Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero
Abstract
:1. Introduction
2. Materials and Methods
2.1. Post-Mortem STR Database Set-Up
2.1.1. Bone/Tooth Samples
2.1.2. Bone/Tooth Cleaning and Pulverization
2.1.3. Bone/Tooth Decalcification and DNA Extraction
2.1.4. DNA Quantification
2.1.5. STR-CE Typing
2.1.6. Exclusion Database
2.1.7. Post-Mortem Database
2.2. Ante-Mortem Database Set-Up
2.3. Preparation of Microhaplotype Libraries and MPS Analysis
2.4. Statistical Analyses
2.4.1. Autosomal STRs and Microhaplotypes
2.4.2. Y-STRs
3. Results
3.1. Quantification Results
3.2. STR Typing Results
3.3. STR Post-Mortem Database
3.3.1. Female DNA Profiles
3.4. Ante-Mortem Reference Database
3.5. Kinship Analyses
3.5.1. Autosomal STRs
3.5.2. Y-STRs
3.6. Microhaplotype Data and Genotyping
3.7. Female DNA Profiles Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordner, S.; Tidball-Binz, M. Humanitarian forensic action—Its origins and future. Forensic Sci. Int. 2017, 279, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Biesecker, L.G.; Bailey-Wilson, J.E.; Ballantyne, J.; Baum, H.; Bieber, F.R.; Brenner, C.; Budowle, B.; Butler, J.M.; Carmody, G.; Conneally, P.M.; et al. DNA identifications after the 9/11 World Trade Center attack. Science 2005, 310, 1122–1123. [Google Scholar] [CrossRef]
- Wright, K.; Mundorff, A.; Chaseling, J.; Forrest, A.; Maguire, C.; Crane, D.I. A new disaster victim identification management strategy targeting “near identification-threshold” cases: Experiences from the Boxing Day tsunami. Forensic Sci. Int. 2015, 250, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; De Angelis, D.; Mazzarelli, D.; Porta, D.; Poppa, P.; Caccia, G.; D’Amico, M.E.; Siccardi, C.; Previderè, C.; Bertoglio, B.; et al. The rights of migrants to the identification of their dead: An attempt at an identification strategy from Italy. Int. J. Leg. Med. 2022, 137, 145–156. [Google Scholar] [CrossRef] [PubMed]
- INTERPOL. Disaster Victim Identification (DVI). Available online: https://www.interpol.int/How-we-work/Forensics/Disaster-Victim-Identification-DVI (accessed on 29 November 2024).
- Andelinović, S.; Sutlović, D.; Erceg Ivkosić, I.; Skaro, V.; Ivkosić, A.; Paić, F.; Rezić, B.; Definis-Gojanović, M.; Primorac, D. Twelve-year experience in identification of skeletal remains from mass graves. Croat Med. J. 2005, 46, 530–539. [Google Scholar] [PubMed]
- Marjanović, D.; Metjahić, N.H.; Čakar, J.; Džehverović, M.; Dogan, S.; Ferić, E.; Džijan, S.; Škaro, V.; Projić, P.; Madžar, T.; et al. Identification of human remains from the Second World War mass graves uncovered in Bosnia and Herzegovina. Croat Med. J. 2015, 56, 257–262. [Google Scholar] [CrossRef]
- Klonowski, E.E.; Sołtyszewski, I. Proces ekshumacji i identyfikacji ofiar wojny na terenie Bośni i Hercegowiny w latach 1992–1995 [Process of exhumation and identification of victims of the 1992–1995 war in the territory of Bosnia and Herzegovina]. Arch Med. Sadowej Kryminol. 2009, 59, 225–231. [Google Scholar]
- Ríos, L.; Ovejero, J.I.C.; Prieto, J.P. Identification process in mass graves from the Spanish Civil War I. Forensic Sci. Int. 2010, 199, e27–e36. [Google Scholar] [CrossRef]
- Ríos, L.; García-Rubio, A.; Martínez, B.; Alonso, A.; Puente, J. Identification process in mass graves from the Spanish Civil War II. Forensic Sci. Int. 2012, 219, e4–e9. [Google Scholar] [CrossRef]
- Baeta, M.; Núñez, C.; Cardoso, S.; Palencia-Madrid, L.; Herrasti, L.; Etxeberria, F.; De Pancorbo, M.M. Digging up the recent Spanish memory: Genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship. Forensic Sci. Int. Genet. 2015, 19, 272–279. [Google Scholar] [CrossRef]
- Pajnič, I.Z.; Obal, M.; Zupanc, T. Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci. Int. 2019, 306, 110056. [Google Scholar] [CrossRef] [PubMed]
- Pajnič, I.Z.; Pogorelc, B.G.; Balažic, J. Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int. J. Leg. Med. 2010, 124, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Anđelinović, Š.; Definis-Gojanović, M.; Škaro, V.; Projić, P.; Čoklo, M.; Ašić, A.; Budowle, B.; Lee, H.; Holland, M.M.; et al. Identification of skeletal remains in Croatia and Bosnia and Herzegovina, including the homeland war–a 30 year review. Croat. Med. J. 2024, 65, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, A.; Kuś, M.; Kupiec, T.; Bykowska, M.; Zielińska, G.; Jasiński, M.; March, A. The Polish Genetic Database of Victims of Totalitarianisms. Forensic Sci. Int. 2015, 258, 41–49. [Google Scholar] [CrossRef]
- Meucci, M.; Verna, E.; Costedoat, C. The Skeletal Remains of Soldiers from the Two World Wars: Between Identification, Health Research and Memorial Issues. Genes 2022, 13, 1852. [Google Scholar] [CrossRef]
- United Nations Commission on Human Rights. Resolution 1993/33: Question of Enforced or Involuntary Disappearances. 1993. Available online: https://www.ohchr.org/en/ohchr (accessed on 4 February 2025).
- INTERPOL. Resolution AGN/65/ RES/13. In Proceedings of the ICPO-Interpol General Assembly, 65th Session, Antalya, Turkey, 23–29 October 1996. [Google Scholar]
- INTERPOL. INTERPOL Disaster Victim Identification Guide; INTERPOL: Lyon, France, 2022; Available online: https://www.interpol.int (accessed on 4 February 2025).
- McCord, B.R.; Gauthier, Q.; Cho, S.; Roig, M.N.; Gibson-Daw, G.C.; Young, B.; Taglia, F.; Zapico, S.C.; Mariot, R.F.; Lee, S.B.; et al. Forensic DNA Analysis. Anal Chem. 2019, 91, 673–688. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.J.; Huel, R.M.; Bajunović, Z.; Rizvić, A. Large scale DNA identification: The ICMP experience. Forensic Sci. Int. Genet. 2018, 38, 236–244. [Google Scholar] [CrossRef]
- Zvénigorosky, V.; Sabbagh, A.; Gonzalez, A.; Fausser, J.L.; Palstra, F.; Romanov, G.; Solovyev, A.; Barashkov, N.; Fedorova, S.; Crubézy, É.; et al. The limitations of kinship determinations using STR data in ill-defined populations. Int. J. Legal Med. 2020, 134, 1981–1990. [Google Scholar] [CrossRef]
- Butler, J.M. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci. Int. Synerg. 2022, 6, 100311. [Google Scholar] [CrossRef]
- Turchi, C.; Previderè, C.; Bini, C.; Carnevali, E.; Grignani, P.; Manfredi, A.; Melchionda, F.; Onofri, V.; Pelotti, S.; Robino, C.; et al. Assessment of the Precision ID Identity Panel kit on challenging forensic samples. Forensic Sci. Int. Genet. 2020, 49, 102400. [Google Scholar] [CrossRef] [PubMed]
- De la Puente, M.; Phillips, C.; Xavier, C.; Amigo, J.; Carracedo, A.; Parson, W.; Lareu, M.V. Building a Custom Large-Scale Panel of Novel Microhaplotypes for Forensic Identification Using MiSeq and Ion S5 Massively Parallel Sequencing Systems. Forensic Sci. Int. Genet. 2020, 45, 102213. [Google Scholar] [CrossRef] [PubMed]
- Turchi, C.; Melchionda, F.; Pesaresi, M.; Fattorini, P.; Tagliabracci, A. Performance of a Massive Parallel Sequencing Microhaplotypes Assay on Degraded DNA. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 782–783. [Google Scholar] [CrossRef]
- Kídd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagacé, R.; Chang, J.; Wootton, S.N. Ihuegbu Microhaplotype Loci Are a Powerful New Type of Forensic Marker. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e123–e124. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C.; Wootton, S.; Lagace, R.; Langit, R.; Haigh, E.; Chang, J.; Pakstis, A.J. Genetic Markers for Massively Parallel Sequencing in Forensics. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e677–e679. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C. Criteria for Selecting Microhaplotypes: Mixture Detection and Deconvolution. Investig. Genet. 2015, 6, 1. [Google Scholar] [CrossRef]
- Moore, B. Conflict in the Balkans. In Oxford University Press EBooks; Oxford University Press: Oxford, UK, 2022; pp. 272–294. [Google Scholar] [CrossRef]
- Di Stefano, B.; Zupanič Pajnič, I.; Concato, M.; Bertoglio, B.; Calvano, M.G.; Sorçaburu Ciglieri, S.; Bosetti, A.; Grignani, P.; Addoum, Y.; Vetrini, R.; et al. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes 2024, 15, 672. [Google Scholar] [CrossRef]
- Adams, B.J.; Konigsberg, L.W. Estimation of the most likely number of individuals from commingled human skeletal remains. Am. J. Phys. Anthropol. 2004, 125, 138–151. [Google Scholar] [CrossRef]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef]
- Pilli, E.; Vai, S.; Caruso, M.G.; D’Errico, G.; Berti, A.; Caramelli, D. Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci. Int. 2018, 283, 144–149. [Google Scholar] [CrossRef]
- Miloš, A.; Selmanović, A.; Smajlović, L.; Huel, R.L.; Katzmarzyk, C.; Rizvić, A.; Parsons, T.J. Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat. Med. J. 2007, 48, 486–493. [Google Scholar] [PubMed Central]
- Zupanc, T.; Podovšovnik, E.; Obal, M.; Zupanič Pajnič, I. High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci. Int. Genet. 2021, 51, 102426. [Google Scholar] [CrossRef] [PubMed]
- Finaughty, C.; Heathfield, L.J.; Kemp, V.; Marquez-Grant, N. Forensic DNA extraction methods for human hard tissue: A systematic literature review and meta-analysis of technologies and sample type. Forensic Sci. Int. Genet. 2023, 63, 102818. [Google Scholar] [CrossRef] [PubMed]
- Hofreiter, M.; Sneberger, J.; Pospisek, M.; Vanek, D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci. Int. Genet. 2021, 54, 102538. [Google Scholar] [CrossRef] [PubMed]
- Pajnic, I.Z. Extraction of DNA from Human Skeletal Material. Methods Mol. Biol. 2016, 1420, 89–108. [Google Scholar] [CrossRef]
- Fattorini, P.; Marrubini, G.; Ricci, U.; Gerin, F.; Grignani, P.; Cigliero, S.S.; Xamin, A.; Edalucci, E.; La Marca, G.; Previdere, C. Estimating the integrity of aged DNA samples by CE. Electrophoresis 2009, 30, 3986–3995. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Fattorini, P. Strategy for STR typing of bones from the Second World War combining CE and NGS technology: A pilot study. Forensic Sci. Int. Genet. 2021, 50, 102401. [Google Scholar] [CrossRef]
- Prinz, M.; Carracedo, A.; Mayr, W.R.; Morling, N.; Parsons, T.J.; Sajantila, A.; Scheithauer, R.; Schmitter, H.; Schneider, P.M. DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci. Int. Genet. 2007, 1, 3–12. [Google Scholar] [CrossRef]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef]
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic implications of genetic analyses from degraded DNA—A review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef]
- Egeland, T.; Mostad, P.; Mevåg, B.; Stenersen, M. Beyond traditional paternity and identification cases. Forensic Sci. Int. 2000, 110, 47–59. [Google Scholar] [CrossRef]
- Kling, D.; Tillmar, A.O.; Egeland, T. Familias 3-Extensions and new functionality. Forensic Sci. Int. Genet. 2014, 13, 121–127. [Google Scholar] [CrossRef]
- Brenner, C.; Weir, B. Issues and strategies in the DNA identification of World Trade Center victims. Theor. Popul. Biol. 2003, 63, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Bertoglio, B.; Grignani, P.; Di Simone, P.; Polizzi, N.; De Angelis, D.; Cattaneo, C.; Iadicicco, A.; Fattorini, P.; Presciuttini, S.; Previderè, C. Disaster victim identification by kinship analysis: The Lampedusa October 3rd, 2013 shipwreck. Forensic Sci. Int. Genet. 2019, 44, 102156. [Google Scholar] [CrossRef] [PubMed]
- Bodner, M.; Bastisch, I.; Butler, J.M.; Fimmers, R.; Gill, P.; Gusmão, L.; Morling, N.; Phillips, C.; Prinz, M.; Schneider, P.M.; et al. Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER). Forensic Sci. Int. Genet. 2016, 24, 97–102. [Google Scholar] [CrossRef]
- Willuweit, S.; Roewer, L. The new Y Chromosome Haplotype Reference Database. Forensic Sci. Int. Genet. 2014, 15, 43–48. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I.; Jeromelj, T.; Leskovar, T. Petrous bones versus tooth cementum for genetic analysis of aged skeletal remains. Int. J. Legal Med. 2024, 139, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kídd, K.K.; Pakstis, A.J.; Gandotra, N.; Scharfe, C.; Podini, D. A Multipurpose Panel of Microhaplotypes for Use with STR Markers in Casework. Forensic Sci. Int. Genet. 2022, 60, 102729. [Google Scholar] [CrossRef]
- Otagiri, T.; Sato, N.; Shiozaki, T.; Harayama, Y.; Matsumoto, M.; Kobayashi, K.; Asamura, H. An optimal skeletal element for DNA testing: Evaluation of DNA quantity and quality from various bone types in routine forensic practice. Leg. Med. 2024, 68, 102415. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Inkret, J.; Zupanc, T.; Podovsovnik, E. Comparison of nuclear DNA yield and STR typing success in Second World War petrous bones and metacarpals III. Forensic Sci. Int. Genet. 2021, 55, 102578. [Google Scholar] [CrossRef]
- Mundorff, A.; Davoren, J.M. Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci. Int. Genet. 2013, 8, 55–63. [Google Scholar] [CrossRef]
- Hedges, R.E.M. Bone diagenesis: An overview of processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Penkman, K.; Mullin, V.E.; Winkelbach, L.; Unterlander, M.; Scheu, A.; Kreutzer, S.; Hansen, H.B.; Margaryan, A.; Teasdale, M.D.; et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS ONE 2020, 15, e0235146. [Google Scholar] [CrossRef] [PubMed]
Skeletal Element | n |
---|---|
Right femur | 28 |
Left femur | 14 |
Right petrous bone | 19 |
Left petrous bone | 19 |
Metacarpal | 19 |
Metatarsal | 32 |
Molar tooth | 16 |
Total | 147 |
Kinship Degree | Relationship | Male | Female |
---|---|---|---|
1st Degree | Son/daughter | 1 | 0 |
Brother/sister | 0 | 3 | |
2nd Degree | Nephew/niece | 5 | 6 |
Grand-son/grand-daughter | 1 | 0 | |
3rd Degree | Half-nephew/half-niece | 0 | 1 |
Grand-nephew/Grand-niece | 1 | 0 | |
4th Degree | First cousin once removed | 1 | 0 |
a | |||||
---|---|---|---|---|---|
Skeletal Element | n | LOQ | >LOD | pg/µL | |
Right femur | 45 | 2.2% | 26.7% | 5 (14; 0) | |
Left femur | 13 | 0% | 46.2% | 3 (5; 0) | |
Right petrous bone | 19 | 100% | 100% | 440 (348; 402) | |
Left petrous bone | 2 | 100% | 100% | 426 (356) | |
Metacarpal | 12 | 0% | 83.3% | 6 (7; 5) | |
Molar tooth | 16 | 0% | 31.3% | 2 (3; 0) | |
Total | 107 | - | - | - | |
b | |||||
Skeletal Element | n | LOQ | >LOD | pg/µL | DI |
Right femur | 10 | 10.0% | 90.0% | 1 (1; 0) | 10.7 (n.a.) |
Left femur | 6 | 16.6% | 100% | 2 (2; 0) | 5.0 (n.a.) |
Left petrous bone | 17 | 100% | 100% | 362 (345; 329) | 28.6 (42; 11) |
Metacarpal | 7 | 57.1% | 100% | 7 (6; 4) | 3.9 (2; 3) |
Metatarsal | 32 | 81.3% | 100% | 37 (48; 14) | 5.0 (2; 4) |
Total | 72 | - | - | - | - |
Skeletal Element | n | Markers | ADO | ADI |
---|---|---|---|---|
femur | 19 | 18 | 17.7% | 8.1% |
petrous bone | 57 | 19 | 3.1% | 0.9% |
metacarpal | 13 | 18 | 10.9% | 0.9% |
metatarsal | 32 | 15 | 4.9% | 1.7% |
molar tooth | 1 | n.a. | n.a. | n.a. |
total | 122 | - | - | - |
Fam ID | PP STRs (LR) | PP MHs (LR) | PP STRs + MHs (LR) | LR Y-STRs Western European | Pedigree |
---|---|---|---|---|---|
Fam01 | 99.99% (1.23 × 105) | ||||
Fam02 | 2.52% (1.32) | 11.66% (2.79) | 14.94% (3.69) | 1.24 × 104 | |
Fam03 | 96.98% (2.50 × 102) | 99.99% (6.23 × 105) | >99.99% (1.56 × 108) | 2.20 × 101 | |
Fam04 | 32.33% (2.19 × 101) | 97.35% (7.73 × 102) | 99.88% (1.69 × 104) | 1.25 × 104 | |
Fam05 | 99.59% (9.71 × 102) | >99.99% (5.01 × 1021) | >99.99% (4.86 × 1024) | ||
Fam06 | >99.99% (2.00 × 107) | ||||
Fam07 | 99.93% (3.08 × 104) | ||||
Fam08 | 4.45% (1.11) | 6.37% (2.62) | 6.20% (2.23) | 1.07 × 104 | |
Fam09 | 1.73% (4.61 × 10−1) | 0.19% (4.26 × 10−2) | 0.09% (1.97 × 10−2) | 1.15 × 104 | |
Fam10 | >99.99% (9.31 × 107) | ||||
Fam11 | 9.76% (2.01) | ||||
Fam12 | 82.76% (6.00 × 101) | 0.003% (5.57 × 10−4) | 0.16% (3.34 × 10−2) | ||
Fam13 | 1.19% (5.20 × 10−2) | No match | |||
Fam14 | 8.71% (5.96 × 10−1) | No match |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, B.; Bertoglio, B.; Melchionda, F.; Concato, M.; Sorçaburu Ciglieri, S.; Bosetti, A.; Grignani, P.; Azzalini, E.; Addoum, Y.; Vetrini, R.; et al. Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero. Genes 2025, 16, 326. https://doi.org/10.3390/genes16030326
Di Stefano B, Bertoglio B, Melchionda F, Concato M, Sorçaburu Ciglieri S, Bosetti A, Grignani P, Azzalini E, Addoum Y, Vetrini R, et al. Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero. Genes. 2025; 16(3):326. https://doi.org/10.3390/genes16030326
Chicago/Turabian StyleDi Stefano, Barbara, Barbara Bertoglio, Filomena Melchionda, Monica Concato, Solange Sorçaburu Ciglieri, Alessandro Bosetti, Pierangela Grignani, Eros Azzalini, Yasmine Addoum, Raffaella Vetrini, and et al. 2025. "Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero" Genes 16, no. 3: 326. https://doi.org/10.3390/genes16030326
APA StyleDi Stefano, B., Bertoglio, B., Melchionda, F., Concato, M., Sorçaburu Ciglieri, S., Bosetti, A., Grignani, P., Azzalini, E., Addoum, Y., Vetrini, R., Gentile, F., Introna, F., Bonin, S., Turchi, C., Previderè, C., & Fattorini, P. (2025). Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero. Genes, 16(3), 326. https://doi.org/10.3390/genes16030326