Reproductive Choices in Haemoglobinopathies: The Role of Preimplantation Genetic Testing
Abstract
:1. Introduction
1.1. Understanding Haemoglobinopathies
1.2. Inheritance and Phenotypic Heterogeneity
1.3. Reproductive Choices
2. The Evolution of PGT in Addressing Haemoglobinopathies
A. Direct Analysis of Biopsied Cells | |||||
---|---|---|---|---|---|
Single Indication | |||||
Biopsy Stage | First Processing | Subsequent Procedures | References | ||
First Step | Follow-Up Experiments and Analyses | ||||
β-thalassemia/ sickle cell anemia | 1st and 2nd polar body | Freeze/heating protocol | Multiplex PCR | STRs (linked/non-linked), nested PCR, and restriction digestion | [70] |
Day 3 | Alkaline lysis (in some following freezing) | PCR | Nested PCR, restriction digestion, and reverse dot blot | [71] | |
Nested PCR, restriction digestion | [72] | ||||
Two-step ARMS-PCR | [73] | ||||
Real-time PCR with FRET probes | [74] | ||||
Multiplex PCR | Nested PCR, mini-sequencing | [75] | |||
Nested PCR, mini-sequencing, single STR analysis | [76] | ||||
Proteinase K | PCR | Nested PCR, DGGE | [77,78,79] | ||
STR analysis | [80] | ||||
Nested PCR, SSCP analysis | [81] | ||||
Multiplex PCR | Nested PCR, SSCP, STR analysis | [82] | |||
Multiplex PCR | Real-time PCR (analysis of all common b-globin genotypes) and STR analysis to monitor contamination | [83] | |||
Multiplex PCR | Mini-sequencing, STR analysis | [84] | |||
β-thalassemia/ HBE disease | Day 5 | Proteinase K | Multiplex (fluorescent) PCR (one STR) | Mini-sequencing | [85] |
α-thalassemia syndromes | Day 3 | Proteinase K | Multiplex (fluorescent) PCR | STR analysis (three STRs) | [86] |
GAP-PCR for -SEA detection, internal control fragments, and single STR analysis | [87] | ||||
Alkaline lysis | Multiplex (fluorescent) PCR | STR analysis (three STRs) | [88] | ||
STR analysis (nine STRs) | [89] | ||||
Day 5 (and day 3) | Proteinase K | PCR | Nested PCR, digital PCR | [90] | |
HLA-typing | Day 3 | Proteinase K | Multiplex PCR | STR analysis | [91] |
Multiple indications | |||||
β thalassemia/ HLA | Day 3 | Alkaline lysis | Multiplex PCR | Mini-sequencing HLA typing and variant analysis, STR haplotying | [92] |
Restriction enzyme digestion and STR HLA haplotyping | [93] | ||||
Multiplex (fluorescent) PCR | Real-time nested PCR, HRMA, STR analysis | [94] | |||
Proteinase K | Multiplex (fluorescent) PCR (two rounds) | STR analysis | [95] [96] | ||
Day 3 | Alkaline/PK | Multiplex PCR | SinglePlex PCR, mini-sequencing | [66,92] (rebiopsy day 5) | |
Restriction enzyme digestion, polyacrylamide gel electrophoresis, STR analysis | [97,98] | ||||
β/α-thalassemia/ HLA/aneuploidy | PB/Day 3 | Alkaline/PK | Multiplex PCR | Restriction enzyme digestion, polyacrylamide gel electrophoresis, STR analysis | [99,100] |
β thalassemia with HLA typing or aneuploidy screening or sex selection (or combination of two-three indications) | Day 3 | Proteinase K | Multiplex PCR | Nested PCR, Sanger sequencing, STR analysis | [101,102] |
-β-thalassemia, sideroblastic anemia, HLA typing | Day 3 biopsy | Alkaline lysis | Multiplex (fluorescent) PCR | Real-time nested PCR, HRMA, STR analysis | [103] |
B. Whole-genome amplification protocols | |||||
Single indication | |||||
β-thalassemia/ sickle cell anemia | Day 3 | MDA | Separate PCRs | Single-cell analysis of two codons of β-globin gene | [104] |
Day 3 and day 5 | Targeted re-amplification with multiplex PCR for entire HBB locus (coding region and splice junctions) and 17 SNPs | NGS | [46] (also directly on single cells) | ||
Day 5 | Multiplex PCR | STR haplotyping | [105] | ||
Single-plex PCR and long-segment PCR Or multiplex PCR | Reverse dot blot, SNP or STR analysis | [106] [107] | |||
a-thalassemia syndromes | Day 5 | MDA | PCR + NGS | GAP-PCR and SNP haplotyping | [108] |
Multiplex fluorescent PCR | Fragment analysis | [109] | |||
[110] | |||||
MALBAC and MDA | PCR | GAP-PCR, Sanger sequencing, SNP haplotyping | [111] | ||
Multiple indications | |||||
α&β-thalassemia | Day 3 | MDA | PCR | GAP-PCR, reverse dot blot and STR analysis | [112] |
β-thalassemia/ HLA | Day 3 | MDA | Multiplex PCR | STR analysis Sanger sequencing and sequence-specific primer technique for HLA typing | [113,114] |
β-thalassemia/ sickle cell anemia/ aneuploidy | Day 3 or day 5 | MDA | SNP array | Karyomapping | [43] |
Day 3 or day 5 | MALBAC and MDA | Low-coverage WGS and amplification of HBB variants and SNPs | NGS | [115] | |
Day 5 | DOPlify with target sequence enrichment | PCR for pathogenic variant and SNP markers. Target-enriched PCR pooled back into initial WGA product | NGS | [116] | |
MDA | Multiplex PCR for SNP enrichment and direct mutation detection | NGS-OneGene PGT | [44] | ||
MDA | low-pass whole-genome sequencing (WGS) for genomic imbalance and high-depth target enrichment sequencing for HBB variants and SNPs | WGS | [117] | ||
β-thalassemia/ HemoglobinE /aneuploidy | Day 5 | MDA | SNP array | Karyomapping | [118] |
PicoPlex or MDA | Multiplex PCR aCGH NGS | Mini-sequencing, STR analysis, chromosomal analysis | [65] | ||
β-thalassemia/ HLA/ Aneuploidy | Day 3/ day 5 | MDA | Multiplex PCR | Restriction enzyme digestion, polyacrylamide gel electrophoresis, STR analysis, aCGH | [119] |
Day 3 | MDA | All-in-one target region sequencing (WGS) | NGS | [120] (retrospective study) | |
Day 5–6 | MDA | SNP array | Karyomapping | [45] | |
Restriction-site-associated DNA sequencing | HaploPGT algorithm analysis | [47] | |||
HLA/aneuploidy | Day 5 | Not specified | aCGH, SNP array | Chromosomal analysis, karyomapping | [121] |
α- and/or β-thalassemia/aneuploidy | Day 5 or 6 | MDA | PCR for β,α thalassemia and SNP analysis | NGS | [122] |
GAP-PCR/SNP arrays | Detection of SEA-type α-thalassemia by PCR, haplotype analysis and aneuploid screening | [123] | |||
α- and β-thalassemia/HLA typing/aneuploidy | Day 5 | MDA | Targeted NGS for pathogenic variant detection (HBB, HBA1, HBA2) and SNP analysis | NGS | [124,125] |
3. Remaining Challenges in PGT for Haemoglobinopathies: Technical, Ethical, and Accessibility Barriers
3.1. Technological/Biological Limitations of PGT
3.2. Ethical Considerations in PGT for Haemoglobinopathies
3.3. Accessibility and Cost Barriers in PGT-M and Overall Cost-Effectiveness
4. Future Advances in Preimplantation Genetic Testing (PGT)
4.1. Whole-Genome Sequencing: Expanding the Horizons of PGT
4.2. Non-Invasive PGT: Reducing Risk and Improving Access
4.3. Gene Editing: A Revolutionary Alternative to PGT?
4.4. Advancements in Haemoglobinopathy Treatment: Impact on PGT
5. Conclusions: A Complex but Promising Future for PGT
Author Contributions
Funding
Conflicts of Interest
References
- Williams, T.N.; Weatherall, D.J. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb. Perspect. Med. 2012, 2, a011692. [Google Scholar] [CrossRef] [PubMed]
- Kotila, T.R. Thalassaemia is a tropical disease. Ann. Ib. Postgrad. Med. 2012, 10, 11–15. [Google Scholar] [PubMed]
- Weatherall, D.J.; Clegg, J.B. Inherited haemoglobin disorders: An increasing global health problem. Bull. World Health Organ. 2001, 79, 704–712. [Google Scholar]
- Piel, F.B. The Present and Future Global Burden of the Inherited Disorders of Hemoglobin. Hematol. Oncol. Clin. North Am. 2016, 30, 327–341. [Google Scholar] [CrossRef] [PubMed]
- ITHANET. IthaMaps—A Global Epidemiology Database of Hemoglobinopathies. Available online: https://www.ithanet.eu/db/ithamaps (accessed on 7 March 2025).
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, Function and Allostery. In Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins; Subcellular Biochemistry; Springer: Cham, Switzerland, 2020; Volume 94, pp. 345–382. [Google Scholar] [CrossRef]
- Diamantidis, M.D.; Ikonomou, G.; Argyrakouli, I.; Pantelidou, D.; Delicou, S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with β Thalassemia and Sickle Cell Disease. Int. J. Mol. Sci. 2024, 25, 11886. [Google Scholar]
- Musallam, K.M.; Cappellini, M.D.; Coates, T.D.; Kuo, K.H.; Al-Samkari, H.; Sheth, S.; Viprakasit, V.; Taher, A.T. Alpha-thalassemia: A practical overview. Blood Rev. 2024, 64, 101165. [Google Scholar]
- Tamary, H.; Dgany, O. α-thalassemia. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2005. [Google Scholar]
- Traeger-Synodinos, J.; Kanavakis, E.; Vrettou, C.; Maragoudaki, E.; Michael, T.; Metaxotou-Mavromati, A.; Kattamis, C. The triplicated α-globin gene locus in β-thalassaemia heterozygotes: Clinical, haematological, biosynthetic and molecular studies. Br. J. Haematol. 1996, 95, 467–471. [Google Scholar] [CrossRef]
- Higgs, D.R.; Engel, J.D.; Stamatoyannopoulos, G. Thalassaemia. Lancet 2012, 379, 373–383. [Google Scholar] [CrossRef]
- Thein, S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 2018, 70, 54–65. [Google Scholar] [CrossRef]
- Weatherall, D.J. Phenotype-genotype relationships in monogenic disease: Lessons from the thalassaemias. Nat. Rev. Genet. 2001, 2, 245–255. [Google Scholar] [CrossRef]
- TIF. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT), 5th ed.; Thalassaemia International Federation: Strovolos, Cyprus, 2025. [Google Scholar]
- Salvatici, M.; Caslini, C.; Alesci, S.; Arosio, G.; Meroni, G.; Ceriotti, F.; Ammirabile, M.; Drago, L. The Application of Clinical and Molecular Diagnostic Techniques to Identify a Rare Haemoglobin Variant. Int. J. Mol. Sci. 2024, 25, 6781. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Gui, C.; Wei, W.; Liu, J.; Gui, B. Third generation sequencing transforms the way of the screening and diagnosis of thalassemia: A mini-review. Front. Pediatr. 2023, 11, 1199609. [Google Scholar] [CrossRef]
- Traeger-Synodinos, J.; Harteveld, C.L.; Old, J.M.; Petrou, M.; Galanello, R.; Giordano, P.; Angastioniotis, M.; De la Salle, B.; Henderson, S.; May, A.; et al. EMQN Best Practice Guidelines for molecular and haematology methods for carrier identification and prenatal diagnosis of the haemoglobinopathies. Eur. J. Hum. Genet. 2015, 23, 426–437. [Google Scholar] [CrossRef]
- Harteveld, C.L.; Achour, A.; Arkesteijn, S.J.G.; Ter Huurne, J.; Verschuren, M.; Bhagwandien-Bisoen, S.; Schaap, R.; Vijfhuizen, L.; El Idrissi, H.; Koopmann, T.T. The hemoglobinopathies, molecular disease mechanisms and diagnostics. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 28–36. [Google Scholar] [CrossRef]
- Kanavakis, E.; Papassotiriou, I.; Karagiorga, M.; Vrettou, C.; Metaxotou-Mavrommati, A.; Stamoulakatou, A.; Kattamis, C.; Traeger-Synodinos, J. Phenotypic and molecular diversity of haemoglobin H disease: A Greek experience. Br. J. Haematol. 2000, 111, 915–923. [Google Scholar] [CrossRef]
- Traeger-Synodinos, J.; Vrettou, C.; Sofocleous, C.; Zurlo, M.; Finotti, A.; Gambari, R.; on behalf of the International Hemoglobinopathy Research Network (INHERENT). Impact of α-Globin Gene Expression and α-Globin Modifiers on the Phenotype of β-Thalassemia and Other Hemoglobinopathies: Implications for Patient Management. Int. J. Mol. Sci. 2024, 25, 3400. [Google Scholar] [CrossRef]
- Lee, W.S.; McColl, B.; Maksimovic, J.; Vadolas, J. Epigenetic interplay at the β-globin locus. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 393–404. [Google Scholar] [CrossRef]
- Zeinalian, M.; Nobari, R.F.; Moafi, A.; Salehi, M.; Hashemzadeh-Chaleshtori, M. Two decades of pre-marital screening for β-thalassemia in central Iran. J. Community Genet. 2013, 4, 517–522. [Google Scholar] [CrossRef]
- Theodoridou, S.; Prapas, N.; Balassopoulou, A.; Boutou, E.; Vyzantiadis, T.A.; Adamidou, D.; Delaki, E.E.; Yfanti, E.; Economou, M.; Teli, A.; et al. Efficacy of the National Thalassaemia and Sickle Cell Disease Prevention Programme in Northern Greece: 15-Year Experience, Practice and Policy Gaps for Natives and Migrants. Hemoglobin 2018, 42, 257–263. [Google Scholar] [CrossRef]
- Angastiniotis, M.; Kyriakidou, S.; Hadjiminas, M. The Cyprus Thalassemia Control Program. Birth Defects Orig. Artic. Ser. 1988, 23, 417–432. [Google Scholar]
- Angastiniotis, M.; Petrou, M.; Loukopoulos, D.; Modell, B.; Farmakis, D.; Englezos, P.; Eleftheriou, A. The Prevention of Thalassemia Revisited: A Historical and Ethical Perspective by the Thalassemia International Federation. Hemoglobin 2021, 45, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Angastiniotis, M.; Christou, S.; Kolnakou, A.; Pangalou, E.; Savvidou, I.; Farmakis, D.; Eleftheriou, A. The Outcomes of Patients with Haemoglobin Disorders in Cyprus: A Joined Report of the Thalassaemia International Federation and the Nicosia and Paphos Thalassaemia Centres (State Health Services Organisation). Thalass. Rep. 2022, 12, 143–156. [Google Scholar] [CrossRef]
- Cowan, R.S. Moving up the slippery slope: Mandated genetic screening on Cyprus. Am. J. Med. Genet. C Semin. Med. Genet. 2009, 151C, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, R.; Sun, J.; Zhu, Y.; Jiang, L.; Li, J.; Fu, F.; Wan, J.; Guo, F.; An, X.; et al. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome Med. 2021, 13, 18. [Google Scholar] [CrossRef]
- Liu, D.; Nong, C.; Lai, F.; Tang, Y.; Wang, T. Research Progress of Cell-Free Fetal DNA in Non-Invasive Prenatal Diagnosis of Thalassemia. Hemoglobin 2023, 47, 80–84. [Google Scholar] [CrossRef]
- Capalbo, A.; Fabiani, M.; Caroselli, S.; Poli, M.; Girardi, L.; Patassini, C.; Favero, F.; Cimadomo, D.; Vaiarelli, A.; Simon, C.; et al. Clinical validity and utility of preconception expanded carrier screening for the management of reproductive genetic risk in IVF and general population. Hum. Reprod. 2021, 36, 2050–2061. [Google Scholar] [CrossRef]
- Capalbo, A.; de Wert, G.; Mertes, H.; Klausner, L.; Coonen, E.; Spinella, F.; Van de Velde, H.; Viville, S.; Sermon, K.; Vermeulen, N.; et al. Screening embryos for polygenic disease risk: A review of epidemiological, clinical, and ethical considerations. Hum. Reprod. Update 2024, 30, 529–557. [Google Scholar] [CrossRef]
- ESHRE PGT Consortium Steering Committee; Carvalho, F.; Coonen, E.; Goossens, V.; Kokkali, G.; Rubio, C.; Meijer-Hoogeveen, M.; Moutou, C.; Vermeulen, N.; De Rycke, M. ESHRE PGT Consortium good practice recommendations for the organisation of PGT. Hum. Reprod. Open 2020, 2020, hoaa021. [Google Scholar] [CrossRef]
- De Rycke, M.; De Vos, A.; Belva, F.; Berckmoes, V.; Bonduelle, M.; Buysse, A.; Keymolen, K.; Liebaers, I.; Nekkebroeck, J.; Verdyck, P.; et al. Preimplantation genetic testing with HLA matching: From counseling to birth and beyond. J. Hum. Genet. 2020, 65, 445–454. [Google Scholar] [CrossRef]
- Kakourou, G.; Kahraman, S.; Ekmekci, G.C.; Tac, H.A.; Kourlaba, G.; Kourkouni, E.; Sanz, A.C.; Martin, J.; Malmgren, H.; Gimenez, C.; et al. The clinical utility of PGD with HLA matching: A collaborative multi-centre ESHRE study. Hum. Reprod. 2018, 33, 520–530. [Google Scholar] [CrossRef]
- Monk, M.; Holding, C. Amplification of a β-haemoglobin sequence in individual human oocytes and polar bodies. Lancet 1990, 335, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Mamas, T.; Kakourou, G.; Vrettou, C.; Traeger-Synodinos, J. Hemoglobinopathies and preimplantation diagnostics. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 21–27. [Google Scholar] [CrossRef] [PubMed]
- Gawad, C.; Koh, W.; Quake, S.R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 2016, 17, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Volozonoka, L.; Miskova, A.; Gailite, L. Whole Genome Amplification in Preimplantation Genetic Testing in the Era of Massively Parallel Sequencing. Int. J. Mol. Sci. 2022, 23, 4819. [Google Scholar] [CrossRef]
- Gonzalez-Pena, V.; Natarajan, S.; Xia, Y.; Klein, D.; Carter, R.; Pang, Y.; Shaner, B.; Annu, K.; Putnam, D.; Chen, W.; et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc. Natl. Acad. Sci. USA 2021, 118, e2024176118. [Google Scholar] [CrossRef]
- Weier, C.; Griffith, A.; McKissock, K.; Mahmood, S.; Gordon, T.; Blazek, J.; Brown, K. Direct mutation analysis for pgt-m utilizing a novel whole genome amplification technology: An alternative method for rapid, accurate, and reference-free results in difficult cases. Fertil. Steril. 2024, 122, e8–e9. [Google Scholar]
- Handyside, A.H.; Harton, G.L.; Mariani, B.; Thornhill, A.R.; Affara, N.; Shaw, M.A.; Griffin, D.K. Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med. Genet. 2010, 47, 651–658. [Google Scholar] [CrossRef]
- Masset, H.; Zamani Esteki, M.; Dimitriadou, E.; Dreesen, J.; Debrock, S.; Derhaag, J.; Derks, K.; Destouni, A.; Drüsedau, M.; Meekels, J. Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Hum. Reprod. 2019, 34, 1608–1619. [Google Scholar]
- Natesan, S.A.; Bladon, A.J.; Coskun, S.; Qubbaj, W.; Prates, R.; Munne, S.; Coonen, E.; Dreesen, J.C.; Stevens, S.J.; Paulussen, A.D.; et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet. Med. 2014, 16, 838–845. [Google Scholar] [CrossRef]
- Hornak, M.; Bezdekova, K.; Kubicek, D.; Navratil, R.; Hola, V.; Balcova, M.; Bohmova, M.; Weisova, K.; Vesela, K. OneGene PGT: Comprehensive preimplantation genetic testing method utilizing next-generation sequencing. J. Assist. Reprod. Genet. 2024, 41, 185–192. [Google Scholar] [CrossRef]
- Wang, J.; Lu, B.M.; Li, R.; Guo, J.; Xu, Y.; Pan, J.F.; Zeng, Y.H.; Zhou, C.Q.; Xu, Y.W. Karyomapping in preimplantation genetic testing for β-thalassemia combined with HLA matching: A systematic summary. J. Assist. Reprod. Genet. 2019, 36, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Kubikova, N.; Babariya, D.; Sarasa, J.; Spath, K.; Alfarawati, S.; Wells, D. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of β-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod. Biomed. Online 2018, 37, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Hu, X.; Kong, L.; Mao, Y.; Cheng, D.; Kang, K.; Dai, J.; Zhao, D.; Zhang, Y.; Lu, N.; et al. A novel multifunctional haplotyping-based preimplantation genetic testing for different genetic conditions. Hum. Reprod. 2022, 37, 2546–2559. [Google Scholar] [CrossRef]
- De Witte, L.; Raman, L.; Baetens, M.; De Koker, A.; Callewaert, N.; Symoens, S.; Tilleman, K.; Vanden Meerschaut, F.; Dheedene, A.; Menten, B. GENType: All-in-one preimplantation genetic testing by pedigree haplotyping and copy number profiling suitable for third-party reproduction. Hum. Reprod. 2022, 37, 1678–1691. [Google Scholar] [CrossRef]
- Zamani Esteki, M.; Dimitriadou, E.; Mateiu, L.; Melotte, C.; Van der Aa, N.; Kumar, P.; Das, R.; Theunis, K.; Cheng, J.; Legius, E.; et al. Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am. J. Hum. Genet. 2015, 96, 894–912. [Google Scholar] [CrossRef]
- Backenroth, D.; Altarescu, G.; Zahdeh, F.; Mann, T.; Murik, O.; Renbaum, P.; Segel, R.; Zeligson, S.; Hakam-Spector, E.; Carmi, S.; et al. SHaploseek is a sequencing-only, high-resolution method for comprehensive preimplantation genetic testing. Sci. Rep. 2023, 13, 18036. [Google Scholar] [CrossRef]
- Backenroth, D.; Zahdeh, F.; Kling, Y.; Peretz, A.; Rosen, T.; Kort, D.; Zeligson, S.; Dror, T.; Kirshberg, S.; Burak, E.; et al. Haploseek: A 24-hour all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet. Med. 2019, 21, 1390–1399. [Google Scholar] [CrossRef]
- Yan, L.; Huang, L.; Xu, L.; Huang, J.; Ma, F.; Zhu, X.; Tang, Y.; Liu, M.; Lian, Y.; Liu, P.; et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc. Natl. Acad. Sci. USA 2015, 112, 15964–15969. [Google Scholar] [CrossRef]
- Masset, H.; Ding, J.; Dimitriadou, E.; Debrock, S.; Tsuiko, O.; Smits, K.; Peeraer, K.; Voet, T.; Zamani Esteki, M.; Vermeesch, J.R. Single-cell genome-wide concurrent haplotyping and copy-number profiling through genotyping-by-sequencing. Nucleic Acids Res. 2022, 50, e63. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Yi, F.; Gao, X.; Song, W.; Zhao, H.; Lai, J. MP3RNA-seq: Massively parallel 3′ end RNA sequencing for high-throughput gene expression profiling and genotyping. J. Integr. Plant Biol. 2021, 63, 1227–1239. [Google Scholar] [CrossRef]
- Deans, Z.C.; Biricik, A.; De Rycke, M.; Harton, G.L.; Hornak, M.; Khawaja, F.; Moutou, C.; Traeger-Synodinos, J.; Renwick, P. Twelve years of assessing the quality of preimplantation genetic testing for monogenic disorders. Prenat. Diagn. 2023, 43, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Spinella, F.; Bronet, F.; Carvalho, F.; Coonen, E.; De Rycke, M.; Rubio, C.; Goossens, V.; Van Montfoort, A. ESHRE PGT Consortium data collection XXI: PGT analyses in 2018. Hum. Reprod. Open 2023, 2023, hoad010. [Google Scholar] [CrossRef] [PubMed]
- Rana, B.; Lambrese, K.; Mendola, R.; Xu, J.; Garrisi, J.; Miller, K.; Marin, D.; Treff, N.R. Identifying parental and cell-division origins of aneuploidy in the human blastocyst. Am. J. Hum. Genet. 2023, 110, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Destouni, A.; Dimitriadou, E.; Masset, H.; Debrock, S.; Melotte, C.; Van Den Bogaert, K.; Zamani Esteki, M.; Ding, J.; Voet, T.; Denayer, E.; et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum. Reprod. 2018, 33, 2302–2311. [Google Scholar] [CrossRef]
- Marin, D.; Zimmerman, R.; Tao, X.; Zhan, Y.; Scott, R.T., Jr.; Treff, N.R. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod. Biomed. Online 2018, 36, 388–395. [Google Scholar] [CrossRef]
- Janssen, A.E.J.; Koeck, R.M.; Essers, R.; Cao, P.; van Dijk, W.; Drusedau, M.; Meekels, J.; Yaldiz, B.; van de Vorst, M.; de Koning, B.; et al. Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing. Nat. Commun. 2024, 15, 7164. [Google Scholar] [CrossRef]
- Caroselli, S.; Figliuzzi, M.; Picchetta, L.; Cogo, F.; Zambon, P.; Pergher, I.; Girardi, L.; Patassini, C.; Poli, M.; Bakalova, D.; et al. Improved clinical utility of preimplantation genetic testing through the integration of ploidy and common pathogenic microdeletions analyses. Hum. Reprod. 2023, 38, 762–775. [Google Scholar] [CrossRef]
- De Rycke, M.; Berckmoes, V. Preimplantation Genetic Testing for Monogenic Disorders. Genes 2020, 11, 871. [Google Scholar] [CrossRef]
- Goldman, K.N.; Nazem, T.; Berkeley, A.; Palter, S.; Grifo, J.A. Preimplantation Genetic Diagnosis (PGD) for Monogenic Disorders: The Value of Concurrent Aneuploidy Screening. J. Genet. Couns. 2016, 25, 1327–1337. [Google Scholar] [CrossRef]
- Martel, R.A.; Lee, M.B.; Schadwell, A.; Siavoshi, M.; Kwan, L.; Miller, J.; Leonard, C.; Roman, R.A.; Armstrong, A.; Kroener, L. Aneuploidy rates and likelihood of obtaining a usable embryo for transfer among in vitro fertilization cycles using preimplantation genetic testing for monogenic disorders and aneuploidy compared with in vitro fertilization cycles using preimplantation genetic testing for aneuploidy alone. Fertil. Steril. 2024, 122, 993–1001. [Google Scholar] [CrossRef]
- Satirapod, C.; Sukprasert, M.; Panthan, B.; Charoenyingwattana, A.; Chitayanan, P.; Chantratita, W.; Choktanasiri, W.; Trachoo, O.; Hongeng, S. Clinical utility of combined preimplantation genetic testing methods in couples at risk of passing on β thalassemia/hemoglobin E disease: A retrospective review from a single center. PLoS ONE 2019, 14, e0225457. [Google Scholar] [CrossRef] [PubMed]
- Milachich, T.; Timeva, T.; Ekmekci, C.; Beyazyurek, C.; Tac, H.A.; Shterev, A.; Kahraman, S. Birth of a healthy infant after preimplantation genetic diagnosis by sequential blastomere and trophectoderm biopsy for β-thalassemia and HLA genotyping. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Van de Velde, H.; De Rycke, M.; De Man, C.; De Hauwere, K.; Fiorentino, F.; Kahraman, S.; Pennings, G.; Verpoest, W.; Devroey, P.; Liebaers, I. The experience of two European preimplantation genetic diagnosis centres on human leukocyte antigen typing. Hum. Reprod. 2009, 24, 732–740. [Google Scholar] [CrossRef] [PubMed]
- ESHRE PGT-M Working Group; Carvalho, F.; Moutou, C.; Dimitriadou, E.; Dreesen, J.; Gimenez, C.; Goossens, V.; Kakourou, G.; Vermeulen, N.; Zuccarello, D.; et al. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders. Hum. Reprod. Open 2020, 2020, hoaa018. [Google Scholar] [CrossRef]
- Huang, P.; Lan, Y.; Zhou, H.; Lin, L.; Shu, J.; Wang, C.; Zhao, X.; Liang, L.; He, S.; Mou, J.; et al. Comprehensive application of multiple molecular diagnostic techniques in pre-implantation genetic testing for monogenic. Mol. Genet. Genom. Med. 2024, 12, e2293. [Google Scholar] [CrossRef]
- Kuliev, A.; Rechitsky, S.; Verlinsky, O.; Ivakhnenko, V.; Evsikov, S.; Wolf, G.; Angastiniotis, M.; Georghiou, D.; Kukharenko, V.; Strom, C.; et al. Preimplantation diagnosis of thalassemias. J. Assist. Reprod. Genet. 1998, 15, 219–225. [Google Scholar] [CrossRef]
- Chamayou, S.; Alecci, C.; Ragolia, C.; Giambona, A.; Siciliano, S.; Maggio, A.; Fichera, M.; Guglielmino, A. Successful application of preimplantation genetic diagnosis for β-thalassaemia and sickle cell anaemia in Italy. Hum. Reprod. 2002, 17, 1158–1165. [Google Scholar] [CrossRef]
- Ray, P.F.; Kaeda, J.S.; Bingham, J.; Roberts, I.; Handyside, A.H. Preimplantation genetic diagnosis of β-thalassaemia major. Lancet 1996, 347, 1696. [Google Scholar] [CrossRef]
- Gada Saxena, S.; Saranath, D. Single-cell polymerase chain reaction-based pre-implantation genetic diagnosis using fragment analysis for β-thalassemia in an Indian couple with β-globin gene mutations. J. Hum. Reprod. Sci. 2012, 5, 289–292. [Google Scholar] [CrossRef]
- Hung, C.C.; Chen, S.U.; Lin, S.Y.; Fang, M.Y.; Chang, L.J.; Tsai, Y.Y.; Lin, L.T.; Yang, Y.S.; Lee, C.N.; Su, Y.N. Preimplantation genetic diagnosis of β-thalassemia using real-time polymerase chain reaction with fluorescence resonance energy transfer hybridization probes. Anal. Biochem. 2010, 400, 69–77. [Google Scholar] [CrossRef]
- Fiorentino, F.; Magli, M.C.; Podini, D.; Ferraretti, A.P.; Nuccitelli, A.; Vitale, N.; Baldi, M.; Gianaroli, L. The minisequencing method: An alternative strategy for preimplantation genetic diagnosis of single gene disorders. Mol. Hum. Reprod. 2003, 9, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Monni, G.; Cau, G.; Usai, V.; Perra, G.; Lai, R.; Ibba, G.; Faa, V.; Incani, F.; Rosatelli, M.C. Preimplantation genetic diagnosis for β-thalassaemia: The Sardinian experience. Prenat. Diagn. 2004, 24, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Kanavakis, E.; Vrettou, C.; Palmer, G.; Tzetis, M.; Mastrominas, M.; Traeger-Synodinos, J. Preimplantation genetic diagnosis in 10 couples at risk for transmitting β-thalassaemia major: Clinical experience including the initiation of six singleton pregnancies. Prenat. Diagn. 1999, 19, 1217–1222. [Google Scholar] [CrossRef]
- Palmer, G.A.; Traeger-Synodinos, J.; Davies, S.; Tzetis, M.; Vrettou, C.; Mastrominas, M.; Kanavakis, E. Pregnancies following blastocyst stage transfer in PGD cycles at risk for β-thalassaemic haemoglobinopathies. Hum. Reprod. 2002, 17, 25–31. [Google Scholar] [CrossRef]
- Vrettou, C.; Palmer, G.; Kanavakis, E.; Tzetis, M.; Antoniadi, T.; Mastrominas, M.; Traeger-Synodinos, J. A widely applicable strategy for single cell genotyping of β-thalassaemia mutations using DGGE analysis: Application to preimplantation genetic diagnosis. Prenat. Diagn. 1999, 19, 1209–1216. [Google Scholar] [CrossRef]
- Zachaki, S.; Vrettou, C.; Destouni, A.; Kokkali, G.; Traeger-Synodinos, J.; Kanavakis, E. Novel and known microsatellite markers within the β-globin cluster to support robust preimplantation genetic diagnosis of β-thalassemia and sickle cell syndromes. Hemoglobin 2011, 35, 56–66. [Google Scholar] [CrossRef]
- el-Hashemite, N.; Wells, D.; Delhanty, J.D. Single cell detection of β-thalassaemia mutations using silver stained SSCP analysis: An application for preimplantation diagnosis. Mol. Hum. Reprod. 1997, 3, 693–698. [Google Scholar] [CrossRef]
- Piyamongkol, W.; Harper, J.C.; Delhanty, J.D.; Wells, D. Preimplantation genetic diagnostic protocols for α- and β-thalassaemias using multiplex fluorescent PCR. Prenat. Diagn. 2001, 21, 753–759. [Google Scholar] [CrossRef]
- Vrettou, C.; Traeger-Synodinos, J.; Tzetis, M.; Palmer, G.; Sofocleous, C.; Kanavakis, E. Real-time PCR for single-cell genotyping in sickle cell and thalassemia syndromes as a rapid, accurate, reliable, and widely applicable protocol for preimplantation genetic diagnosis. Human. Mutat. 2004, 23, 513–521. [Google Scholar] [CrossRef]
- Gutierrez-Mateo, C.; Sanchez-Garcia, J.F.; Fischer, J.; Tormasi, S.; Cohen, J.; Munne, S.; Wells, D. Preimplantation genetic diagnosis of single-gene disorders: Experience with more than 200 cycles conducted by a reference laboratory in the United States. Fertil. Steril. 2009, 92, 1544–1556. [Google Scholar] [CrossRef]
- Lattiwongsakorn, W.; Jansaka, N.; Piyamongkol, S.; Pantasri, T.; Tongsong, T.; Suriya, W.; Piyamongkol, W. Successful Strategy of Pre-implantation Genetic Testing for β-Thalassemia (c. 17A> T Mutation)-Hb E Disease Using Multiplex Fluorescent PCR and Mini-Sequencing. Int. J. Women’s Health Reprod. Sci. 2023, 11, 1–7. [Google Scholar] [CrossRef]
- Destouni, A.; Christopoulos, G.; Vrettou, C.; Kakourou, G.; Kleanthous, M.; Traeger-Synodinos, J.; Kanavakis, E. Microsatellite markers within the α-globin gene cluster for robust preimplantation genetic diagnosis of severe α-thalassemia syndromes in Mediterranean populations. Hemoglobin 2012, 36, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Piyamongkol, W.; Vutyavanich, T.; Sanguansermsri, T. Preimplantation genetic diagnosis of α-thalassemia-SEA using novel multiplex fluorescent PCR. J. Assist. Reprod. Genet. 2012, 29, 95–102. [Google Scholar] [CrossRef]
- Wang, W.; Yap, C.H.; Loh, S.F.; Tan, A.S.; Lim, M.N.; Prasath, E.B.; Chan, M.L.; Tan, W.C.; Jiang, B.; Yeo, G.H.; et al. Simplified PGD of common determinants of haemoglobin Bart’s hydrops fetalis syndrome using multiplex-microsatellite PCR. Reprod. Biomed. Online 2010, 21, 642–648. [Google Scholar] [CrossRef]
- Chen, M.; Chan, J.K.; Nadarajah, S.; Tan, A.S.; Chan, M.L.; Mathew, J.; Saw, E.E.; Lim, C.; Wong, W.; Cheah, F.S.; et al. Single-tube nonaplex microsatellite PCR panel for preimplantation genetic diagnosis of Hb Bart’s hydrops fetalis syndrome. Prenat. Diagn. 2015, 35, 534–543. [Google Scholar] [CrossRef]
- Lee, T.H.; Hsu, Y.C.; Chang, C.L. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR. Taiwan. J. Obstet. Gynecol. 2017, 56, 487–494. [Google Scholar] [CrossRef]
- Bick, S.L.; Bick, D.P.; Wells, B.E.; Roesler, M.R.; Strawn, E.Y.; Lau, E.C. Preimplantation HLA haplotyping using tri-, tetra-, and pentanucleotide short tandem repeats for HLA matching. J. Assist. Reprod. Genet. 2008, 25, 323–331. [Google Scholar] [CrossRef]
- Fiorentino, F.; Biricik, A.; Karadayi, H.; Berkil, H.; Karlikaya, G.; Sertyel, S.; Podini, D.; Baldi, M.; Magli, M.C.; Gianaroli, L.; et al. Development and clinical application of a strategy for preimplantation genetic diagnosis of single gene disorders combined with HLA matching. Mol. Hum. Reprod. 2004, 10, 445–460. [Google Scholar] [CrossRef]
- Van de Velde, H.; Georgiou, I.; De Rycke, M.; Schots, R.; Sermon, K.; Lissens, W.; Devroey, P.; Van Steirteghem, A.; Liebaers, I. Novel universal approach for preimplantation genetic diagnosis of β-thalassaemia in combination with HLA matching of embryos. Hum. Reprod. 2004, 19, 700–708. [Google Scholar] [CrossRef]
- Kakourou, G.; Destouni, A.; Vrettou, C.; Traeger-Synodinos, J.; Kanavakis, E. A generic, flexible protocol for preimplantation human leukocyte antigen typing alone or in combination with a monogenic disease, for rapid case work-up and application. Hemoglobin 2014, 38, 49–55. [Google Scholar] [CrossRef]
- Khosravi, S.; Salehi, M.; Ramezanzadeh, M.; Mirzaei, H.; Salehi, R. Novel Multiplex Fluorescent PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of β-Thalassemia. Arch. Med. Res. 2016, 47, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Figueira, R.C.; Setti, A.S.; Cortezzi, S.S.; Martinhago, C.D.; Braga, D.P.; Iaconelli, A., Jr.; Borges, E., Jr. Preimplantation diagnosis for β-thalassemia combined with HLA matching: First “savior sibling” is born after embryo selection in Brazil. J. Assist. Reprod. Genet. 2012, 29, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, S.; Beyazyurek, C.; Ekmekci, C.G. Seven years of experience of preimplantation HLA typing: A clinical overview of 327 cycles. Reprod. Biomed. Online 2011, 23, 363–371. [Google Scholar] [CrossRef]
- Rechitsky, S.; Kuliev, A.; Tur-Kaspa, I.; Morris, R.; Verlinsky, Y. Preimplantation genetic diagnosis with HLA matching. Reprod. Biomed. Online 2004, 9, 210–221. [Google Scholar] [CrossRef]
- Kuliev, A.; Rechitsky, S.; Verlinsky, O.; Tur-Kaspa, I.; Kalakoutis, G.; Angastiniotis, M.; Verlinsky, Y. Preimplantation diagnosis and HLA typing for haemoglobin disorders. Reprod. Biomed. Online 2005, 11, 362–370. [Google Scholar] [CrossRef]
- Rechitsky, S.; Kuliev, A.; Sharapova, T.; Laziuk, K.; Ozen, S.; Barsky, I.; Verlinsky, O.; Tur-Kaspa, I.; Verlinsky, Y. Preimplantation HLA typing with aneuploidy testing. Reprod. Biomed. Online 2006, 12, 89–100. [Google Scholar] [CrossRef]
- Sharifi, Z.; Rahiminejad, F.; Joudaki, A.; Bandehi, A.S.; Farahzadi, H.; Keshvar, Y.; Golnabi, F.; Naderi, S.; Yazdani, R.; Shafaat, M.; et al. Development and validation of a novel panel of 16 STR markers for simultaneous diagnosis of β-thalassemia, aneuploidy screening, maternal cell contamination detection and fetal sample authenticity in PND and PGD/PGS cases. Sci. Rep. 2019, 9, 7452. [Google Scholar] [CrossRef]
- Keshvar, Y.; Sabeghi, S.; Sharifi, Z.; Fatemi, K.S.; Fouladi, P.; Younesi Khah, S.; Rahiminejad, F.; Joudaki, A.; Amini, M.; Bagherian, H.; et al. A decade of molecular preimplantation genetic diagnosis of 350 blastomeres for β-thalassemia combined with HLA typing, aneuploidy screening and sex selection in Iran. BMC Pregnancy Childbirth 2022, 22, 330. [Google Scholar] [CrossRef]
- Kakourou, G.; Vrettou, C.; Kattamis, A.; Destouni, A.; Poulou, M.; Moutafi, M.; Kokkali, G.; Pantos, K.; Davies, S.; Kitsiou-Tzeli, S.; et al. Complex preimplantation genetic diagnosis for β-thalassaemia, sideroblastic anaemia, and human leukocyte antigen (HLA)-typing. Syst. Biol. Reprod. Med. 2016, 62, 69–76. [Google Scholar] [CrossRef]
- Nasri, N.W.M.; Jamal, A.R.A.; Abdullah, N.C.; Razi, Z.R.M.; Mokhtar, N.M. Preimplantation Genetic Diagnosis for β-Thalassemia Using Single-cell DNA Analysis for Codons 17 and 26 of β-globin Gene. Arch. Med. Res. 2009, 40, 1–9. [Google Scholar] [CrossRef]
- Vuong, V.V.H.; Tran, T.H.; Nguyen, P.D.; Thi, N.N.; Le Thi, P.; Minh Nguyet, D.T.; Nguyen, M.H.; Bui, T.H.; Ta, T.V.; Tran, V.K. Feasibility of combining short tandem repeats (STRs) haplotyping with preimplantation genetic diagnosis (PGD) in screening for β thalassemia. PLoS ONE 2022, 17, e0278539. [Google Scholar] [CrossRef]
- Wu, H.; Chen, D.; Zhao, Q.; Shen, X.; Liao, Y.; Li, P.; Chiu, P.C.N.; Zhou, C. Long-read sequencing on the SMRT platform enables efficient haplotype linkage analysis in preimplantation genetic testing for β-thalassemia. J. Assist. Reprod. Genet. 2022, 39, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Qin, A.; Li, W.; Li, X.; Wei, L.; Cai, R.; Jin, Y. Genetic diagnosis of β-thalassemia preimplantation using short tandem repeats in human cryopreserved blastocysts. Int. J. Clin. Exp. Pathol. 2017, 10, 7586–7595. [Google Scholar]
- Chen, L.; Diao, Z.; Xu, Z.; Zhou, J.; Yan, G.; Sun, H. The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst. Biol. Reprod. Med. 2017, 63, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Somboonchai, P.; Charoenkwan, P.; Piyamongkol, S.; Lattiwongsakorn, W.; Pantasri, T.; Piyamongkol, W. Development of pre-implantation genetic testing protocol for monogenic disorders (PGT-M) of Hb H disease. BMC Genom. 2024, 25, 668. [Google Scholar] [CrossRef]
- Vuong, V.V.H.; Nguyen, P.-D.; Thi, N.N.; Le Thi, P.; Nguyet, D.T.M.; Nguyen, M.H.; Tran, H.A.; Dang-Tran, N.-M.; Bui, T.-H.; Tran, T.H. Application of short tandem repeats (STRs) in the preimplantation genetic diagnosis (PGD) of α-thalassemia. Taiwan. J. Obstet. Gynecol. 2024, 63, 375–380. [Google Scholar]
- Lan, Y.; Zhou, H.; He, S.; Shu, J.; Liang, L.; Wei, H.; Luo, J.; Wang, C.; Zhao, X.; Qiu, Q.; et al. Appropriate whole genome amplification and pathogenic loci detection can improve the accuracy of preimplantation genetic diagnosis for deletional α-thalassemia. Front. Endocrinol. 2023, 14, 1176063. [Google Scholar] [CrossRef]
- Shen, X.; Xu, Y.; Zhong, Y.; Zhou, C.; Zeng, Y.; Zhuang, G.; Ding, C.; Li, T. Preimplantation genetic diagnosis for α-and β-double thalassemia. J. Assist. Reprod. Genet. 2011, 28, 957–964. [Google Scholar] [CrossRef]
- Fernandez, R.M.; Pecina, A.; Lozano-Arana, M.D.; Garcia-Lozano, J.C.; Borrego, S.; Antinolo, G. Novel one-step multiplex PCR-based method for HLA typing and preimplantational genetic diagnosis of β-Thalassemia. Biomed. Res. Int. 2013, 2013, 585106. [Google Scholar] [CrossRef]
- Hellani, A.M.; Akoum, S.M.; Fadel, E.S.; Yousef, H.M.; Abu-Amero, K.K. Successful pregnancies after combined human leukocyte antigen direct genotyping and preimplantation genetic diagnosis utilizing multiple displacement amplification. Saudi Med. J. 2012, 33, 1059–1064. [Google Scholar]
- Liu, W.; Zhang, H.; Hu, D.; Lu, S.; Sun, X. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose β-thalassaemia disorders at the single- and multiple-cell levels. J. Clin. Lab. Anal. 2018, 32, e22267. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.D.; Harton, G.L.; Quang, V.N.; Van, H.N.; Thi, N.H.; Thuy, N.P.; Le Thi, T.H.; Minh, D.N.; Quoc, Q.T. Development and clinical application of a preimplantation genetic testing for monogenic disease (PGT-M) for β thalassemia in Vietnam. J. Assist. Reprod. Genet. 2021, 38, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, Y.; Xia, J.; Yan, H.; Ding, C.; Shi, Q.; Wu, Y.; Liu, P.; Pan, J.; Zeng, Y.; et al. Simultaneous detection of genomic imbalance in patients receiving preimplantation genetic testing for monogenic diseases (PGT-M). Front. Genet. 2022, 13, 976131. [Google Scholar] [CrossRef] [PubMed]
- Piyamongkol, S.; Mongkolchaipak, S.; Charoenkwan, P.; Sirapat, R.; Suriya, W.; Pantasri, T.; Tongsong, T.; Piyamongkol, W. The successful strategy of comprehensive pre-implantation genetic testing for β-thalassaemia-haemoglobin E disease and chromosome balance using karyomapping. J. Obstet. Gynaecol. 2022, 42, 2433–2441. [Google Scholar] [CrossRef]
- Rechitsky, S.; Pakhalchuk, T.; San Ramos, G.; Goodman, A.; Zlatopolsky, Z.; Kuliev, A. First systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testing. Fertil. Steril. 2015, 103, 503–512. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, S.; Yin, X.; Shen, X.; Pan, X.; Chen, F.; Jiang, H.; Liang, Y.; Wang, W.; Xu, X.; et al. Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a β-thalassemia family. Clin. Chem. 2015, 61, 617–626. [Google Scholar] [CrossRef]
- Delgado, A.; Llerena, G.; Lopez, R.; Portella, J.; Inoue, N.; Noriega-Hoces, L.; Guzman, L. A healthy HLA-matched baby born by using a combination of aCGH and Karyomapping: The first latin american case. JBRA Assist. Reprod. 2017, 21, 370–375. [Google Scholar] [CrossRef]
- Ou, Z.; Deng, Y.; Liang, Y.; Chen, Z.; Sun, L. Using affected embryos to establish linkage phase in preimplantation genetic testing for thalassemia. Reprod. Biol. Endocrinol. 2022, 20, 75. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Guo, J.; Li, R.; Zhou, C.; Xu, Y. A comprehensive preimplantation genetic testing approach for SEA-type α-thalassemia by fluorescent gap-polymerase chain reaction combined with haplotype analysis. Front. Genet. 2023, 14, 1248358. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Wu, C.; Xu, Y.; Ding, C.; Zhang, G.; Xu, Y.; Zhou, C. Eleven healthy live births: A result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening. J. Assist. Reprod. Genet. 2020, 37, 549–557. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Xu, Y.; Ding, C.; Ye, Q.; Zhong, Y.; Xu, Y.; Zhou, C. Successful four-factor preimplantation genetic testing: α- and β-thalassemia, human leukocyte antigen typing, and aneuploidy screening. Syst. Biol. Reprod. Med. 2021, 67, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mosaicism, E.W.G.o.C.; De Rycke, M.; Capalbo, A.; Coonen, E.; Coticchio, G.; Fiorentino, F.; Goossens, V.; McHeik, S.; Rubio, C.; Sermon, K.; et al. ESHRE survey results and good practice recommendations on managing chromosomal mosaicism. Hum. Reprod. Open 2022, 2022, hoac044. [Google Scholar] [CrossRef]
- Practice Committees of the American Society for Reproductive Medicine and the Genetic Counseling Professional Group. Clinical management of mosaic results from preimplantation genetic testing for aneuploidy of blastocysts: A committee opinion. Fertil. Steril. 2023, 120, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Huang, P.; Wang, Y.; Yao, Y.; Ren, J.; Xu, L.; Shu, J.; Zhou, L.; Zhao, D.; Li, X.; et al. Technically feasible solutions to challenges in preimplantation genetic testing for thalassemia: Experiences of multiple centers between 2019 and 2022. J. Assist. Reprod. Genet. 2024, 41, 3225–3235. [Google Scholar] [CrossRef]
- Tsuiko, O.; El Ayeb, Y.; Jatsenko, T.; Allemeersch, J.; Melotte, C.; Ding, J.; Debrock, S.; Peeraer, K.; Vanhie, A.; De Leener, A.; et al. Preclinical workup using long-read amplicon sequencing provides families with de novo pathogenic variants access to universal preimplantation genetic testing. Hum. Reprod. 2023, 38, 511–519. [Google Scholar] [CrossRef]
- Watson, C.M.; Holliday, D.L.; Crinnion, L.A.; Bonthron, D.T. Long-read nanopore DNA sequencing can resolve complex intragenic duplication/deletion variants, providing information to enable preimplantation genetic diagnosis. Prenat. Diagn. 2022, 42, 226–232. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, X.; Li, Q.; Xu, Y.; Cheng, Z.; Yang, L.; Wang, H.; Tao, Y.; Huang, G.; Wu, R.; et al. Proband-independent haplotyping based on NGS-based long-read sequencing for detecting pathogenic variant carrier status in preimplantation genetic testing for monogenic diseases. Front. Mol. Biosci. 2024, 11, 1329580. [Google Scholar] [CrossRef]
- Al-Jubouri, A.M.; Eliwa, A.; Haithm, Y.; Al-Qahtani, N.; Jolo, L.; Yassin, M. Relationship between hemoglobinopathies and male infertility: A scoping review. Int. J. Hematol. 2024, 120, 566–574. [Google Scholar] [CrossRef]
- Haering, C.; Coyne, K.; Daunov, K.; Anim, S.; Christianson, M.S.; Flyckt, R. Ovarian Tissue Cryopreservation for Fertility Preservation in Patients with Hemoglobin Disorders: A Comprehensive Review. J. Clin. Med. 2024, 13, 3631. [Google Scholar] [CrossRef]
- Schultz, C.L.; Tchume-Johnson, T.; Jackson, T.; Enninful-Eghan, H.; Schapira, M.M.; Smith-Whitley, K. Reproductive intentions in mothers of young children with sickle cell disease. Pediatr. Blood Cancer 2020, 67, e28227. [Google Scholar] [CrossRef]
- Carzis, B.; Wainstein, T.; Gobetz, L.; Krause, A. Review of 10 years of preimplantation genetic diagnosis in South Africa: Implications for a low-to-middle-income country. J. Assist. Reprod. Genet. 2019, 36, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Bayefsky, M.J. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism. Reprod. Biomed. Soc. Online 2016, 3, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Hreinsson, J.; Lundin, K.; Iwarsson, E.; Hausken, J.; Einarsson, S.; Grondahl, M.L.; Hyden-Granskog, C.; Ingerslev, H.J. Preimplantation genetic testing legislation and accessibility in the Nordic countries. Acta Obstet. Gynecol. Scand. 2020, 99, 716–721. [Google Scholar] [CrossRef]
- Pastore, L.M.; Cordeiro Mitchell, C.N.; Rubin, L.R.; Nicoloro-SantaBarbara, J.; Genoff Garzon, M.C.; Lobel, M. Patients’ preimplantation genetic testing decision-making experience: An opinion on related psychological frameworks. Hum. Reprod. Open 2019, 2019, hoz019. [Google Scholar] [CrossRef] [PubMed]
- Combs, J.C.; Dougherty, M.; Yamasaki, M.U.; DeCherney, A.H.; Devine, K.M.; Hill, M.J.; Rothwell, E.; O’Brien, J.E.; Nelson, R.E. Preimplantation genetic testing for sickle cell disease: A cost-effectiveness analysis. FS Rep. 2023, 4, 300–307. [Google Scholar]
- Mitchell, C.C.; Pradhan, A.; Singh, B.; Naik, R.; Baker, V.; Lanzkron, S. Primary prevention of sickle cell disease using preimplantation genetic testing and in vitro fertilization is cost-effective. Am. J. Hematol. 2020, 98, 1819. [Google Scholar]
- Nadgauda, A.; Ganti, T.; Walter, J.R. Cost-effectiveness analyses of preimplantation genetic testing. Fertil. Steril. 2024, 121, 693–702. [Google Scholar]
- Caligara, C.; Santamaria-Lopez, E.; Hernaez, M.J.; Ortiz-Vallecillo, A.; Ruiz, M.; Prados, N.; Gonzalez-Ravina, C.; Fernandez-Sanchez, M. PGT-HLA programmes for the cure of a sick sibling: Clinical strategies for this challenging search. Reprod. Biomed. Online 2023, 47, 103400. [Google Scholar] [CrossRef]
- Alharbi, W.S.; Rashid, M. A review of deep learning applications in human genomics using next-generation sequencing data. Hum. Genom. 2022, 16, 26. [Google Scholar] [CrossRef]
- Xia, Y.; Katz, M.; Chandramohan, D.; Bechor, E.; Podgursky, B.; Hoxie, M.; Zhang, Q.; Chertman, W.; Kang, J.; Blue, E.; et al. The first clinical validation of whole-genome screening on standard trophectoderm biopsies of preimplantation embryos. FS Rep. 2024, 5, 63–71. [Google Scholar] [CrossRef]
- Scott, R.T., Jr.; Upham, K.M.; Forman, E.J.; Zhao, T.; Treff, N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: A randomized and paired clinical trial. Fertil. Steril. 2013, 100, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Neal, S.A.; Franasiak, J.M.; Forman, E.J.; Werner, M.D.; Morin, S.J.; Tao, X.; Treff, N.R.; Scott, R.T., Jr. High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil. Steril. 2017, 107, 731–736.e731. [Google Scholar] [CrossRef] [PubMed]
- Levin, I.; Almog, B.; Shwartz, T.; Gold, V.; Ben-Yosef, D.; Shaubi, M.; Amit, A.; Malcov, M. Effects of laser polar-body biopsy on embryo quality. Fertil. Steril. 2012, 97, 1085–1088. [Google Scholar] [CrossRef]
- Guzman, L.; Nunez, D.; Lopez, R.; Inoue, N.; Portella, J.; Vizcarra, F.; Noriega-Portella, L.; Noriega-Hoces, L.; Munne, S. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J. Assist. Reprod. Genet. 2019, 36, 145–151. [Google Scholar] [CrossRef]
- Mao, D.; Xu, J.; Sun, L. Impact of trophectoderm biopsy for preimplantation genetic testing on obstetric and neonatal outcomes: A meta-analysis. Am. J. Obstet. Gynecol. 2024, 230, 199–212.e5. [Google Scholar] [CrossRef]
- Capalbo, A.; Ubaldi, F.M.; Cimadomo, D.; Maggiulli, R.; Patassini, C.; Dusi, L.; Sanges, F.; Buffo, L.; Venturella, R.; Rienzi, L. Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: A multicentre study involving 2586 embryo biopsies. Hum Reprod 2016, 31, 199–208. [Google Scholar] [CrossRef]
- Stigliani, S.; Anserini, P.; Venturini, P.L.; Scaruffi, P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum. Reprod. 2013, 28, 2652–2660. [Google Scholar] [CrossRef]
- Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online 2013, 26, 603–610. [Google Scholar] [CrossRef]
- Wu, H.; Ding, C.; Shen, X.; Wang, J.; Li, R.; Cai, B.; Xu, Y.; Zhong, Y.; Zhou, C. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA. Medicine 2015, 94, e669. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Du, H.; Ling, J.; Sun, X.; Chen, D. Non-invasive pre-implantation aneuploidy screening and diagnosis of β thalassemia IVSII654 mutation using spent embryo culture medium. Ann. Med. 2017, 49, 319–328. [Google Scholar] [CrossRef]
- Ou, Z.; Deng, Y.; Liang, Y.; Chen, Z.; Sun, L. Improved Non-Invasive Preimplantation Genetic Testing for β-Thalassemia Using Spent Embryo Culture Medium Containing Blastocoelic Fluid. Front. Endocrinol. 2022, 12, 793821. [Google Scholar] [CrossRef]
- Wiley, L.; Cheek, M.; LaFar, E.; Ma, X.; Sekowski, J.; Tanguturi, N.; Iltis, A. The Ethics of Human Embryo Editing via CRISPR-Cas9 Technology: A Systematic Review of Ethical Arguments, Reasons, and Concerns. HEC Forum 2024. [Google Scholar] [CrossRef]
- TIF. Guidelines for the Management of α-Thalassaemia; Thalassemia International Federation: Strovolos, Cyprus, 2023; Chapter 13; pp. 143–145. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakourou, G.; Vrettou, C.; Mamas, T.; Traeger-Synodinos, J. Reproductive Choices in Haemoglobinopathies: The Role of Preimplantation Genetic Testing. Genes 2025, 16, 360. https://doi.org/10.3390/genes16040360
Kakourou G, Vrettou C, Mamas T, Traeger-Synodinos J. Reproductive Choices in Haemoglobinopathies: The Role of Preimplantation Genetic Testing. Genes. 2025; 16(4):360. https://doi.org/10.3390/genes16040360
Chicago/Turabian StyleKakourou, Georgia, Christina Vrettou, Thalia Mamas, and Joanne Traeger-Synodinos. 2025. "Reproductive Choices in Haemoglobinopathies: The Role of Preimplantation Genetic Testing" Genes 16, no. 4: 360. https://doi.org/10.3390/genes16040360
APA StyleKakourou, G., Vrettou, C., Mamas, T., & Traeger-Synodinos, J. (2025). Reproductive Choices in Haemoglobinopathies: The Role of Preimplantation Genetic Testing. Genes, 16(4), 360. https://doi.org/10.3390/genes16040360