MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Extraction
2.3. DNA Bisulfite Conversion
2.4. Methylation-Specific PCR (MS-PCR)
2.5. Interpretation of Methylation Status
2.6. Microsatellite Instability Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Flores-López, B.A.; Ayala-Madrigal, M.L.; Moreno-Ortiz, J.M.; Peregrina-Sandoval, J.; Trujillo-Rojas, M.Á.; Venegas-Rodríguez, J.L.; Hernández-Ramírez, R.; Fernández-Galindo, M.A.; Gutiérrez-Angulo, M. Molecular profiling of tumor tissue in Mexican patients with colorectal cancer. Curr. Issues Mol. Biol. 2022, 44, 3770–3778. [Google Scholar] [CrossRef]
- Warnick, C.T.; Dabbas, B.; Ilstrup, S.J.; Ford, C.D.; Strait, K.A. Cell type-dependent regulation of hMLH1 promoter activity is influenced by the presence of multiple redundant elements. Mol. Cancer Res. 2003, 1, 610–618. [Google Scholar]
- Perez, G.; Barber, G.P.; Benet-Pages, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, C.M.; et al. The UCSC Genome Browser database: 2025 update. Nucleic Acids Res. 2024, 53, D1243–D1249. [Google Scholar] [CrossRef] [PubMed]
- Klančar, G.; Blatnik, A.; Šetrajčič Dragoš, V.; Vogrič, V.; Stegel, V.; Blatnik, O.; Drev, P.; Gazič, B.; Krajc, M.; Novaković, S. A novel germline MLH1 in-frame deletion in a Slovenian Lynch syndrome family associated with uncommon isolated PMS2 loss in tumor tissue. Genes 2020, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, I.W.; Cini, G.; Libera, L.; Sahnane, N.; Facchi, S.; Viel, A.; Sessa, F.; Tibiletti, M.G. MLH1 promoter methylation could be the second hit in Lynch syndrome carcinogenesis. Genes 2023, 14, 2060. [Google Scholar] [CrossRef] [PubMed]
- Rico-Méndez, M.A.; Ayala-Madrigal, M.d.l.L.; González-Mercado, A.; Gutiérrez-Angulo, M.; Ramírez de Arellano Sánchez, J.A.; Beltrán-Ontiveros, S.A.; Contreras-Haro, B.; Gutiérrez-Hurtado, I.A.; Moreno-Ortiz, J.M. Microsatellite instability in urine: Breakthrough method for bladder cancer identification. Biomedicines 2024, 12, 2726. [Google Scholar] [CrossRef]
- Dietmaier, W.; Büttner, R.; Rüschoff, J. Mikrosatelliteninstabilität: Aktueller Überblick über Methoden und Anwendungen. Pathologe 2019, 40, 313–327. [Google Scholar] [CrossRef] [PubMed]
- De’ Angelis, G.L.; Bottarelli, L.; Azzoni, C.; De’ Angelis, N.; Leandro, G.; Di Mario, F.; Gaiani, F.; Negri, F. Microsatellite instability in colorectal cancer. Acta Biomed. 2018, 89, 97–101. [Google Scholar] [PubMed]
- Greco, L.; Rubbino, F.; Dal Buono, A.; Laghi, L. Microsatellite instability and immune response: From microenvironment features to therapeutic actionability—Lessons from colorectal cancer. Genes 2023, 14, 1169. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ortiz, J.M.; Jiménez-García, J.; Gutiérrez-Angulo, M.; Ayala-Madrigal, M.L.; González-Mercado, A.; González-Villaseñor, C.O.; Flores-López, B.A.; Alvizo-Rodríguez, C.; Hernández-Sandoval, J.A.; Fernández-Galindo, M.A.; et al. High frequency of MLH1 promoter methylation mediated by gender and age in colorectal tumors from Mexican patients. Gac. Med. Mex. 2021, 157, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Miyakura, Y.; Tahara, M.; Lefor, A.T.; Yasuda, Y.; Sugano, K. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers. BMC Res. Notes 2014, 7, 835. [Google Scholar] [CrossRef]
- Miyakura, Y.; Sugano, K.; Konishi, F.; Ichikawa, A.; Maekawa, M.; Shitoh, K.; Igarashi, S.; Kotake, K.; Koyama, Y.; Nagai, H. Extensive methylation of hMLH1 promoter region predominates in proximal colon cancer with microsatellite instability. Gastroenterology 2001, 121, 1300–1309. [Google Scholar] [CrossRef]
- Deng, G.; Chen, A.; Hong, J.; Chae, H.S.; Kim, Y.S. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 1999, 59, 2029–2033. [Google Scholar] [PubMed]
- Deng, G.; Chen, A.; Pong, E.; Kim, Y.S. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene 2001, 20, 7120–7127. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Ferber, M.; Mao, R.; Samowitz, W.; Ganguly, A.; Working Group of the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet. Med. 2014, 16, 101–116. [Google Scholar] [CrossRef]
- Vilkin, A.; Niv, Y.; Nagasaka, T.; Morgenstern, S.; Levi, Z.; Fireman, Z.; Fuerst, F.; Goel, A.; Boland, C.R. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Cancer 2009, 115, 760–769. [Google Scholar] [CrossRef]
- Meylan, P.; Dreos, R.; Ambrosini, G.; Groux, R.; Bucher, P. EPD in 2020: Enhanced data visualization and extension to ncRNA promoters. Nucleic Acids Res. 2020, 48, D65–D69. [Google Scholar] [CrossRef]
- Wong, J.J.; Hawkins, N.J.; Ward, R.L.; Hitchins, M.P. Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Mod. Pathol. 2011, 24, 396–411. [Google Scholar] [CrossRef]
- Vlaykova, T.; Mitkova, A.; Stancheva, G.; Kadiyska, T.; Gulubova, M.; Yovchev, Y.; Cirovski, G.; Chilingirov, P.; Damyanov, D.; Kremensky, I.; et al. Microsatellite instability and promoter hypermethylation of MLH1 and MSH2 in patients with sporadic colorectal cancer. J. BUON 2011, 16, 265–273. [Google Scholar] [PubMed]
- Hokazono, K.; Ueki, T.; Nagayoshi, K.; Nishioka, Y.; Hatae, T.; Koga, Y.; Hirahashi, M.; Oda, Y.; Tanaka, M. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps. Oncol. Lett. 2014, 8, 1937–1944. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Li, X.; Teng, C.; Zhu, L.; Cui, B.; Zhao, Y.; Hu, F. Prognostic significance of hMLH1/hMSH2 gene mutations and hMLH1 promoter methylation in sporadic colorectal cancer. Med. Oncol. 2014, 31, 39. [Google Scholar] [CrossRef] [PubMed]
- Veganzones, S.; Maestro, M.L.; Rafael, S.; de la Orden, V.; Vidaurreta, M.; Mediero, B.; Espantaleón, M.; Cerdán, J.; Díaz-Rubio, E. Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors. Tumour Biol. 2015, 36, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Park, H.E.; Yoo, S.Y.; Jeong, S.; Cho, N.Y.; Kang, G.H.; Kim, J.H. CpG Island Methylation in Sessile Serrated Adenoma/Polyp of the Colorectum: Implications for Differential Diagnosis of Molecularly High-Risk Lesions among Non-dysplastic Sessile Serrated Adenomas/Polyps. J. Pathol. Transl. Med. 2019, 53, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Kašubová, I.; Kalman, M.; Jašek, K.; Burjanivová, T.; Malicherová, B.; Vaňochová, A.; Meršaková, S.; Lasabová, Z.; Plank, L. Stratification of patients with colorectal cancer without the recorded family history. Oncol. Lett. 2019, 17, 3649–3656. [Google Scholar] [CrossRef] [PubMed]
- Moghbeli, M.; Moaven, O.; Dadkhah, E.; Farzadnia, M.; Roshan, N.M.; Asadzadeh-Aghdaee, H.; Bahar, M.M.; Raeisossadati, R.; Forghanifard, M.M.; Bakhtiari, S.R.; et al. High frequency of microsatellite instability in sporadic colorectal cancer patients in Iran. Genet. Mol. Res. 2011, 10, 3520–3529. [Google Scholar] [CrossRef]
- Oh, J.R.; Kim, D.W.; Lee, H.S.; Lee, H.E.; Lee, S.M.; Jang, J.H.; Kang, S.B.; Ku, J.L.; Jeong, S.Y.; Park, J.G. Microsatellite instability testing in Korean patients with colorectal cancer. Fam. Cancer 2012, 11, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, K.; Yamamoto, G.; Takenoya, T.; Takahashi, A.; Arai, Y.; Yamada, M.; Kakuta, M.; Yamaguchi, K.; Akagi, Y.; Nishimura, Y.; et al. Metastatic pattern of stage IV colorectal cancer with high-frequency microsatellite instability as a prognostic factor. Anticancer Res. 2017, 37, 239–247. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.; Perner, Y.; Magobo, R.; Magangane, P.; Mirza, S.; Penny, C. Microsatellite instability assessment in Black South African colorectal cancer patients reveals an increased incidence of suspected Lynch syndrome. Sci. Rep. 2019, 9, 15019. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Guzman, A.; Luevano-Gonzalez, A.; Rangel-Gomez, A.N.; Rojas-Martinez, A.; Garza-Guajardo, R.; Barboza-Quintana, O.; Ancer-Rodriguez, J.; Rios-Ibarra, C.P.; Ortiz-Lopez, R. Microsatellite instability and protein expression of MLH1 and MSH2 genes in young Mexican patients less than 50 years of age diagnosed with colorectal cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 1667–1673. [Google Scholar] [PubMed]
- Lindner, A.K.; Schachtner, G.; Tulchiner, G.; Thurnher, M.; Untergasser, G.; Obrist, P.; Pipp, I.; Steinkohl, F.; Horninger, W.; Culig, Z.; et al. Lynch syndrome: Its impact on urothelial carcinoma. Int. J. Mol. Sci. 2021, 22, 531. [Google Scholar] [CrossRef] [PubMed]
- Søreide, K. High-fidelity of five quasimonomorphic mononucleotide repeats to high-frequency microsatellite instability distribution in early-stage adenocarcinoma of the colon. Anticancer Res. 2011, 31, 967–971. [Google Scholar] [PubMed]
- Goel, A.; Nagasaka, T.; Hamelin, R.; Boland, C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS ONE 2010, 5, e9393. [Google Scholar] [CrossRef]
- Brennetot, C.; Buhard, O.; Jourdan, F.; Flejou, J.F.; Duval, A.; Hamelin, R. Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumors and predict tumor content: Implications for population screening. Int. J. Cancer 2005, 113, 446–450. [Google Scholar] [CrossRef]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef]
- Brim, H.; Mokarram, P.; Naghibalhossaini, F.; Saberi-Firoozi, M.; Al-Mandhari, M.; Al-Mawaly, K.; Al-Mjeni, R.; Al-Sayegh, A.; Raeburn, S.; Lee, E.; et al. Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations-based study. Mol. Cancer 2008, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Ferrasi, A.C.; Pinheiro, N.A.; Rabenhorst, S.H.; Caballero, O.L.; Rodrigues, M.A.; de Carvalho, F.; Leite, C.V.; Ferreira, M.V.; Barros, M.A.; Pardini, M.I. Helicobacter pylori and EBV in gastric carcinomas: Methylation status and microsatellite instability. World J. Gastroenterol. 2010, 16, 312–319. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, T.H.; Cho, N.Y.; Yang, H.K.; Kim, W.H.; Kang, G.H. Differential clinicopathologic features in microsatellite-unstable gastric cancers with and without MLH1 methylation. Hum. Pathol. 2013, 44, 1055–1064. [Google Scholar] [CrossRef]
- Li, X.; Yao, X.; Wang, Y.; Hu, F.; Wang, F.; Jiang, L.; Liu, Y.; Wang, D.; Sun, G.; Zhao, Y. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS ONE 2013, 8, e59064. [Google Scholar] [CrossRef] [PubMed]
- Hagland, H.R.; Berg, M.; Jolma, I.W.; Carlsen, A.; Søreide, K. Molecular pathways and cellular metabolism in colorectal cancer. Dig. Surg. 2013, 30, 12–25. [Google Scholar] [CrossRef]
- Ewing, I.; Hurley, J.J.; Josephides, E.; Millar, A. The molecular genetics of colorectal cancer. Frontline Gastroenterol. 2014, 5, 25–30. [Google Scholar] [CrossRef]
Characteristic | Frequencies (%) | |
---|---|---|
Age * | 57 years | |
Sex | Male | 56.5 |
Female | 43.5 | |
Location | Colon | 32.3 |
Rectum | 67.7 | |
Stage | I | 7.9 |
II | 28.3 | |
III | 45.7 | |
IV | 18.1 | |
Oncological background | Yes | 55.4 |
Not | 44.6 | |
Other * | Height (m) | 1.63 (±0.12) |
Weight (kg) | 68.2 (±20.5) | |
BMI (kg/m2) | 25.2 (±5.63) |
UM n (%) | PM n (%) | M n (%) | Total n (%) | ||
---|---|---|---|---|---|
MSS | 100 (72.46) | 26 (18.84) | 2 (1.45) | 128 (92.75) | |
MSI-L | 1 (0.72) | 1 (0.72) | 0 (0) | 2 (1.45) | p = 0.01 |
MSI-H | 3 (2.17) | 2 (1.45) | 3 (2.17) | 8 (5.80) | |
Total | 104 (75.36) | 29 (21.01) | 5 (3.62) | 138 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico-Méndez, M.A.; Trujillo-Rojas, M.A.; Ayala-Madrigal, M.d.l.L.; Hernández-Sandoval, J.A.; González-Mercado, A.; Gutiérrez-Angulo, M.; Romero-Quintana, J.G.; Valenzuela-Pérez, J.A.; Ramírez-Ramírez, R.; Flores-López, B.A.; et al. MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer. Genes 2025, 16, 182. https://doi.org/10.3390/genes16020182
Rico-Méndez MA, Trujillo-Rojas MA, Ayala-Madrigal MdlL, Hernández-Sandoval JA, González-Mercado A, Gutiérrez-Angulo M, Romero-Quintana JG, Valenzuela-Pérez JA, Ramírez-Ramírez R, Flores-López BA, et al. MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer. Genes. 2025; 16(2):182. https://doi.org/10.3390/genes16020182
Chicago/Turabian StyleRico-Méndez, Manuel Alejandro, Miguel Angel Trujillo-Rojas, María de la Luz Ayala-Madrigal, Jesús Arturo Hernández-Sandoval, Anahí González-Mercado, Melva Gutiérrez-Angulo, José Geovanni Romero-Quintana, Jesús Alonso Valenzuela-Pérez, Ruth Ramírez-Ramírez, Beatriz Armida Flores-López, and et al. 2025. "MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer" Genes 16, no. 2: 182. https://doi.org/10.3390/genes16020182
APA StyleRico-Méndez, M. A., Trujillo-Rojas, M. A., Ayala-Madrigal, M. d. l. L., Hernández-Sandoval, J. A., González-Mercado, A., Gutiérrez-Angulo, M., Romero-Quintana, J. G., Valenzuela-Pérez, J. A., Ramírez-Ramírez, R., Flores-López, B. A., & Moreno-Ortiz, J. M. (2025). MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer. Genes, 16(2), 182. https://doi.org/10.3390/genes16020182