; Punie, K.; Graffeo, R.; Toss, A.; De Angelis, C.; Trevisan, L.; Buzzatti, G.; Linn, S.C.; Dubsky, P.; et al. Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat. Rev. 2023, 114, 102522. [Google Scholar] [CrossRef]
- McBride, K.A.; Ballinger, M.L.; Killick, E.; Kirk, J.; Tattersall, M.H.; Eeles, R.A.; Thomas, D.M.; Mitchell, G. Li-Fraumeni syndrome: Cancer risk assessment and clinical management. Nat. Rev. Clin. Oncol. 2014, 11, 260–271. [Google Scholar] [CrossRef]
- Forbes Shepherd, R.; Keogh, L.; Werner-Lin, A.; Delatycki, M.; Forrest, L. Benefits and burdens of risk management for young people with inherited cancer: A focus on Li-Fraumeni syndrome. Aust. J. General. Pract. 2021, 50, 538–544. [Google Scholar] [CrossRef]
- Cancer Institute NSW. TP53 (Li-Fraumeni)—Risk Management (Adult). eviQ [Updated 13 May 2022]. Available online: https://www.eviq.org.au/cancer-genetics/adult/risk-management/749-tp53-li-fraumeni-risk-management-adult#evidence-for-risk-management-guidelines (accessed on 27 November 2024).
- Hanson, H.; Brady, A.F.; Crawford, G.; Eeles, R.A.; Gibson, S.; Jorgensen, M.; Izatt, L.; Sohaib, A.; Tischkowitz, M.; Evans, D.G. UKCGG Consensus Group guidelines for the management of patients with constitutional TP53 pathogenic variants. J. Med. Genet. 2020, 58, 135–139. [Google Scholar] [CrossRef]
- Frebourg, T.; Bajalica Lagercrantz, S.; Oliveira, C.; Magenheim, R.; Evans, D.G.; Hoogerbrugge, N.; Ligtenberg, M.; Kets, M.; Oostenbrink, R.; Sijmons, R.; et al. Guidelines for the Li–Fraumeni and heritable TP53-related cancer syndromes. Eur. J. Human Genet. 2020, 28, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Dong, L.; Huang, X.; Zhao, H.; Li, J.; Huang, S.; Yuan, P.; Wang, W.; Wang, J.; et al. The Distinct Performances of Ultrasound, Mammograms, and MRI in Detecting Breast Cancer in Patients with Germline Pathogenic Variants in Cancer Predisposition Genes. Front. Oncol. 2021, 11, 710156. [Google Scholar] [CrossRef]
- Jochelson, M.S.; Lobbes, M.B.I. Contrast-enhanced Mammography: State of the Art. Radiology 2021, 299, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Lång, K.; Andersson, I.; Rosso, A.; Tingberg, A.; Timberg, P.; Zackrisson, S. Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: Results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study. Eur. Radiol. 2016, 26, 184–190. [Google Scholar] [CrossRef] [PubMed]
ID and Reference | Study | Inclusion Criteria | Primary Objective | Intervention |
---|---|---|---|---|
NCT04711109 [135] | BRCA-P: A Randomized, Double-Blind, Placebo-Controlled, Multi-Center, International Phase 3 Study to Determine the Preventive Effect of Denosumab on Breast Cancer in Women Carrying a BRCA1 Germline Mutation | Women with a confirmed deleterious or likely deleterious BRCA1 germline mutation (variant class 4 or 5) | To evaluate the reduction in the risk of any breast cancer (invasive or ductal carcinoma in situ [DCIS]) in women with germline BRCA1 mutation who are treated with denosumab compared to placebo | Denosumab vs. placebo |
NCT06033092 [119] | Low Dose TamOxifen and LifestylE Changes for bReast cANcer prevenTion: a Randomized Phase II Biomarker Trial in Subjects at Increased Risk | Women at increased risk of breast cancer (i.e., healthy participants carriers of a germline pathogenic/likely pathogenetic variant in at least one of the following genes: BRCA1, BRCA2, PALB2, ATM, CHEK2, CDH1, RAD51C or RAD51D, or with >5% breast cancer risk at 10 years, using the Tyrer–Cuzick scale | To verify whether low-dose tamoxifen (LDT) increases circulating levels of SHBG more than lifestyle intervention (LI) with or without intermittent caloric restriction (ICR) after 6 months in women at increased risk of breast cancer in Cancer Surveillance Consortium risk models or with a recently resected intraepithelial neoplasia of the breast (IEN) | Arm 1: Low-dose tamoxifen (LDT), i.e., 10 mg every other day; Arm 2: Low-dose tamoxifen (LDT) + intermittent caloric restriction (ICR); Arm 3: Lifestyle intervention (LI) using a step counter; Arm 4: Lifestyle intervention (LI) using a step counter + intermittent caloric restriction (ICR) |
LIBRE-2-20150626 [136] | Prospective Randomized Multicenter Trial to Assess the Efficacy of a Structured Physical Exercise Training and Mediterranean Diet in Women with BRCA1/2 Mutations | Proven pathogenic BRCA1/2 mutation | Mediterranean Diet Adherence Screener (MEDAS) Score (Questionnaire); body mass index (BMI); ventilatory threshold 1 (VT1) in spiroergometry | Structured exercise training plus mediterranean diet vs. control |
Gene | Guidelines | ||||||
---|---|---|---|---|---|---|---|
NCCN [8] | ASCO/ASTRO/SSO * [151] | NICE [155] | ESMO [21] | St. Gallen ** (2021) [22] | St. Gallen ** (2023) [156] | IGCLC [122] | |
BRCA1 | Discuss option of RRM. | For women BRCA1 or BRCA2 carriers with breast cancer who have been treated with unilateral mastectomy, CRRM should be offered. | Consider RRM for women at high risk. | Consider RRM as an option. | Most of the panel suggested RRM for BRCA1, BRCA2, PALB2, and TP53 carriers aged ~40 years. For women aged ~60 years, the panel was balanced, 46% suggested RRM, and 54% surveillance. | Most of the panel recommended RRM for BRCA1 carriers and for premenopausal BRCA2 carriers. For BRCA2 postmenopausal carriers, the panel was balanced (42% favored RRM and 38% surveillance). | – |
BRCA2 | – | ||||||
PALB2 | Consider PALB2 as a high-penetrance gene. Discuss the option of RRM. | Consider PALB2 as a moderate-penetrance gene. No evidence available regarding the role of CRRM. | _ | Consider PALB2 as a high penetrance gene. Consider RRM as an option. | For premenopausal carriers, the panel was balanced (42% favored RRM and 38% surveillance). Most of the panel recommended surveillance for postmenopausal carriers. | – | |
TP53 | Discuss option of RRM. | For women TP53 carriers with breast cancer who have been treated with unilateral mastectomy, CRRM should be offered. | _ | Consider RRM. | – | – | |
CDH1 | Consider CDH1 as a high-penetrance gene. Discuss the option of RRM. | For women CHD1 carriers with breast cancer who have been treated with unilateral mastectomy, CRRM should be offered. | _ | Consider RRM. | Most of the panel recommended surveillance over RRM. | – | Consider RRM, not under 30 years nor generally after 60 years. |
CHEK2 | Evidence insufficient for RRM; manage based on family history. | Consider CHEK2 as a moderate-penetrance gene. No evidence available regarding the role of CRRM, aside from some data on CHEK2 1100delC. | _ | Evidence insufficient for RRM. | Most of the panel recommended surveillance over RRM. | _ | |
STK11 | Consider STK11 as a high penetrance gene. Discuss option of RRM. | – | _ | Consider RRM. | Most of the panel recommended surveillance over RRM. | – | |
BARD1 | Evidence insufficient for RRM; manage based on family history. | _ | _ | _ | Most of the panel recommended surveillance over RRM. | _ | |
ATM | Evidence insufficient for RRM; manage based on family history. | Consider ATM as a moderate-penetrance gene. No evidence available regarding the role of CRRM. | _ | Evidence insufficient for RRM. | The entire panel recommended surveillance. | Most of the panel recommended surveillance over RRM. | – |
NF1 | Evidence insufficient for RRM, manage based on family history. | – | _ | – | – | – | |
PTEN | Consider PTEN as a high-penetrance gene. Discuss option of RRM in individuals with P/LP variants identified. For those with clinical CS/PHTS syndrome, consideration of risk-reducing surgery should be based on family history. | – | _ | Consider RRM. | – | – | – |
Genes | Guidelines | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NCCN [8] | ESMO [21] | NICE [155] | St. Gallen 2023 [22] | ASCO/ASTRO/SSO [151] | IGCLC [122] | |||||||
RRM | CRRM | RRM | CRRM | RRM | CRRM | RRM | CRRM | RRM | CRRM | RRM | CRRM | |
BRCA1 | ✔ | – | ✔ | – | ✔ | – | ✔ | – | – | ✔ | – | – |
BRCA2 | ✔ | – | ✔ | – | ✔ | – | ✔ | – | – | ✔ | – | – |
PALB2 | ✔ | – | ✔ | – | – | – | ✔ | – | – | ? | – | – |
TP53 | ✔ | – | ✔ | – | – | – | – | – | – | ✔ | – | – |
CDH1 | ✔ | – | ✔ | – | – | – | ❌ | – | – | ✔ | ✔ | – |
CHEK2 | ? | – | ? | – | – | – | ❌ | – | – | ? | – | – |
STK11 | ✔ | – | ✔ | – | – | – | – | – | – | – | – | – |
ATM | ? | – | ? | – | – | – | ❌ | – | – | – | – | – |
BARD1 | ? | – | ? | – | – | – | – | – | – | – | – | – |
NF1 | ? | – | ? | – | – | – | – | – | – | – | – | – |
PTEN | ✔ | – | ✔ | – | – | – | – | – | – | – | – | – |
Gene | Guidelines | |||
---|---|---|---|---|
NCCN [8] | NICE [155] | ESMO [21] | IGCLC [122] | |
BRCA1 | Age 25–29 years, annual breast MRI screening with and without contrast (or mammography, only if MRI is unavailable) or individualized based on family history if a breast cancer diagnosis before age 30 is present. Age 30–75 years, annual mammography and breast MRI screening with and without contrast. Age >75 years, management should be considered on an individual basis. For individuals with a BRCA P/LP variant who are treated for breast cancer and have not had a bilateral mastectomy, screening with annual mammography and breast MRI. For male breast cancer, consider annual mammography, especially for those with BRCA2 P/LP variants in whom the lifetime risk of breast cancer is up to 7%, starting at age 50 or 10 years before the earliest known male breast cancer in the family. | Consider annual mammography in women aged 30–39 years Consider annual breast MRI for women aged 30–49 years | Intensified screening should start at age 30, or 5 years younger than the youngest family member with breast cancer. Imaging should be carried out at 6-monthly intervals. If MRI is not available for 6-monthly screening, consider the following: - In carriers 30–39 years of age, ultrasound with or without mammography. - In carriers ≥40 years of age, mammography with or without ultrasound. | – |
BRCA2 | Intensified screening should start at age 30, or 5 years younger than the youngest family member with breast cancer. Imaging should be performed annually. | – | ||
PALB2 | Annual mammography and breast MRI with and without contrast at 30 years. | – | Intensified screening should start at age 30, or 5 years younger than the youngest family member with breast cancer. Annual breast MRI from age 20–29 years. Annual breast MRI and/or mammography at age 30–75 years. | _ |
TP53 | Age 20–29 years, annual breast MRI screening with and without contrast. Age 30–75 years, annual breast MRI screening with and without contrast and mammography. Age >75 years, management should be considered on an individual basis. For individuals with a TP53 P/LP variant who are treated for breast cancer, and who have not had a bilateral mastectomy, screening with annual breast MRI and mammography should continue as described above. | – | Annual breast MRI at age 20–75 years. If MRI is not available, consider mammography. | _ |
CDH1 | Annual mammography and consider breast MRI with and without contrast starting at age 30 years. | – | Annual breast MRI from age 20–29 years. Annual breast MRI and/or mammography at age 30–75 years. | Annual MRI from age 30 years. Annual mammography from age 35–40. |
CHEK2 | Annual mammography at age 40 years and consider breast MRI with and without contrast starting at age 30–35 years. | _ | Annual breast MRI from age 20–29 years. Annual breast MRI and/or mammography at age 30–75 years. | _ |
ATM | Annual mammography at age 40 years and consider breast MRI with and without contrast starting at age 30–35 years. | – | Annual breast MRI (no evidence regarding the age of onset). | _ |
PTEN | Annual mammography and breast MRI screening with and without contrast starting at age 30 years or 10 years before the earliest known breast cancer in the family (whichever comes first). Age >75 years, management should be considered on an individual basis. For individuals with a PTEN P/LP variant who are treated for breast cancer, and have not had a bilateral mastectomy, screening with annual mammography and breast MRI. | – | Annual breast MRI and/or mammography at age 30–75 years. | _ |
STK11 | Annual mammography and breast MRI with and without contrast starting at age 30 years. | – | Annual breast MRI from age 20–29 years. Annual breast MRI and/or mammography at age 30–75 years. | _ |
BARD1 | Annual mammography and consider breast MRI with and without contrast starting at age 40 years. | – | – | _ |
NF1 | Annual mammography starting at age 30 years and consider breast MRI with and without contrast from ages 30–50 years. | – | _ | _ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manna, E.D.F.; Serrano, D.; Cazzaniga, L.; Mannucci, S.; Zanzottera, C.; Fava, F.; Aurilio, G.; Guerrieri-Gonzaga, A.; Risti, M.; Calvello, M.; et al. Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies. Genes 2025, 16, 82. https://doi.org/10.3390/genes16010082
Manna EDF, Serrano D, Cazzaniga L, Mannucci S, Zanzottera C, Fava F, Aurilio G, Guerrieri-Gonzaga A, Risti M, Calvello M, et al. Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies. Genes. 2025; 16(1):82. https://doi.org/10.3390/genes16010082
Chicago/Turabian StyleManna, Eliza Del Fiol, Davide Serrano, Laura Cazzaniga, Sara Mannucci, Cristina Zanzottera, Francesca Fava, Gaetano Aurilio, Aliana Guerrieri-Gonzaga, Matilde Risti, Mariarosaria Calvello, and et al. 2025. "Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies" Genes 16, no. 1: 82. https://doi.org/10.3390/genes16010082
APA StyleManna, E. D. F., Serrano, D., Cazzaniga, L., Mannucci, S., Zanzottera, C., Fava, F., Aurilio, G., Guerrieri-Gonzaga, A., Risti, M., Calvello, M., Feroce, I., Marabelli, M., Altemura, C., Bertario, L., Bonanni, B., & Lazzeroni, M. (2025). Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies. Genes, 16(1), 82. https://doi.org/10.3390/genes16010082