Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohorts
2.2. SNP Data
2.3. WGS Data
2.4. ROH and FROH
2.5. ROH Class Lengths and LD Decay
2.6. SNP FST
2.7. SNP ROH Overlapping Windows
2.8. WGS Variant Impact
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LD | Linkage Disequilibrium |
ROH | Runs of Homozygosity |
SD | Standard Deviation |
SNP | Single Nucleotide Polymorphism |
WGS | Whole Genome Sequencing |
References
- Hedhammar, Å.A.; Malm, S.; Bonnett, B. International and collaborative strategies to enhance genetic health in purebred dogs. Vet. J. 2011, 189, 189–196. [Google Scholar] [PubMed]
- Velie, B.D.; Wilson, B.J.; Arnott, E.R.; Early, J.B.; McGreevy, P.D.; Wade, C.M. Inbreeding levels in an open-registry pedigreed dog breed: The Australian working kelpie. Vet. J. 2021, 269, 105609. [Google Scholar] [PubMed]
- Farrell, L.L.; Schoenebeck, J.J.; Wiener, P.; Clements, D.N.; Summers, K.M. The challenges of pedigree dog health: Approaches to combating inherited disease. Canine Genet. Epidemiol. 2015, 2, 3. [Google Scholar]
- Proschowsky, H.F.; Arendt, M.L.; Bonnett, B.N.; Bruun, C.S.; Czycholl, I.; Fredholm, M.; O’Neill, D.; Serpell, J.A.; Sandøe, P. A New Future for Dog Breeding. Anim. Welf. 2025, 34, e1. [Google Scholar] [PubMed]
- Ku, C.S.; Naidoo, N.; Teo, S.M.; Pawitan, Y. Regions of homozygosity and their impact on complex diseases and traits. Hum. Genet. 2011, 129, 1–15. [Google Scholar]
- Mandigers, P.J.; Ubbink, G.J.; Vanden Broek, J.; Bouw, J. Relationship between litter size and other reproductive traits in the Dutch Kooiker dog. Vet. Q. 1994, 16, 229–232. [Google Scholar]
- Ubbink, G.J.; van de Broek, J.; Hazewinkel, H.A.; Rothuizen, J. Cluster analysis of the genetic heterogeneity and disease distributions in purebred dog populations. Vet. Rec. 1998, 142, 209–213. [Google Scholar]
- Ubbink, G.J.; Knol, B.W.; Bouw, J. The relationship between homozygosity and the occurrence of specific diseases in Bouvier Belge des Flandres dogs in the Netherlands: Inbreeding and disease in the bouvier dog. Vet. Q. 1992, 14, 137–140. [Google Scholar]
- Yordy, J.; Kraus, C.; Hayward, J.J.; White, M.E.; Shannon, L.M.; Creevy, K.E.; Promislow, D.E.L.; Boyko, A.R. Body Size, Inbreeding, and Lifespan in Domestic Dogs. Conserv. Genet. 2020, 21, 137–148. [Google Scholar]
- Cecchi, F.; Vezzosi, T.; Branchi, G.; Barsotti, G.; Macchioni, F. Inbreeding and health problems prevalence in a colony of guide dogs: A cohort of 40 Labrador Retrievers. Acta Agric. Scand. Sect. A—Anim. Sci. 2020, 69, 183–188. [Google Scholar]
- Jansson, M.; Laikre, L. Recent breeding history of dog breeds in S weden: Modest rates of inbreeding, extensive loss of genetic diversity and lack of correlation between inbreeding and health. J. Anim. Breed. Genet. 2014, 131, 153–162. [Google Scholar]
- Mäki, K.; Groen, A.F.; Liinamo, A.-E.; Ojala, M. Population structure, inbreeding trend and their association with hip and elbow dysplasia in dogs. Anim. Sci. 2001, 73, 217–228. [Google Scholar]
- Mooney, J.A.; Yohannes, A.; Lohmueller, K.E. The impact of identity by descent on fitness and disease in dogs. Proc. Natl. Acad. Sci. USA 2021, 118, e2019116118. [Google Scholar] [PubMed]
- Wellmann, R.; Pfeiffer, I. Pedigree analysis for conservation of genetic diversity and purging. Genet. Res. 2009, 91, 209–219. [Google Scholar]
- Chu, E.T.; Simpson, M.J.; Diehl, K.; Page, R.L.; Sams, A.J.; Boyko, A.R. Inbreeding depression causes reduced fecundity in Golden Retrievers. Mamm. Genome 2019, 30, 166–172. [Google Scholar]
- Leroy, G.; Phocas, F.; Hedan, B.; Verrier, E.; Rognon, X. Inbreeding impact on litter size and survival in selected canine breeds. Vet. J. 2015, 203, 74–78. [Google Scholar]
- Halvoník, A.; Moravčíková, N.; Vostrý, L.; Vostra-Vydrova, H.; Mészáros, G.; Demir, E.; Chalupková, M.; Kasarda, R. Heterozygosity-Rich Regions in Canine Genome: Can They Serve as Indicators of Balancing Selection? Animals 2025, 15, 612. [Google Scholar] [CrossRef]
- Ács, V.; Kövér, G.; Farkas, J.; Bokor, Á.; Nagy, I. Effects of Long-Term Selection in the Border Collie Dog Breed: Inbreeding Purge of Canine Hip and Elbow Dysplasia. Animals 2020, 10, 1743. [Google Scholar] [CrossRef]
- Wellmann, R. Selection index theory for populations under directional and stabilizing selection. Genet. Sel. Evol. 2023, 55, 10. [Google Scholar]
- Syvänen, A.-C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2001, 2, 930–942. [Google Scholar]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar]
- Karjalainen, L.; Ojala, M. Generation intervals and inbreeding coefficients in the Finnish Hound and the Finnish Spitz. J. Anim. Breed. Genet. 1997, 114, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G. Genetic diversity, inbreeding and breeding practices in dogs: Results from pedigree analyses. Vet. J. 2011, 189, 177–182. [Google Scholar] [CrossRef]
- Brouillette, J.A.; Andrew, J.R.; Venta, P.J. Estimate of nucleotide diversity in dogs with a pool-and-sequence method. Mamm. Genome 2000, 11, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Wade, C.M. Inbreeding and genetic diversity in dogs: Results from DNA analysis. Vet. J. 2011, 189, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Rincon, G.; Tengvall, K.; Belanger, J.M.; Lagoutte, L.; Medrano, J.F.; André, C.; Thomas, A.; Lawley, C.T.; Hansen, M.S.; Lindblad-Toh, K.; et al. Comparison of Buccal and Blood-Derived Canine DNA, Either Native or Whole Genome Amplified, for Array-Based Genome-Wide Association Studies. BMC Res. Notes 2011, 4, 226. [Google Scholar] [CrossRef]
- Gershony, L.C.; Belanger, J.M.; Hytönen, M.K.; Lohi, H.; Oberbauer, A.M. Novel Locus Associated with Symmetrical Lupoid Onychodystrophy in the Bearded Collie. Genes 2019, 10, 635. [Google Scholar] [CrossRef]
- Dryad Digital Repository. Available online: https://datadryad.org/ (accessed on 31 May 2022).
- Baker, P.R.; Baschal, E.E.; Fain, P.R.; Triolo, T.M.; Nanduri, P.; Siebert, J.C.; Armstrong, T.K.; Babu, S.R.; Rewers, M.J.; Gottlieb, P.A.; et al. Haplotype Analysis Discriminates Genetic Risk for DR3-Associated Endocrine Autoimmunity and Helps Define Extreme Risk for Addison’s Disease. J. Clin. Endocrinol. Metab. 2010, 95, E263–E270. [Google Scholar] [CrossRef]
- Dahlgren, S.; Ziener, M.L.; Lingaas, F. A genome-wide association study identifies a region strongly associated with symmetrical onychomadesis on chromosome 12 in dogs. Anim. Genet. 2016, 47, 708–716. [Google Scholar] [CrossRef]
- Forsberg, S.K.G.; Kierczak, M.; Ljungvall, I.; Merveille, A.-C.; Gouni, V.; Wiberg, M.; Lundgren Willesen, J.; Hanås, S.; Lequarré, A.-S.; Mejer Sørensen, L.; et al. The Shepherds’ Tale: A Genome-Wide Study across 9 Dog Breeds Implicates Two Loci in the Regulation of Fructosamine Serum Concentration in Belgian Shepherds. PLoS ONE 2015, 10, e0123173. [Google Scholar] [CrossRef]
- Kawakami, T.; Raghavan, V.; Ruhe, A.L.; Jensen, M.K.; Milano, A.; Nelson, T.C.; Boyko, A.R. Early Onset Adult Deafness in the Rhodesian Ridgeback Dog Is Associated with an In-Frame Deletion in the EPS8L2 Gene. PLoS ONE 2022, 17, e0264365. [Google Scholar] [CrossRef]
- Olsson, M.; Tengvall, K.; Frankowiack, M.; Kierczak, M.; Bergvall, K.; Axelsson, E.; Tintle, L.; Marti, E.; Roosje, P.; Leeb, T.; et al. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency. PLoS ONE 2015, 10, e0133844. [Google Scholar]
- Pilot, M.; Malewski, T.; Moura, A.E.; Grzybowski, T.; Oleński, K.; Ruść, A.; Kamiński, S.; Ruiz Fadel, F.; Mills, D.S.; Alagaili, A.N.; et al. On the Origin of Mongrels: Evolutionary History of Free-Breeding Dogs in Eurasia. Proc. R. Soc. B 2015, 282, 20152189. [Google Scholar] [PubMed]
- Slavney, A.J.; Kawakami, T.; Jensen, M.K.; Nelson, T.C.; Sams, A.J.; Boyko, A.R. Five genetic variants explain over 70% of hair coat pheomelanin intensity variation in purebred and mixed breed domestic dogs. PLoS ONE 2021, 16, e0250579. [Google Scholar]
- Stern, J.A.; Hsue, W.; Song, K.-H.; Ontiveros, E.S.; Luis Fuentes, V.; Stepien, R.L. Severity of Mitral Valve Degeneration Is Associated with Chromosome 15 Loci in Whippet Dogs. PLoS ONE 2015, 10, e0141234. [Google Scholar] [CrossRef]
- Wolf, Z.T.; Brand, H.A.; Shaffer, J.R.; Leslie, E.J.; Arzi, B.; Willet, C.E.; Cox, T.C.; McHenry, T.; Narayan, N.; Feingold, E.; et al. Genome-Wide Association Studies in Dogs and Humans Identify ADAMTS20 as a Risk Variant for Cleft Lip and Palate. PLoS Genet. 2015, 11, e1005059. [Google Scholar]
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Rosengren Pielberg, G.; Sigurdsson, S.; Fall, T.; Seppälä, E.H.; Hansen, M.S.T.; Lawley, C.T.; et al. Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds Using Selection Mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Gershony, L.C.; Belanger, J.M.; Hytönen, M.K.; Lohi, H.; Oberbauer, A.M. Whole Genome Sequencing Reveals Multiple Linked Genetic Variants on Canine Chromosome 12 Associated with Risk for Symmetrical Lupoid Onychodystrophy (SLO) in the Bearded Collie. Genes 2021, 12, 1265. [Google Scholar] [CrossRef]
- Auwera, G.; van der O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar]
- Jagannathan, V.; Drögemüller, C.; Leeb, T.; Dog Biomedical Variant Database Consortium (DBVDC). A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim. Genet. 2019, 50, 695–704. [Google Scholar]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [PubMed]
- Alemu, S.W.; Kadri, N.K.; Harland, C.; Faux, P.; Charlier, C.; Caballero, A.; Druet, T. An Evaluation of Inbreeding Measures Using a Whole-Genome Sequenced Cattle Pedigree. Heredity 2021, 126, 410–423. [Google Scholar] [PubMed]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of Homozygosity in European Populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [PubMed]
- Sams, A.J.; Boyko, A.R. Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs. G3 Genes|Genomes|Genet. 2019, 9, 117–123. [Google Scholar]
- Ceballos, F.C.; Hazelhurst, S.; Ramsay, M. Assessing runs of Homozygosity: A comparison of SNP Array and whole genome sequence low coverage data. BMC Genom. 2018, 19, 106. [Google Scholar]
- Meadows, J.R.S.; Kidd, J.M.; Wang, G.-D.; Parker, H.G.; Schall, P.Z.; Bianchi, M.; Christmas, M.J.; Bougiouri, K.; Buckley, R.M.; Hitte, C.; et al. Genome Sequencing of 2000 Canids by the Dog10K Consortium Advances the Understanding of Demography, Genome Function and Architecture. Genome Biol. 2023, 24, 187. [Google Scholar]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar]
- Lobo, D.; López-Bao, J.V.; Godinho, R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: A temporal genomic approach. Mol. Ecol. 2023, 32, 5986–5999. [Google Scholar]
- Dillon, M.N.; Thomas, R.; Mousseau, T.A.; Betz, J.A.; Kleiman, N.J.; Reiskind, M.O.B.; Breen, M. Population Dynamics and Genome-Wide Selection Scan for Dogs in Chernobyl. Canine Med. Genet. 2023, 10, 1. [Google Scholar]
- Gorssen, W.; Meyermans, R.; Janssens, S.; Buys, N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 2021, 53, 2. [Google Scholar]
- Lencz, T.; Lambert, C.; DeRosse, P.; Burdick, K.E.; Morgan, T.V.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Runs of Homozygosity Reveal Highly Penetrant Recessive Loci in Schizophrenia. Proc. Natl. Acad. Sci. USA 2007, 104, 19942–19947. [Google Scholar] [PubMed]
- Mastrangelo, S.; Biscarini, F.; Tolone, M.; Auzino, B.; Ragatzu, M.; Spaterna, A.; Ciampolini, R. Genomic Characterization of the Braque Français Type Pyrénées Dog and Relationship with Other Breeds. PLoS ONE 2018, 13, e0208548. [Google Scholar]
- Ferenčaković, M.; Hamzić, E.; Gredler, B.; Solberg, T.R.; Klemetsdal, G.; Curik, I.; Sölkner, J. Estimates of Autozygosity Derived from Runs of Homozygosity: Empirical Evidence from Selected Cattle Populations. J. Anim. Breed. Genet. 2013, 130, 286–293. [Google Scholar] [PubMed]
- Mortlock, S.-A.; Khatkar, M.S.; Williamson, P. Comparative Analysis of Genome Diversity in Bullmastiff Dogs. PLoS ONE 2016, 11, e0147941. [Google Scholar]
- Dreger, D.L.; Rimbault, M.; Davis, B.W.; Bhatnagar, A.; Parker, H.G.; Ostrander, E.A. Whole genome sequence, SNP chips and pedigree structure: Building demographic profiles in domestic dog breeds to optimize genetic trait mapping. Dis. Models Mech. 2016, 9, 1445–1460. [Google Scholar]
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: An R Package to Detect Runs of Homozygosity and Heterozygosity in Diploid Genomes. 2018. Available online: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html (accessed on 2 December 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Lowry, R. VassarStats: Website for Statistical Computation; Vassar College: Poughkeepsie, NY, USA, 2024. [Google Scholar]
- Perfilyeva, A.; Bespalova, K.; Bespalov, S.; Begmanova, M.; Kuzovleva, Y.; Vishnyakova, O.; Nazarenko, I.; Abylkassymova, G.; Perfilyeva, Y.; Plakhov, K.; et al. Homozygosity Mapping in the Kazakh National Dog Breed Tazy. Sci. Rep. 2023, 13, 10735. [Google Scholar]
- Rocha, R.D.F.B.; Garcia, A.O.; Otto, P.I.; Da Silva, M.V.B.; Martins, M.F.; Machado, M.A.; Panetto, J.C.D.C.; Guimarães, S.E.F. Runs of Homozygosity and Signatures of Selection for Number of Oocytes and Embryos in the Gir Indicine Cattle. Mamm. Genome 2023, 34, 482–496. [Google Scholar]
- Vasiliadis, D.; Metzger, J.; Distl, O. Demographic assessment of the Dalmatian dog—Effective population size, linkage disequilibrium and inbreeding coefficients. Canine Genet. Epidemiol. 2020, 7, 3. [Google Scholar]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; vonHoldt, B.M.; et al. A Simple Genetic Architecture Underlies Morphological Variation in Dogs. PLoS Biol. 2010, 8, e1000451. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. JOSS 2019, 4, 1686. [Google Scholar]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution 1965, 19, 395. [Google Scholar]
- Ukawa, H.; Akiyama, N.; Yamamoto, F.; Ohashi, K.; Ishihara, G.; Matsumoto, Y. Negative Selection on a SOD1 Mutation Limits Canine Degenerative Myelopathy While Avoiding Inbreeding. Genome Biol. Evol. 2024, 16, evad231. [Google Scholar]
- Cagan, A.; Blass, T. Identification of genomic variants putatively targeted by selection during dog domestication. BMC Evol. Biol. 2016, 16, 10. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly (Austin) 2012, 6, 80–92. [Google Scholar]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila Melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Gene. 2012, 3, 35. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio Team: Boston, MA, USA, 2024. [Google Scholar]
- Lyon, M.S.; Andrews, S.J.; Elsworth, B.; Gaunt, T.R.; Hemani, G.; Marcora, E. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 2021, 22, 32. [Google Scholar]
- Bannasch, D.; Famula, T.; Donner, J.; Anderson, H.; Honkanen, L.; Batcher, K.; Safra, N.; Thomasy, S.; Rebhun, R. The Effect of Inbreeding, Body Size and Morphology on Health in Dog Breeds. Canine Genet. Epidemiol. 2021, 8, 12. [Google Scholar]
- Donner, J.; Freyer, J.; Davison, S.; Anderson, H.; Blades, M.; Honkanen, L.; Inman, L.; Brookhart-Knox, C.A.; Louviere, A.; Forman, O.P.; et al. Genetic Prevalence and Clinical Relevance of Canine Mendelian Disease Variants in over One Million Dogs. PLoS Genet. 2023, 19, e1010651. [Google Scholar]
- Kania-Gierdziewicz, J.; Gierdziewicz, M.; Budzyński, B. Genetic Structure Analysis of Tatra Shepherd Dog Population From Tatra Mountain Region. Ann. Anim. Sci. 2015, 15, 323–335. [Google Scholar]
- Letko, A.; Hédan, B.; Snell, A.; Harris, A.C.; Jagannathan, V.; Andersson, G.; Holst, B.S.; Ostrander, E.A.; Quignon, P.; André, C.; et al. Genomic Diversity and Runs of Homozygosity in Bernese Mountain Dogs. Genes 2023, 14, 650. [Google Scholar] [CrossRef] [PubMed]
- Letko, A.; Minor, K.M.; Jagannathan, V.; Seefried, F.R.; Mickelson, J.R.; Oliehoek, P.; Drögemüller, C. Genomic Diversity and Population Structure of the Leonberger Dog Breed. Genet. Sel. Evol. 2020, 52, 61. [Google Scholar] [PubMed]
- Soh, P.X.Y.; Hsu, W.T.; Khatkar, M.S.; Williamson, P. Evaluation of genetic diversity and management of disease in Border Collie dogs. Sci. Rep. 2021, 11, 6243. [Google Scholar]
- Wade, C.M.; Nuttall, R.; Liu, S. Comprehensive analysis of geographic and breed-purpose influences on genetic diversity and inherited disease risk in the Doberman dog breed. Canine Med. Genet. 2023, 10, 7. [Google Scholar]
- Schmidt, T.L.; Jasper, M.; Weeks, A.R.; Hoffmann, A.A. Unbiased population heterozygosity estimates from genome-wide sequence data. Methods Ecol. Evol. 2021, 12, 1888–1898. [Google Scholar]
- Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J.; Zody, M.C.; et al. Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic Dog. Nature 2005, 438, 803–819. [Google Scholar]
- Lindblad-Toh, K. What animals can teach us about evolution, the human genome, and human disease. Upsala J. Med. Sci. 2020, 125, 1–9. [Google Scholar]
- Kuderna, L.F.K.; Ulirsch, J.C.; Rashid, S.; Ameen, M.; Sundaram, L.; Hickey, G.; Cox, A.J.; Gao, H.; Kumar, A.; Aguet, F.; et al. Identification of Constrained Sequence Elements across 239 Primate Genomes. Nature 2024, 625, 735–742. [Google Scholar]
- Liu, H.; Sørensen, A.C.; Meuwissen, T.H.; Berg, P. Allele frequency changes due to hitch-hiking in genomic selection programs. Genet. Sel. Evol. 2014, 46, 8. [Google Scholar]
- Metzger, J.; Karwath, M.; Tonda, R.; Beltran, S.; Águeda, L.; Gut, M.; Gut, I.G.; Distl, O. Runs of Homozygosity Reveal Signatures of Positive Selection for Reproduction Traits in Breed and Non-Breed Horses. BMC Genom. 2015, 16, 764. [Google Scholar] [CrossRef] [PubMed]
- Sumreddee, P.; Toghiani, S.; Hay, E.H.; Roberts, A.; Agrrey, S.E.; Rekaya, R. Inbreeding depression in line 1 Hereford cattle population using pedigree and genomic information1. J. Anim. Sci. 2019, 97, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, M.; Asadollahpour Nanaei, H.; Javanmard, A.; Esmailizadeh, A. The pattern of runs of homozygosity and genomic inbreeding in world-wide sheep populations. Genomics 2021, 113, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Boccardo, A.; Marelli, S.P.; Pravettoni, D.; Bagnato, A.; Busca, G.A.; Strillacci, M.G. The German Shorthair Pointer Dog Breed (Canis lupus familiaris): Genomic Inbreeding and Variability. Animals 2020, 10, 498. [Google Scholar] [CrossRef]
- Sweetalana Nataneli, S.; Huang, S.; Mooney, J.A.; Szpiech, Z.A. Genotypic and phenotypic consequences of domestication in dogs. bioRxiv 2024. Preprint. [Google Scholar] [CrossRef]
- Subramanian, S.; Kumar, M. The Association between the Abundance of Homozygous Deleterious Variants and the Morbidity of Dog Breeds. Biology 2024, 13, 574. [Google Scholar] [CrossRef]
- McMillan, K.M.; Bielby, J.; Williams, C.L.; Upjohn, M.M.; Casey, R.A.; Christley, R.M. Longevity of companion dog breeds: Those at risk from early death. Sci. Rep. 2024, 14, 531. [Google Scholar] [CrossRef]
- Marsden, C.D.; Ortega-Del Vecchyo, D.; O’Brien, D.P.; Taylor, J.F.; Ramirez, O.; Vilà, C.; Marques-Bonet, T.; Schnabel, R.D.; Wayne, R.K.; Lohmueller, K.E. Bottlenecks and Selective Sweeps during Domestication Have Increased Deleterious Genetic Variation in Dogs. Proc. Natl. Acad. Sci. USA 2016, 113, 152–157. [Google Scholar] [CrossRef]
- Pemberton, T.J.; Absher, D.; Feldman, M.W.; Myers, R.M.; Rosenberg, N.A.; Li, J.Z. Genomic Patterns of Homozygosity in Worldwide Human Populations. Am. J. Hum. Genet. 2012, 91, 275–292. [Google Scholar] [CrossRef]
- Edmands, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 2007, 16, 463–475. [Google Scholar] [CrossRef]
- Urfer, S.R.; Kaeberlein, M.; Promislow, D.E.L.; Creevy, K.E. Lifespan of companion dogs seen in three independent primary care veterinary clinics in the United States. Canine Genet. Epidemiol. 2020, 7, 7. [Google Scholar]
- Kettunen, A.; Daverdin, M.; Helfjord, T.; Berg, P. Cross-Breeding Is Inevitable to Conserve the Highly Inbred Population of Puffin Hunter: The Norwegian Lundehund. PLoS ONE 2017, 12, e0170039. [Google Scholar]
- Schoenebeck, J.J.; Ostrander, E.A. Insights into Morphology and Disease from the Dog Genome Project. Annu. Rev. Cell Dev. Biol. 2014, 30, 535–560. [Google Scholar] [PubMed]
- Browning, S.R.; Browning, B.L. Identity by Descent Between Distant Relatives: Detection and Applications. Annu. Rev. Genet. 2012, 46, 617–633. [Google Scholar]
- LeRoy, J.; Stuart, R.; Moorhead Mahigian, C. Bearded Collie Club of America 1994 Yearbook: Silver Anniversary Commemorative Edition; Bearded Collie Club of America: Elizabeth, CO, USA, 1995. [Google Scholar]
- The UK Kennel Club. Bearded Collie Breed. Bearded Collie About This Breed. 2025. Available online: https://www.thekennelclub.org.uk/search/breeds-a-to-z/breeds/pastoral/bearded-collie/#:~:text=In%201955%20a%20new%20Bearded,Images%20The%20Pastoral%20group%20Colours (accessed on 23 December 2024).
- Cadieu, E.; Neff, M.W.; Quignon, P.; Walsh, K.; Chase, K.; Parker, H.G.; VonHoldt, B.M.; Rhue, A.; Boyko, A.; Byers, A.; et al. Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes. Science 2009, 326, 150–153. [Google Scholar]
- Schlamp, F.; Van Der Made, J.; Stambler, R.; Chesebrough, L.; Boyko, A.R.; Messer, P.W. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Mol. Ecol. 2016, 25, 342–356. [Google Scholar]
- American Kennel Club. AKC Bearded Collie Standard. 1978. Available online: https://images.akc.org/pdf/breeds/standards/BeardedCollie.pdf (accessed on 23 December 2024).
- Lai, J.-J.; Cruz, F.M.; Rock, K.L. Immune Sensing of Cell Death through Recognition of Histone Sequences by C-Type Lectin-Receptor-2d Causes Inflammation and Tissue Injury. Immunity 2020, 52, 123–135.e6. [Google Scholar]
- Di Donato, N.; Jean, Y.Y.; Maga, A.M.; Krewson, B.D.; Shupp, A.B.; Avrutsky, M.I.; Roy, A.; Collins, S.; Olds, C.; Willert, R.A.; et al. Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. Am. J. Hum. Genet. 2016, 99, 1117–1129. [Google Scholar]
- Akey, J.M.; Ruhe, A.L.; Akey, D.T.; Wong, A.K.; Connelly, C.F.; Madeoy, J.; Nicholas, T.J.; Neff, M.W. Tracking Footprints of Artificial Selection in the Dog Genome. Proc. Natl. Acad. Sci. USA 2010, 107, 1160–1165. [Google Scholar] [CrossRef]
- Chen, W.; Han, Y.; Chen, Y.; Liu, X.; Liang, H.; Wang, C.; Khan, M.Z. Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals 2025, 15, 82. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhu, H.Y.; Zhou, J.; Wang, N.; Zhou, N.; Huang, L.; Wu, T.; Feng, Y.F.; Ding, Y.Y.; Yin, Z.J. Relationship between Polymorphisms in Exon 10 of FSHR Gene and Litter Size in Swine. Genet. Mol. Res. 2015, 14, 8252–8261. [Google Scholar] [PubMed]
- Tao, L.; He, X.; Wang, F.; Zhong, Y.; Pan, L.; Wang, X.; Gan, S.; Di, R.; Chu, M. Luzhong Mutton Sheep: Inbreeding and Selection Signatures. J. Anim. Sci. Technol. 2020, 62, 777–789. [Google Scholar]
- Guo, Y.; Liang, J.; Lv, C.; Wang, Y.; Wu, G.; Ding, X.; Quan, G. Sequencing Reveals Population Structure and Selection Signatures for Reproductive Traits in Yunnan Semi-Fine Wool Sheep (Ovis Aries). Front. Genet. 2022, 13, 812753. [Google Scholar]
- Carneiro, M.; Piorno, V.; Rubin, C.-J.; Alves, J.M.; Ferrand, N.; Alves, P.C.; Andersson, L. Candidate Genes Underlying Heritable Differences in Reproductive Seasonality between Wild and Domestic Rabbits. Anim. Genet. 2015, 46, 418–425. [Google Scholar] [PubMed]
- Rowell, J.L.; Rybaczyk, L.A.; Fenger, J.M.; Kosarek, C.E.; Chun, R.; McNiel, E.A.; Valli, V.E.; Alvarez, C.E.; Kisseberth, W.C. Abstract 4825: Common Genetic Pathways Are Involved in Canine Diffuse Large B Cell Lymphoma Relapse and Human Diffuse Large B Cell Lymphoma Lympomagenesis. Cancer Res. 2011, 71 (Suppl. S8), 4825. [Google Scholar]
- Aloni, R.; Olender, T.; Lancet, D. Ancient genomic architecture for mammalian olfactory receptor clusters. Genome Biol. 2006, 7, R88. [Google Scholar]
- Bougiouri, K.; Aninta, S.G.; Charlton, S.; Harris, A.; Carmagnini, A.; Piličiauskienė, G.; Feuerborn, T.R.; Scarsbrook, L.; Tabadda, K.; Blaževičius, P.; et al. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. bioRxiv 2024. preprint. [Google Scholar] [CrossRef]
- Batcher, K.; Dickinson, P.; Maciejczyk, K.; Brzeski, K.; Rasouliha, S.H.; Letko, A.; Drögemüller, C.; Leeb, T.; Bannasch, D. Multiple FGF4 Retrocopies Recently Derived within Canids. Genes 2020, 11, 839. [Google Scholar] [CrossRef]
- Cheetham, S.W.; Faulkner, G.J.; Dinger, M.E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 2020, 21, 191–201. [Google Scholar]
- Mabunda, R.S.; Makgahlela, M.L.; Nephawe, K.A.; Mtileni, B. Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity 2022, 14, 1054. [Google Scholar] [CrossRef]
- Bosse, M.; Megens, H.; Derks, M.F.L.; De Cara, Á.M.R.; Groenen, M.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol. Appl. 2019, 12, 6–17. [Google Scholar] [PubMed]
- Donner, J.; Anderson, H.; Davison, S.; Hughes, A.M.; Bouirmane, J.; Lindqvist, J.; Lytle, K.M.; Ganesan, B.; Ottka, C.; Ruotanen, P.; et al. Frequency and Distribution of 152 Genetic Disease Variants in over 100,000 Mixed Breed and Purebred Dogs. PLoS Genet. 2018, 14, e1007361. [Google Scholar]
- Bryson, G.T.; O’Neill, D.G.; Brand, C.L.; Belshaw, Z.; Packer, R.M.A. The doodle dilemma: How the physical health of ‘Designer-crossbreed’ Cockapoo, Labradoodle and Cavapoo dogs’ compares to their purebred progenitor breeds. PLoS ONE 2024, 19, e0306350. [Google Scholar]
Dog ID | All Possible Generations | Unique Ancestors | All Generation FPED | Ten Generation FPED | Five Generation FPED |
---|---|---|---|---|---|
BC1570 | 23 | 192 | 0.31 | 0.31 | 0.13 |
BC1696 | 26 | 247 | 0.29 | 0.28 | 0.09 |
BC1838 | 26 | 256 | 0.31 | 0.30 | 0.11 |
BC1852 | 27 | 344 | 0.32 | 0.27 | 0.13 |
BC1893 | 28 | 399 | 0.27 | 0.23 | 0.06 |
BC1894 | 28 | 289 | 0.27 | 0.25 | 0.05 |
BC1895 | 26 | 270 | 0.26 | 0.24 | 0.05 |
BC1896 | 23 | 192 | 0.31 | 0.31 | 0.13 |
BC1899 | 25 | 289 | 0.25 | 0.24 | 0.04 |
BC1901 | 30 | 504 | 0.29 | 0.23 | 0.01 |
BC1904 | 24 | 196 | 0.33 | 0.33 | 0.07 |
BC1905 | 27 | 368 | 0.26 | 0.22 | 0.05 |
BC1909 | 29 | 425 | 0.32 | 0.23 | 0.04 |
BC1911 | 27 | 331 | 0.28 | 0.23 | 0.01 |
BC1916 | 27 | 405 | 0.25 | 0.23 | 0.01 |
BC1918 | 27 | 270 | 0.34 | 0.29 | 0.11 |
BC1936 | 26 | 396 | 0.27 | 0.26 | 0.07 |
BC1943 | 23 | 266 | 0.21 | 0.21 | 0.03 |
BC1944 | 25 | 219 | 0.29 | 0.28 | 0.11 |
BC1945 | 28 | 317 | 0.29 | 0.27 | 0.07 |
BC1952 | 30 | 557 | 0.27 | 0.15 | 0.01 |
BC0057 | 27 | 253 | 0.41 | 0.39 | 0.22 |
BC0058 | 29 | 502 | 0.28 | 0.17 | 0.05 |
Average Individual | 26.5 ± 2.1 | 326 ± 104 | 0.29 ± 0.04 | 0.26 ± 0.05 | 0.07 ± 0.05 |
Average Population | 28.0 ± 2.2 | 432 ± 134 | 0.29 ± 0.05 | 0.24 ± 0.06 | 0.05 ± 0.05 |
Dog ID | All Generation FPED | FROH for SNPs | FROH for WGS |
---|---|---|---|
BC1570 | 0.31 | 0.37 | 0.27 |
BC1696 | 0.29 | 0.39 | 0.35 |
BC1838 | 0.31 | 0.35 | 0.34 |
BC1852 | 0.32 | 0.37 | 0.36 |
BC1893 | 0.27 | 0.43 | 0.40 |
BC1894 | 0.27 | 0.32 | 0.24 |
BC1895 | 0.26 | 0.34 | 0.33 |
BC1896 | 0.31 | 0.38 | 0.36 |
BC1899 | 0.25 | 0.28 | 0.18 |
BC1901 | 0.29 | 0.31 | 0.30 |
BC1904 | 0.33 | 0.44 | 0.39 |
BC1905 | 0.26 | 0.31 | 0.28 |
BC1909 | 0.32 | 0.31 | 0.29 |
BC1911 | 0.28 | 0.32 | 0.30 |
BC1916 | 0.25 | 0.35 | 0.33 |
BC1918 | 0.34 | 0.45 | 0.40 |
BC1936 | 0.27 | 0.34 | 0.33 |
BC1943 | 0.21 | 0.24 | 0.22 |
BC1944 | 0.29 | 0.31 | 0.29 |
BC1945 | 0.29 | 0.36 | 0.34 |
BC1952 | 0.27 | 0.38 | 0.37 |
BC0057 | 0.41 | 0.46 | 0.43 |
BC0058 | 0.28 | 0.35 | 0.35 |
Average | 0.29 ± 0.04 a | 0.35 ± 0.05 b | 0.32 ± 0.06 ab |
Cohort | SNP Array Avg Total ROH Length (kb) | WGS Avg Total ROH Length (kb) | SNP Array Avg ROH Length (kb) | WGS Avg ROH Length (kb) | SNP Array Avg ROH | WGS Avg ROH |
---|---|---|---|---|---|---|
Bearded Collie | 691,315 ± 122,637 b | ND ^ | 6586 ± 1101 a | ND | 105 ± 12 a | ND |
Bearded Collie (subset) | 781,741 ± 119,771 a | 710,594 ± 133,720 a | 6854 ± 1122 a | 293 ± 64 a | 114 ± 9 a | 2468 ± 392 b |
Pedigree | 543,716 ± 205,664 c | 570,736 ± 240,100 b | 5060 ± 1339 b | 190 ± 53 b | 106 ± 28 a | 2989 ± 1062 a |
Mixed breed | 187,952 ± 230,523 d | 150,968 ± 167,839 c | 3654 ± 3473 c | 141 ± 50 c | 43 ± 20 b | 924 ± 563 c |
Cohort | Total Genotyped Dogs | SNP FROH | SNP OHOM (%) | Total WGS Dogs | WGS Variant FROH | WGS Variant OHOM (%) |
---|---|---|---|---|---|---|
Bearded Collie | 244 | 0.31 ± 0.06 c (0.17–0.51) | 71 ± 2 b (64–79) | ND ^ | ND ^ | ND ^ |
Bearded Collie (subset) | 23 | 0.35 ± 0.05 d (0.24–0.46) | 68 ± 3 d (63–74) | 23 | 0.32 ± 0.06 c (0.18–0.43) | 65 ± 2 a (62–70) |
Pedigree | 5042 | 0.25 ± 0.09 b (0.01–0.62) | 74 ± 3 c (65–87) | 669 | 0.26 ± 0.11 b (0.01–0.59) | 90 ± 2 c (82–94) |
Mixed breed | 1171 | 0.09 ± 0.10 a (0.01–0.49) | 68 ± 4 a (61–82) | 65 | 0.07 ± 0.07 a (0.01–0.51) | 84 ± 2 b (82–92) |
Length Class in Mb (Average Length Within That Class) | Average Number of ROH per Dog in Class | Genome Coverage (%) in Class | Mean FROH (± SD) in Class |
---|---|---|---|
1–2 (1.41) | 34.87 | 2.23 | 0.31 ± 0.06 |
2–4 (2.84) | 23.40 | 3.02 | 0.29 ± 0.06 |
4–8 (5.68) | 20.47 | 5.27 | 0.26 ± 0.06 |
8–16 (11.26) | 16.08 | 8.22 | 0.21 ± 0.06 |
>16 (26.39) | 10.55 | 12.63 | 0.13 ± 0.05 |
Total | 31.38 |
CFA | Window Number | Overlapping Window Start Position (bp) | Overlapping Window End Position (bp) | Total Bearded Collies | BC % | Total Mixed Breed | Mixed Breed % | Ensembl Genes in the Overlapping Region |
---|---|---|---|---|---|---|---|---|
8 | 2 | 171,954 | 271,830 | 234 | 95.9 | 421 | 36.0 | ZNF496, NLRP3 |
8 | 3 | 271,831 | 371,707 | 234 | 95.9 | 421 | 36.0 | NLRP3, OR2H10 |
8 | 4 | 371,708 | 471,584 | 234 | 95.9 | 421 | 36.0 | OR2B11, OR2W11, GCSAML, OR2C3 |
8 | 5 | 471,585 | 571,461 | 234 | 95.9 | 421 | 36.0 | GCSAML |
8 | 6 | 571,462 | 671,338 | 234 | 95.9 | 423 | 36.1 | OR6AA6, ENSCAFG00000055652 |
8 | 7 | 671,339 | 771,215 | 234 | 95.9 | 423 | 36.1 | ENSCAFG00000029235, OR6C4, ENSCAFG00000042211 |
8 | 8 | 771,216 | 871,092 | 234 | 95.9 | 426 | 36.4 | OR4L1 |
8 | 9 | 871,093 | 970,969 | 234 | 95.9 | 427 | 36.5 | CATSPERB |
8 | 10 | 970,970 | 1,070,846 | 234 | 95.9 | 471 | 40.2 | CATSPERB |
8 | 11 | 1,070,847 | 1,170,723 | 234 | 95.9 | 472 | 40.3 | TC2N, FBLN5 |
8 | 12 | 1,170,724 | 1,270,600 | 234 | 95.9 | 498 | 42.5 | FBLN5, TRIP11 |
8 | 13 | 1,270,601 | 1,370,477 | 234 | 95.9 | 453 | 38.7 | TRIP11, ATXN3, CPSF2, ENSCAFG0000005868 |
8 | 16 | 1,570,232 | 1,670,108 | 233 | 95.5 | 377 | 32.2 | SLC24A4 |
8 | 17 | 1,670,109 | 1,769,985 | 233 | 95.5 | 441 | 37.7 | SLC24A4, RIN3, LGMN |
8 | 18 | 1,769,986 | 1,869,862 | 233 | 95.5 | 472 | 40.3 | RIN3, LGMN |
8 | 1 | 72,077 | 171,953 | 232 | 95.1 | 415 | 35.4 | ENSCAFG00000046615, ZNF496 |
8 | 14 | 1,370,478 | 1,470,354 | 231 | 94.7 | 381 | 32.5 | CPSF2 |
8 | 15 | 1,470,355 | 1,570,231 | 231 | 94.7 | 363 | 31.0 | SLC24A4 |
Dog ID | Total Variants | Total HIGH-Impact Variant Count | Percent Homozygous Alternate HIGH-Impact Variants | Total MODERATE Impact Variant Count | Percent Homozygous Alternate MODERATE Impact Variants | Total NEUTRAL Impact Variant Count | Percent Homozygous Alternate NEUTRAL Impact Variants |
---|---|---|---|---|---|---|---|
BC1570 | 7,940,287 | 4494 | 12.9 | 29,435 | 13.2 | 7,906,358 | 22.9 |
BC1696 | 8,113,127 | 4505 | 12.0 | 29,454 | 13.0 | 8,079,168 | 23.5 |
BC1838 | 8,145,732 | 4577 | 12.6 | 29,637 | 12.6 | 8,111,518 | 23.0 |
BC1852 | 8,140,001 | 4565 | 13.1 | 29,554 | 13.1 | 8,105,882 | 24.2 |
BC1893 | 8,112,085 | 4527 | 12.8 | 29,484 | 14.4 | 8,078,074 | 25.2 |
BC1894 | 7,990,385 | 4532 | 13.0 | 29,581 | 13.2 | 7,956,272 | 22.1 |
BC1895 | 8,121,517 | 4537 | 12.8 | 29,525 | 12.6 | 8,087,455 | 22.6 |
BC1896 | 8,127,437 | 4550 | 11.7 | 29,539 | 12.7 | 8,093,348 | 23.4 |
BC1899 | 7,964,369 | 4503 | 11.0 | 29,492 | 11.8 | 7,930,374 | 20.6 |
BC1901 | 8,145,187 | 4590 | 11.9 | 29,633 | 12.0 | 8,110,964 | 22.6 |
BC1904 | 8,133,943 | 4553 | 14.2 | 29,415 | 13.8 | 8,099,975 | 25.1 |
BC1905 | 8,130,514 | 4538 | 13.0 | 29,490 | 13.0 | 8,096,486 | 22.6 |
BC1909 | 8,106,692 | 4503 | 12.5 | 29,362 | 12.2 | 8,072,827 | 22.4 |
BC1911 | 8,134,998 | 4576 | 12.3 | 29,589 | 12.7 | 8,100,833 | 22.2 |
BC1916 | 8,138,035 | 4547 | 11.7 | 29,499 | 13.0 | 8,103,989 | 23.3 |
BC1918 | 8,128,449 | 4556 | 14.6 | 29,449 | 14.6 | 8,094,444 | 25.6 |
BC1936 | 8,144,075 | 4597 | 13.7 | 29,622 | 13.9 | 8,109,856 | 23.6 |
BC1943 | 8,109,118 | 4475 | 11.3 | 29,395 | 11.3 | 8,075,248 | 20.7 |
BC1944 | 8,118,503 | 4513 | 11.5 | 29,506 | 12.6 | 8,084,484 | 22.1 |
BC1945 | 8,103,332 | 4450 | 11.9 | 29,333 | 13.0 | 8,069,549 | 23.2 |
BC1952 | 8,142,011 | 4581 | 13.9 | 29,586 | 13.8 | 8,107,844 | 24.0 |
BC0057 | 8,131,063 | 4555 | 14.6 | 29,531 | 14.8 | 8,096,977 | 26.0 |
BC0058 | 8,135,341 | 4584 | 13.5 | 29,635 | 13.5 | 8,101,122 | 23.5 |
Average Bearded Collie | 8,106,791 | 4539 | 12.7 | 29,511 | 13.1 | 8,072,741 | 23.2 |
Average Pedigree | 42,346,403 | 43,580 | 2.03 | 209,404 | 1.93 | 42,093,419 | 3.75 |
Average Mixed breed | 42,346,403 | 43,580 | 1.77 | 209,404 | 1.69 | 42,093,419 | 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belanger, J.M.; Gershony, L.C.; Bell, J.S.; Hytönen, M.K.; Lohi, H.; Lindblad-Toh, K.; Tengvall, K.; Sell, E.; Famula, T.R.; Oberbauer, A.M. Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed. Genes 2025, 16, 378. https://doi.org/10.3390/genes16040378
Belanger JM, Gershony LC, Bell JS, Hytönen MK, Lohi H, Lindblad-Toh K, Tengvall K, Sell E, Famula TR, Oberbauer AM. Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed. Genes. 2025; 16(4):378. https://doi.org/10.3390/genes16040378
Chicago/Turabian StyleBelanger, Janelle M., Liza C. Gershony, Jerold S. Bell, Marjo K. Hytönen, Hannes Lohi, Kerstin Lindblad-Toh, Katarina Tengvall, Elsa Sell, Thomas R. Famula, and Anita M. Oberbauer. 2025. "Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed" Genes 16, no. 4: 378. https://doi.org/10.3390/genes16040378
APA StyleBelanger, J. M., Gershony, L. C., Bell, J. S., Hytönen, M. K., Lohi, H., Lindblad-Toh, K., Tengvall, K., Sell, E., Famula, T. R., & Oberbauer, A. M. (2025). Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed. Genes, 16(4), 378. https://doi.org/10.3390/genes16040378