Pharmacogenetic Factors Shaping Treatment Outcomes in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
1.1. COPD Treatment
1.2. Precision Medicine and Pharmacogenetics in COPD
2. Methodology
2.1. Search Strategy
2.2. Inclusion Criteria and Data Collection
2.3. Study Characteristics
3. Results
Pharmacogenetics Studies with Reference to Bronchodilating Response to β2 Agonists and Inhaled Corticosteroids
4. Discussion
5. Conclusion & Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 21 February 2025).
- The Silent Killer: Why Chronic Respiratory Disease Deserves Global Attention. Available online: https://www.who.int/news-room/commentaries/detail/the-silent-killer--why-chronic-respiratory-disease-deserves-global-attention? (accessed on 21 February 2025).
- Varmaghani, M.; Dehghani, M.; Heidari, E.; Sharifi, F.; Moghaddam, S.S.; Farzadfar, F. Global prevalence of chronic obstructive pulmonary disease: Systematic review and meta-analysis. East. Mediterr. Health J. 2019, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004, 364, 709–721. [Google Scholar] [CrossRef]
- Bourdin, A.; Burgel, P.R.; Chanez, P.; Garcia, G.; Perez, T.; Roche, N. Recent advances in COPD: Pathophysiology, respiratory physiology and clinical aspects, including comorbidities. Eur. Respir. Rev. 2009, 18, 198–212. [Google Scholar] [CrossRef]
- Salvi, S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin. Chest Med. 2014, 35, 17–27. [Google Scholar] [CrossRef]
- MacLeod, M.; Papi, A.; Contoli, M.; Beghé, B.; Celli, B.R.; Wedzicha, J.A.; Fabbri, L.M. Chronic obstructive pulmonary disease exacerbation fundamentals: Diagnosis, treatment, prevention and disease impact. Respirology 2021, 26, 532–551. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Román-Rodríguez, M.; Singh, D.; Han, M.L.K.; Rodríguez-Roisin, R.; Ferguson, G.T. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir. Med. 2020, 166, 105938. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Rowe, B.H.; Camargo, C.A. Methylxanthines for exacerbations of chronic obstructive pulmonary disease: Meta-analysis of randomised trials. BMJ Br. Med. J. 2003, 327, 643. [Google Scholar] [CrossRef] [PubMed]
- Cagle, S.D., Jr.; Landrum, L.S.; Kennedy, A.M. Chronic Obstructive Pulmonary Disease: Diagnosis and Management. Am. Fam. Physician. 2023, 107, 604–612. [Google Scholar]
- Janjua, S.; Fortescue, R.; Poole, P. Phosphodiesterase-4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2020, 2020, CD002309. [Google Scholar] [CrossRef]
- Singh, D.; Bafadhel, M.; Brightling, C.E.; Sciurba, F.C.; Curtis, J.L.; Martinez, F.J.; Pasquale, C.B.; Merrill, D.D.; Metzdorf, N.; Petruzzelli, S.; et al. Blood Eosinophil Counts in Clinical Trials for Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2020, 202, 660–671. [Google Scholar] [CrossRef]
- Elmorshidy, B.E.S.; Elkholy, M.G.A.; Elsaadany, H.M.; Mansour, Y.M.; Sharshar, R.S.; Bahr, H.M. Effect of pulmonary rehabilitation programme including either O2 inhalation or noninvasive ventilation in patients with chronic obstructive pulmonary disease. Can. J. Respir. Ther. 2023, 59, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.L.; Derom, E.; Ambrosino, N. Supplemental oxygen and noninvasive ventilation. Eur. Respir. Rev. 2023, 32, 220159. [Google Scholar] [CrossRef]
- Carolan, B.J.; Sutherland, E.R. Clinical phenotypes of chronic obstructive pulmonary disease and asthma: Recent advances. J. Allergy Clin. Immunol. 2013, 131, 627–634. [Google Scholar] [CrossRef] [PubMed]
- COPD: Denken in Behandelbare Kenmerken|NTVG. Available online: https://www.ntvg.nl/copd (accessed on 30 December 2024).
- Leung, J.M.; Obeidat, M.; Sadatsafavi, M.; Sin, D.D. Introduction to precision medicine in COPD. Eur. Respir. J. 2019, 53, 1802460. [Google Scholar] [CrossRef]
- Bolger, G.B. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int. J. Mol. Sci. 2023, 24, 17363. [Google Scholar] [CrossRef] [PubMed]
- Hersh, C.P. Diagnosing α-1 antitrypsin deficiency: The first step in precision medicine. F1000Res 2017, 6, 2049. [Google Scholar] [CrossRef]
- Cowan, K.; MacLuskie, G.; Finch, M.; Palmer, C.N.A.; Hair, J.; Bylesjo, M.; Lynagh, S.; Brankin, P.; McNeil, M.; Low, C.; et al. Application of pharmacogenomics and bioinformatics to exemplify the utility of human ex vivo organoculture models in the field of precision medicine. PLoS ONE 2019, 14, e0226564. [Google Scholar] [CrossRef]
- Brightling, C.; Greening, N. Airway inflammation in COPD: Progress to precision medicine. Eur. Respir. J. 2019, 54, 1900651. [Google Scholar] [CrossRef]
- Robert, F.; Pelletier, J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef]
- Harper, A.R.; Topol, E.J. Pharmacogenomics in clinical practice and drug development. Nat. Biotechnol. 2012, 30, 1117–1124. [Google Scholar] [CrossRef]
- Wysocki, K. Lung Disease and Genomics. AACN Adv. Crit. Care 2018, 29, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hosking, L.; Yeo, A.; Hoffman, J.; Chiano, M.; Fraser, D.; Ghosh, S.; Lipson, D.A.; Martin, N.; Condreay, L.D.; Cox, C.; et al. Genetics plays a limited role in predicting chronic obstructive pulmonary disease treatment response and exacerbation. Respir. Med. 2021, 187, 106573. [Google Scholar] [CrossRef]
- Hizawa, N.; Makita, H.; Nasuhara, Y.; Betsuyaku, T.; Itoh, Y.; Nagai, K.; Hasegawa, M.; Hasegawa, M. β2-adrenergic receptor genetic polymorphisms and short-term bronchodilator responses in patients with COPD. Chest 2007, 132, 1485–1492. [Google Scholar] [CrossRef]
- Kim, W.J.; Oh, Y.-M.; Sung, J.; Kim, T.-H.; Huh, J.W.; Jung, H.; Kim, E.-K.; Lee, J.H.; Lee, S.; Lim, S.Y.; et al. Lung function response to 12-week treatment with combined inhalation of long-acting β2 agonist and glucocorticoid according to ADRB2 polymorphism in patients with chronic obstructive pulmonary disease. Lung 2008, 186, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Mokry, M.; Joppa, P.; Slaba, E.; Zidzik, J.; Habalova, V.; Kluchova, Z.; Micietova, L.; Rozborilova, E.; Salagovic, J.; Tkacova, R. Beta2-adrenergic receptor haplotype and bronchodilator response to salbutamol in patients with acute exacerbations of COPD. Med. Sci. Monit. 2008, 14, CR392–CR398. [Google Scholar]
- Konno, S.; Makita, H.; Hasegawa, M.; Nasuhara, Y.; Nagai, K.; Betsuyaku, T.; Hizawa, N.; Nishimura, M. Beta2-adrenergic receptor polymorphisms as a determinant of preferential bronchodilator responses to β2-agonist and anticholinergic agents in Japanese patients with chronic obstructive pulmonary disease. Pharmacogenetics Genom. 2011, 21, 687–693. [Google Scholar] [CrossRef]
- Bleecker, E.R.; Meyers, D.A.; Bailey, W.C.; Sims, A.M.; Bujac, S.R.; Goldman, M.; Martin, U.J. ADRB2 polymorphisms and budesonide/formoterol responses in COPD. Chest 2012, 142, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Yelensky, R.; Li, Y.; Lewitzky, S.; Leroy, E.; Hurwitz, C.; Rodman, D.; Trifilieff, A.; Paulding, C.A. A pharmacogenetic study of ADRB2 polymorphisms and indacaterol response in COPD patients. Pharmacogenomics J. 2011, 12, 484–488. [Google Scholar] [CrossRef]
- Xiong, S.; Li, L. The effect of CYP1A2 gene polymorphism on the metabolism of theophylline. Exp. Ther. Med. 2017, 15, 109. [Google Scholar] [CrossRef]
- Rabe, K.F.; Fabbri, L.M.; Israel, E.; Kögler, H.; Riemann, K.; Schmidt, H.; Glaab, T.; Vogelmeier, C.F. Effect of ADRB2 polymorphisms on the efficacy of salmeterol and tiotropium in preventing COPD exacerbations: A prespecified substudy of the POET-COPD trial. Lancet Respir. Med. 2014, 2, 44–53. [Google Scholar] [CrossRef]
- Condreay, L.; Huang, L.; Harris, E.; Brooks, J.; Riley, J.H.; Church, A.; Ghosh, S. Genetic effects on treatment response of umeclidinium/vilanterol in chronic obstructive pulmonary disease. Respir. Med. 2016, 114, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Hardin, M.; Cho, M.H.; McDonald, M.L.; Wan, E.; Lomas, D.A.; Coxson, H.O.; MacNee, W.; Vestbo, J.; Yates, J.C.; Agusti, A.; et al. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease. Pharmacogenomics J. 2015, 16, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.S.; Hussein, M.H.; Abdelaziz, E.Z.; Yamany, H.A.; Ismail, H.M.; Toraih, E.A. Association of MicroRNA-196a2 Variant with Response to Short-Acting β2-Agonist in COPD: An Egyptian Pilot Study. PLoS ONE 2016, 11, e0152834. [Google Scholar] [CrossRef]
- Hussein, M.H.; Sobhy, K.E.; Sabry, I.M.; El Serafi, A.T.; Toraih, E.A. Beta2-adrenergic receptor gene haplotypes and bronchodilator response in Egyptian patients with chronic obstructive pulmonary disease. Adv. Med. Sci. 2017, 62, 193–201. [Google Scholar] [CrossRef]
- Condreay, L.D.; Gao, C.; Bradford, E.; Yancey, S.W.; Ghosh, S. No genetic associations with mepolizumab efficacy in COPD with peripheral blood eosinophilia. Respir. Med. 2019, 155, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Weng, J.T.; Hsu, P.W.; Chuang, T.Y.; Liu, C.W.; Chen, C.H.; Wu, L.S. Whole-genome methylation profiling of peripheral blood mononuclear cell for acute exacerbations of chronic obstructive pulmonary disease treated with corticosteroid. Pharmacogenet Genomics. 2018, 28, 78–85. [Google Scholar] [CrossRef]
- Mosteller, M.; van den Berge, M.; Hosking, L.; Timens, W.; Hiemstra, P.S.; Crim, C.; Postma, D.S. Genetic evaluation of the effect of GLCCI1 rs37973 on corticosteroid response in chronic obstructive pulmonary disease. COPD Res. Pract. 2017, 3, 2. [Google Scholar] [CrossRef]
- Russo, P.; Tomino, C.; Santoro, A.; Prinzi, G.; Proietti, S.; Kisialiou, A.; Cardaci, V.; Fini, M.; Magnani, M.; Collacchi, F.; et al. FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. Int. J. Mol. Sci. 2019, 20, 2024. [Google Scholar] [CrossRef]
- Obeidat, M.; Faiz, A.; Li, X.; van den Berge, M.; Hansel, N.N.; Joubert, P.; Hao, K.; Brandsma, C.A.; Rafaels, N.; Mathias, R.; et al. The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. Eur. Respir. J. 2019, 54, 1900521. [Google Scholar] [CrossRef]
- Umeda, N.; Yoshikawa, T.; Kanazawa, H.; Hirata, K.; Fujimoto, S. Association of β2-adrenoreceptor genotypes with bronchodilatory effect of tiotropium in COPD. Respirology 2008, 13, 346–352. [Google Scholar] [CrossRef]
- Hizawa, N. Pharmacogenetics of chronic obstructive pulmonary disease. Pharmacogenomics 2013, 14, 1215–1225. [Google Scholar] [CrossRef]
- Mochizuki, H.; Nanjo, Y.; Kawate, E.; Yamazaki, M.; Tsuda, Y.; Takahashi, H. β2-Adrenergic receptor haplotype may be associated with susceptibility to desensitization to long-acting β2-agonists in COPD patients. Lung 2012, 190, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Hersh, C.P.; DeMeo, D.L.; Reilly, J.J.; Silverman, E.K. Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respir. Med. 2009, 103, 552–557. [Google Scholar] [CrossRef]
- Condreay, L.D.; Qu, X.A.; Anderson, J.; Compton, C.; Ghosh, S. Genetic effects on efficacy to fluticasone propionate/salmeterol treatment in COPD. Respir. Med. 2019, 155, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Sayers, I.; Hawley, J.; Stewart, C.; Billington, C.; Henry, A.; Leighton-Davies, J.; Charlton, S.; Hall, I. Pharmacogenetic characterization of indacaterol, a novel β 2-adrenoceptor agonist. Br. J. Pharmacol. 2009, 158, 277–286. [Google Scholar] [CrossRef]
- Lee, S.W.; Hwang, H.H.; Hsu, P.W.; Chuang, T.Y.; Liu, C.W.; Wu, L.S. Whole-genome methylation profiling from PBMCs in acute-exacerbation COPD patients with good and poor responses to corticosteroid treatment. Genomics 2019, 111, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Sheen, S.S.; Kim, T.H.; Huh, J.W.; Lee, J.H.; Kim, E.K.; Lee, J.H.; Lee, S.-M.; Lee, S.; Lim, S.Y.; et al. Association between CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in patients with COPD. Respirology 2009, 14, 260–263. [Google Scholar] [CrossRef]
- Makita, H.; Nasuhara, Y.; Nagai, K.; Ito, Y.; Hasegawa, M.; Betsuyaku, T.; Onodera, Y.; Hizawa, N.; Nishimura, M.; Hokkaido COPD Cohort Study Group. Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 2007, 62, 932–937. [Google Scholar] [CrossRef]
- Panebra, A.; Wang, W.C.; Malone, M.M.; Pitter, D.R.G.; Weiss, S.T.; Hawkins, G.A.; Liggett, S.B. Common ADRB2 Haplotypes Derived from 26 Polymorphic Sites Direct β2-Adrenergic Receptor Expression and Regulation Phenotypes. PLoS ONE 2010, 5, e11819. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Milani, L.; Ingelman-Sundberg, M. Pharmacogenomic Biomarkers for Improved Drug Therapy-Recent Progress and Future Developments. AAPS J. 2018, 20, 4. [Google Scholar] [CrossRef]
- Sutrisna, E. The Impact of CYP1A2 and CYP2E1 Genes Polymorphism on Theophylline Response. J. Clin. Diagn. Res. 2016, 10, FE01–FE03. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, G.A.; Weiss, S.T.; Bleecker, E.R. Clinical Consequences of ADRbeta2 Polymorphisms. Pharmacogenomics 2008, 9, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.M. Biologics targeting IL-5, IL-4 or IL-13 for the treatment of asthma—An update. Expert Rev. Clin. Immunol. 2016, 13, 143–149. [Google Scholar] [CrossRef]
- Cazzola, M.; Ora, J.; Cavalli, F.; Rogliani, P.; Matera, M.G. An overview of the safety and efficacy of monoclonal antibodies for the chronic obstructive pulmonary disease. Biol. Targets Ther. 2021, 15, 363–374. [Google Scholar] [CrossRef]
- Hersh, C.P. Pharmacogenomics of chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2019, 13, 459–470. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Celli, B.R.; Agustí, A.; Criner, G.J.; Dransfield, M.T.; Divo, M.; Krishnan, J.K.; Lahousse, L.; de Oca, M.M.; Salvi, S.S.; et al. COPD and multimorbidity: Recognising and addressing a syndemic occurrence. Lancet Respir. Med. 2023, 11, 1020–1034. [Google Scholar] [CrossRef]
- Li, C.-L.; Liu, S.-F. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int. J. Mol. Sci. 2024, 25, 7347. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.J.; Boueiz, A.; Yun, J.; Estepar, R.S.J.; Ross, J.C.; Washko, G.; Cho, M.H.; Hersh, C.P.; Kinney, G.L.; Young, K.A.; et al. Machine Learning Characterization of COPD Subtypes: Insights from the COPDGene Study. Chest 2020, 157, 1147–1157. [Google Scholar] [CrossRef]
- Hersh, C.P. Pharmacogenetics of chronic obstructive pulmonary disease: Challenges and opportunities. Pharmacogenomics 2010, 11, 237–247. [Google Scholar] [CrossRef]
- Moll, M.; Silverman, E.K. Precision Approaches to Chronic Obstructive Pulmonary Disease Management. Annu. Rev. Med. 2024, 75, 247–262. [Google Scholar] [CrossRef]
- Rogliani, P.; Cavalli, F.; Ritondo, B.L.; Cazzola, M.; Calzetta, L. Sex differences in adult asthma and COPD therapy: A systematic review. Respir. Res. 2022, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- Christenson, S.A. The role of genomic profiling in identifying molecular phenotypes in obstructive lung diseases. Curr. Opin. Pulm. Med. 2020, 26, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Dutta, M.; Singh, B.; Banerjee, R.; Bhattacharyya, P.; Chaudhury, K. Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: An update. Expert Rev. Mol. Diagn. 2016, 16, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Lewsey, J.; Quint, J.K.; Jani, B.D.; Nicholl, B.I.; McAllister, D.A.; Mair, F.S. Frailty in COPD: An analysis of prevalence and clinical impact using UK Biobank. BMJ Open Respir. Res. 2022, 9, e001314. [Google Scholar] [CrossRef]
- Liu, G.; Hu, J.; Yang, J.; Song, J. Predicting early-onset COPD risk in adults aged 20–50 using electronic health records and machine learning. PeerJ 2024, 12, e16950. [Google Scholar] [CrossRef]
Author | Country | Number of Participants | Age | Ethnicity/Race | Primary Endpoint |
---|---|---|---|---|---|
Hizawa et al., 2007 [26] | Japan | 246 | >40 years | Japanese | BDR, FEV1, FEV1% predicted changes |
Kim et al., 2008 [27] | South Korea | 104 | 65 years mean | South Korean | BDR |
Kim et al., 2008 [27] | South Korea | 389 | 67 years mean | South Korean | FEV1, FEV1% predicted changes |
Mokry et al., 2008 [28] | Slovakia | 107 | 66 years mean | Slovakian | FEV1, FVC changes, PEF values |
Konno et al., 2011 [29] | Japan | 184 | >40 years | Japanese | BDR |
Bleecker et al., 2012 [30] | USA | 2866 | 65 years mean | Mixed | FEV1% predicted changes, exacerbations |
Yelensky et al., 2012 [31] | USA | 648 | >40 years | Mixed | FEV1, PEF, exacerbations |
Mochizuki et al., 2012 [32] | Participants from 10 countries | 36 | >40 years | White, Asian | FEV1% predicted, FVC changes, 6MWD |
Rabe et al., 2014 [33] | Participants from 25 countries | 5125 | 63 years mean | Caucasians | exacerbations |
Condreay et al., 2016 [34] | Ν/A | 6075 | 63 years mean | Mixed | FEV1, FVC, FEV1/FVC changes |
Hardin et al., 2016 [35] | Data from four clinical trials | 5789 | 63 years mean | Caucasian, African American | BDR, FEV1 changes |
Fawzy et al., 2016 [36] | Egypt | 224 | 58 years mean | Egyptian | BDR, FEV1 changes |
Hussein et al., 2016 [37] | Egypt | 115 | 61 years mean | Egyptian | BDR, FEV1 changes |
Condreay et al., 2019 [38] | Data from 10 clinical trials | 2005 | >40 years | Mixed | FEV1 changes, SGRQ score changes |
Hosking et al., 2021 [25] | Data from 23 clinical studies and two disease cohorts | 8439 | >40 years | all ethnicities (83% White European) | Exacerbation rate, FEV1 changes, SGRQ score |
Lee SW et al., 2018 [39] | Taiwan | 74 | 69 years mean | Taiwanese | FEV1, FVC changes, symptoms |
Yuan Lei et al., 2017 | China | 204 | 67 years mean | Chinese | BDR, FEV1 changes |
Mosteller et al., 2017 [40] | Data from three studies | 465 | 61 years mean | Caucasian | FEV1, FEV1% predicted changes |
Russo et al., 2019 [41] | Italy | 71 | 73 years mean | Italian | FEV1% predicted changes, SGRQ score, 6MWD |
Obeidat et al., 2019 [42] | Sample from multicenter study (LHS-2) | 802 | 55 years mean | Caucasian | FEV1 changes |
Umeda et al., 2008 [43] | Japan | 44 (COPD) | >40 years | Japanese | FEV1 and FEV1% changes, SGRQ score changes |
Study | Treatment | Result |
---|---|---|
Studies showing association | ||
Hizawa et al. [44] | SABA | Arg16 allele was associated with lower bronchodilator response to SABA. No association between BDR and codon 27 variant |
Konno et al. [29] | SABA (or LAMA) | Arg16 allele was associated with lower bronchodilator response to SABA |
Rabe et al. [33] | LABA | Arg16 allele was associated with reduced exacerbation risk |
Hussein et al. [37] | SABA | Glu27Glu variant was associated with higher bronchodilator response to SABA. No association between BDR and codon 16 variant |
Mochizuki et al. [45] | LABA | CysGlyGln haplotype carriers connected with LABA desensitization |
Kim et al. [46] | SABA | EPHX1 variants associated with bronchodilator response |
Hardin et al. [35] | SABA | No association between ADRB2 variants and BDR. SGCD and GOLGA8B gene variants associated with response to β2 agonists |
Fawzy at al. [36] | SABA | MIR-196a2 gene variant associated with response to β2 agonists |
Studies showing no association | ||
Kim et al. [27] | SABA | No association between ADRB2 variants and acute BDR or 12-week change in FEV1 |
Yelensky et al. [31] | LABA | No association between codon ADRB2 variants and FEV1 change, dyspnea index or exacerbations |
Bleecker at al. [30] | LABA (+ICS) | No association between ADRB2 variants and FEV1 change or exacerbations |
Mokry et al. [28] | SABA | Haplotypes of codon 16 and 27 variants were not associated with bronchodilator response |
Condreay et al. [34] | LABA (+LAMA) | No association between ADRB2 variants, HLA alleles or other SNPs and bronchodilator response |
Condreay et al. [47] | LABA (+ICS) | Common genetic variants are not associated with FEV1 change, exacerbation rate or QoL status |
Sayers et al. [48] | LABA | No significant genotype-dependent effects were found for common variants examined. |
Hosking et al. [25] | LABA (+ICS) | No association between common genetic variants and AECOPD treatment response |
Study | Treatment | Result |
---|---|---|
Studies showing association | ||
Lee et al. [49] | ICS (+LABA) | GLCCI1 GG genotype was associated with impaired corticosteroid efficacy |
Lee et al. [39] | ICS | PSMD8 gene polymorphism associated with differential response to ICS |
Russo et al. [41] | ICS (+SABA or LAMA) | FKBP5 gene GA genotype was associated with higher lung function improvement and better SGRQ score—GLCCI1 (rs37972) TT carriers showed higher lung function improvement (small sample) |
Obeidat et al. [42] | ICS | An allele in rs1117520447 SNP was associated with higher FEV1 decline rate |
Cowan et al. [20] | ICS (+roflumilast or LABA) | SMAD gene GG genotype was associated with better ICS treatment response–CYP2E1 gene with at least one copy of reference allele was associated with better ICS treatment response |
Kim et al. [50] | ICS (+LABA) | GG carriers of CRHR1 responded better to ICS (+LABA) compared to heterozygotes |
Studies showing no association | ||
Mosteller et al. [40] | ICS | No association between GLCCI1 and response to ICS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntenti, C.; Misirlis, T.N.; Goulas, A. Pharmacogenetic Factors Shaping Treatment Outcomes in Chronic Obstructive Pulmonary Disease. Genes 2025, 16, 314. https://doi.org/10.3390/genes16030314
Ntenti C, Misirlis TN, Goulas A. Pharmacogenetic Factors Shaping Treatment Outcomes in Chronic Obstructive Pulmonary Disease. Genes. 2025; 16(3):314. https://doi.org/10.3390/genes16030314
Chicago/Turabian StyleNtenti, Charikleia, Thomas Nikos Misirlis, and Antonis Goulas. 2025. "Pharmacogenetic Factors Shaping Treatment Outcomes in Chronic Obstructive Pulmonary Disease" Genes 16, no. 3: 314. https://doi.org/10.3390/genes16030314
APA StyleNtenti, C., Misirlis, T. N., & Goulas, A. (2025). Pharmacogenetic Factors Shaping Treatment Outcomes in Chronic Obstructive Pulmonary Disease. Genes, 16(3), 314. https://doi.org/10.3390/genes16030314