Interrelation of Oxidative Stress and Genetics in Pathophysiology of Obesity and Obesity-Related Conditions
Abstract
:1. Introduction
2. Material and Method
3. Antioxidant Enzymes
3.1. Glutathione Peroxidase (GPx)
3.2. Catalase (CAT)
3.3. Superoxide Dismutase (SOD)
3.4. Paraoxonase—PON
Gene | Genetic Variant | Consequences | References |
GPX1 | rs105045 | Leu allele T carriers have higher prevalence of MS, increase WHR, TG, HOMA-β, BMI, insulin, HOMA-IR, LDL-ch., lipoperoxides and MDA | [7,8] |
Pro198Leu | |||
Pro198Leu; | Decreased GPX1 activity by 40%, increased oxidative stress, higher risk of obesity and its complications | [9] | |
Ala5/Ala6 at codon 7–11 | |||
-602A/G, 2C/T | Decreased GPX activity by 25%, increased oxidative stress, higher risk of obesity and its complications | [9] | |
GPX7 | rs835337 (G/A) | Increased BMI, decreased MDA, increased GPX7 activity in adipose tissue | [4] |
CAT | rs 769214; -844A/G | Reduced CAT activity, increased oxidative stress, increased risk for obesity | [12,13] |
rs7943316; -89T/A; | Reduced CAT activity, increased oxidative stress, increased risk for obesity | ||
rs1049982; -20C/T | Reduced CAT activity, increased oxidative stress, increased risk for obesity | ||
rs1001179; -262C/T | Decreased CAT activity, increased obesity in children | [14] | |
EC-SOD | Leu53Leu | Increased BMI, fasting insulin, increased risk for type 2 diabetes mellitus | [18] |
ArG213Gly | Increased BMI, fasting insulin, increased risk for type 2 diabetes mellitus | [18] | |
Ala40Thr | Increased BMI, fasting insulin, increased risk for type 2 diabetes mellitus | [18] | |
SOD2 | rs4880 (C/T) | Increased obesity in elderly, lower enzyme activity, increased IL-1, IL-6, TNFα, and interferon activity | [20] |
(Ala16Val) | |||
Val-MnSOD; | Increased oxidative stress due to decreased rate of superoxid anion dismutation, increased activity of pro-inflammatory cytokines and decreased activity of anti-inflammatory cytokines | [21] | |
ValVal; AlaAla | [22,23] | ||
PON1 | rs854566 | Increased obesity in children | [35] |
rs662 (Q192R) (G/A) | 192RR, ArgArg; increased PON1 activity | [32] | |
R-allele; increased risk for obesity | [30] | ||
rs854560 (L55M) (A/T) | Increased PON1 activity | [33] | |
PRDX3 | rs3740562 (A/G) | Increased BMI in Japanese subjects on high-fat diet | [36,37,38] |
rs2271362 (C/T) | Increased BMI in Japanese subjects on high-fat diet | ||
rs7768 (G/T); rs3377 (A/C) | Increased BMI in Japanese subjects on high-fat diet | ||
NADPH oxidase | rs9932581 (-930A/G) | Higher NADPH oxidase activity, increased ROS production, increased oxidative stress, insulin resistance and HOMA-IR | [39,40] |
p22 phox | rs4673 (242 C/T) | Reduced concentration of 8.OhdG, lower HOMA-IR and fasting insulin in T allele type 2 diabetic carriers. | [41] |
Increased risk for obesity and type 2 diabetes mellitus in Brazilian hypertensive subjects | [42] | ||
PPAR-γ | rs1801282 (Pro12Ala) | Reduced BMI, increased insulin sensitivity and decreased PPAR-γ transcriprion activity | [43] |
PGC1α | rs8192678 (Gly482Ser) | Positive association with HOMA-IR, WHR, hyperglycaemia and TBARS, lower adiponectin levels in type 2 diabetic subjects | [44,45,46] |
[47] | |||
NRF2 | rs6721961 (-617C/A) | Lower NFR2 transcription activity | [48,49,50] |
rs6706649 (-651G/A) | Lower NFR2 transcription activity | ||
rs6721961; rs4880 | Reduced antioxidant defense system, increased risk for several diseases | [49] | |
rs2234694 | Affected SOD1 activity, increased risk of obesity | ||
rs2536512 | Affected SOD3 activity, increased risk of obesity | ||
rs1056806 | Affected GSTM1 activity, increased risk of obesity | ||
rs1800668 | Affected GPX1 activity, increased risk of obesity | [51] | |
rs4880 | Affected SOD2 activity, increased risk of obesity, increased concentration of ox-LDL-cholesterol, increased prevalence of type 2DM and its cardiovascular complications, and glucose intolerance | [52,53,54,55,56] | |
rs1050450 | Increased risk of obesity in Mexican female population | [54] | |
rs6721961 | Increased risk for development of type 2 DM in Mexican population | [57] | |
rs2364723 | Association with obesity and type 2 diabetes mellitus and diabetes-related complications | ||
rs10497511 | Association with obesity and type 2 diabetes mellitus and diabetes-related complications | ||
rs1962142 | Association with obesity and type 2 diabetes mellitus and diabetes-related complications | ||
rs6726395 | Association with obesity and type 2 diabetes mellitus and diabetes-related complications | [58,59] |
3.5. Thioredoxins/Peroxiredoxins—PRDX
4. ROS Producers
NADPH Oxidase
5. Transcription Factors
5.1. Peroxisome Proliferator-Activated Receptors—PPAR-γ
5.2. Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α—PGC1α
5.3. Nuclear Factor Erythroid 2-Related Factor—NRF2
6. Discussion and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 62–100. [Google Scholar] [CrossRef] [PubMed]
- Čolak, E.; Pap, D. The role of oxidative stress in the development of obesity and obesity-related diseases. J. Med. Biochem. 2021, 40, 1–9. [Google Scholar] [CrossRef]
- Ruperez, A.I.; Gil, A.; Aguilera, C.M. Genetics of oxidative stress in obesity. Int. J. Mol. Sci. 2014, 15, 3118–3144. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Yu, Y.H.; Shew, J.Y.; Lee, W.J.; Hwang, J.J.; Chen, Y.H.; Chen, Y.R.; Wei, P.C.; Chuang, L.M.; Lee, W.H. Deficiency of NPGPx an oxidative stress sensor leads to obesity in mice and humans. EMBO Mol. Med. 2013, 5, 1165–1179. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulker, N.S. Reactive oxygen species signalling and oxidative stress:Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–545. [Google Scholar] [CrossRef] [PubMed]
- Zaiou, M. Transcriptional factors and epigenetic mechanism in obesity and related metabolic commorbidities. Cells 2022, 11, 2520. [Google Scholar] [CrossRef]
- Kuzuya, M.; Ando, F.; Iguchi, A.; Shimohata, H. Glutathione peroxidase 1 Pro 1981Leu variant contributes to the metabolic syndrome in men in a large Japanese cohort. Am. J. Clin. Nutr. 2008, 87, 1939–1944. [Google Scholar] [CrossRef]
- Shuvalova, Y.A.; Kaminnyi, A.I.; Meshkov, A.N.; Kukharcuk, V.V. Pro 198Leu polymorphism of GPx1 gene and activity of erythrocyte glutathione peroxidase and lipid peroxidation products. Bull. Exp. Biol. Med. 2010, M9, 743–745. [Google Scholar] [CrossRef]
- Hamanishi, T.; Furuta, H.; Kato, H.; Doi, A.; Tamai, M.; Shimomura, H.; Sakagashira, S.; Nishi, M.; Sasaki, H.; Sanke, T.; et al. Functional variants in the glutathione peroxidase-1 (GPx1) gene are associated with intima-media thikness of carotid arteries and risk of macrovascular diseases in japanese type 2 diabetes patients. Diabetes 2004, 50, 2455–2460. [Google Scholar] [CrossRef]
- Ruperez, A.I.; Olza, J.; Gil-Campos, M.; Leis, R.; Mesa, M.D.; Tojo, R.; Cañete, R.; Gil, Á.; Aguilera, C.M. Are catalase-844A/G polymorphism and activity associated with childhood obesity? Antioxid. Redox. Signal. 2013, 19, 1970–1975. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.J.; Park, E. Contribution of insulin resistance to reduced antioxidant enzymes and vitamins in non-obese Korean children. Clin. Chim. Acta 2006, 365, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Wang, B.; He, Y.; Wang, Y.; Xi, H.; Li, Y.; Wang, Y.; Wang, Y.; Zhu, D.; et al. A halotype of the catalase gene confers an increased risk of essential hypertension in Chinese Han. Hum. Mutat. 2010, 31, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Herbert-Schuster, M.; Fabre, E.E.; Nivet-Antoine, V. Catalase polymorphisms and metabolic diseases. Curr. Opin. Clin. Nurr. Metab. Care 2012, 15, 397–400. [Google Scholar] [CrossRef]
- Povel, C.M.; Boer, J.M.A.; Moret, C.O.; Dolle, M.E.; Feskens, E.J.; van der Schouw, Y.T. Single nucleotide polymorphisms (SNPs) involved in insulin resistance, weight regulation, lipid metabolism in relation to metabolic syndrome: An epidemiological study. Cardiovasc. Diabetol. 2012, 11, 133. [Google Scholar] [CrossRef]
- Nadif, R.; Mintz, M.; Jedlicka, A.; Bertrand, J.P.; Kleeberger, S.R.; Kauffmann, F. Association of CAT polymorphism with catalase activity and exposure to environment oxidative stimuli. Free Radic. Res. 2005, 39, 1345–1350. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–89. [Google Scholar]
- Cui, R.; Gao, M.; Liu, D. Overexpression of superoxide dismutase3 gene blocks high-fat diet-induced obesity, fatty liver and insulin resistance. Gene. Ther. 2014, 21, 840–848. [Google Scholar] [CrossRef]
- Yang, Y.M.; Xie, X.R.; Jin, A.I. Genetic polymorphisms in extracellular superoxide dismutase Leu53Leu, Arg213Gly, and Ala40Thr and susceptibility to type 2 diabetes mellitus. Genet. Mol. Res. 2016, 15, gmr15048418. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, W.; Richardson, A.; van Remmen, H.; Ikeno, Y.; Salmon, A.B. Oxidative damage associated with obesity is prevented by overexpression of Cu, Zn- or Mn-superoxide dismutase. Biochem. Biophys. Res. Commun. 2013, 16, 78–83. [Google Scholar] [CrossRef]
- Villani, R.; Magnati, G.P.; De Girolamo, G.; Sangineto, M.; Romano, A.D.; Cassano, T.; Seroiddio, G. Genetic polymorphisms and clinical features in diabetic patients with fatty liver: Results from a single-centre experience in Southern Italy. Front. Med. 2021, 8, 737759. [Google Scholar] [CrossRef] [PubMed]
- Pourvali, R.; Abbasi, M.; Mottaghi, A. Role of superoxide dismutase 2 gene Ala16Val polymorphism and total antioxidant capacity in diabetes and its complications. Avicenna J. Med. Biotechnol. 2016, 8, 48–56. [Google Scholar] [PubMed]
- Montano, M.A.E.; Barrio Lera, J.P.; Gottlieb, M.G.V.; Schwanke, C.H.A.; da Rocha, M.I.U.M.; Manica-Cattani, M.F.; dos Santos, G.F.; da Cruz, I.B.M. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol. Cell. Biochem. 2009, 328, 33–40. [Google Scholar] [CrossRef]
- Montano, M.A.E.; da Cruz, I.B.M.; Duarte, M.M.M.F.; da Costa Krewer, C.; Mânica-Cattani, M.F.; Soares, F.A.A.; Rosa, G.; Maris, A.F.; Battiston, F.G.; Trott, A.; et al. Inflammatory cytokines in vitro production are associated with Ala16val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 2012, 60, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Caple, F.; Williams, E.A.; Spiers, A.; Tyson, J.; Burtle, B.; Daly, A.K.; Mathers, J.C.; Hesketh, J.E. Inter-individual variation in DNA damage and base excision repaior in young healthy non-smokers. Effects of dietary supplementation and genotype. Br. J. Nutr. 2010, 103, 1585–1593. [Google Scholar] [CrossRef]
- Labrecque, B.; Beaudry, D.; Mayhue, M.; Halle, C.; Bordignon, V.; Murphy, B.D.; Palin, M.F. Molecular characterization and expression analysis of the porcine paraoxonase 3 (PON3) gene. Gene 2009, 443, 110–120. [Google Scholar] [CrossRef]
- Aslan, M.; Horoz, M.; Sabuncu, T.; Celik, H.; Selek, S. Serum paraoxonase enzyme activity and oxidative stress in obese subjects. Pol. Arch. Med. Wewn. 2011, 121, 181–185. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Moroni, C.; Savino, S.; Liuzzi, A.; Balzola, F.; Bicchiega, V. Paraoxonase activity in high-density lipoproteins: A comparison between healthy and obese females. J. Clin. Endocrinol. Metab. 2005, 90, 1728–1733. [Google Scholar] [CrossRef]
- Bajnok, L.; Seres, I.; Varga, Z.; Jeges, S.; Peti, A.; Karanyi, Z.; Juhasz, A.; Csongradi, E.; Mezosi, E.; Nagy, E.V.; et al. Relationship of endogenous hyperleptinemia to serum paraoxonase 1, cholesteryl ester transfer protein, and lecithin cholesterol acyltransferase in obese individuals. Metabolism 2007, 36, 1542–1549. [Google Scholar] [CrossRef]
- Martinez-Sazar, M.F.; Almenares-Lopez, D.; Garcia-Jimenez, S.; Sanchez-Aleman, M.A.; Juantorena-Ugas, A.; Rios, C.; Monroy-Noyola, A. Relationship between the paraoxonase (PON1) L55M and Q192R polymorphisms and obesity in a Mexican population: A pilot study. Genes. Nutr. 2011, 6, 361–368. [Google Scholar] [CrossRef]
- Veiga, L.; Silva-Nunes, J.; Melao, A.; Oliveira, A.; Duarte, L.; Brito, M. Q192R polymorphism of the paraoxonase-1 gene as a risk factor for obesity in Portuguese women. Eur. J. Endocrinol. 2011, 164, 213–218. [Google Scholar] [CrossRef]
- Tabur, S.; Torun, A.N.; Sabuncu, T.; Turan, M.N.; Celik, H.; Ocak, A.R.; Aksoy, N. Non-diabetic metabolic syndrome and obesity do not affect serum paraoxonase and arylesterase activities but do affect oxidative stress and inflammation. Eur. J. Endocrinol. 2010, 162, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Adkins, S.; Gan, K.N.; Mody, M.; La Du, B.N. molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: Glutamine or arginine at position 191, for the respective A or B allozymes. Am. J. Hum. Genet. 1993, 52, 598–608. [Google Scholar] [PubMed]
- Garin, M.C.; James, R.W.; Dussoix, P.; Blanche, H.; Passa, P.; Frougel, P.; Ruiz, J. paraoxonase polymorphism Met-Leu54 is associated with modified serum concentration of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Invest. 1997, 99, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Baráth, Á.; Németh, I.; Karg, E.; Endreffy, E.; Bereczki, C.; Gellén, B.; Haszon, I.; Túri, S. Roles of paraoxonase and oxidative stress in adolescents with uremic, essential or obesity-induced hypertension. Kidney. Blood. Press. Res. 2006, 29, 144–151. [Google Scholar] [CrossRef]
- Rupérez, A.I.; López-Guarnido, O.; Gil, F.; Olza, J.; Gil-Campos, M.; Leis, R.; Tojo, R.; Cañete, R.; Gil, A.; Aguilera, C.M. Paraoxonase 1 activities and genetic variation in childhood obesity. Br. J. Nutr. 2013, 110, 1639–1647. [Google Scholar] [CrossRef]
- Cox, A.G.; Winterbourn, C.C.; Hampton, M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 2010, 423, 313–325. [Google Scholar] [CrossRef]
- Huh, J.Y.; Kim, Y.; Jeong, J.; Park, J.; Kim, I.; Huh, K.H.; Kim, Y.S.; Woo, H.A.; Rhee, S.G.; Lee, K.J.; et al. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antiox. Redox Signal. 2012, 16, 229–243. [Google Scholar] [CrossRef]
- De Coursey, T.E.; Ligeti, E. Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci. 2005, 62, 2173–2193. [Google Scholar] [CrossRef]
- San Jose, G.; Moreno, M.U.; Olivan, S.; Beloqui, O.; Fortuno, A.; Diez, J.; Zalba, G. Functional effect of the p22phox −930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension 2004, 44, 163–169. [Google Scholar] [CrossRef]
- Ochoa, M.C.; Razquin, C.; Zalba, G.; Martinez-Gonzales, M.A.; Martinez, J.A.; Marti, A. G allele of the -930A>G polymorphism of the CYBA gene is associated with insulin resistance in obese subjects. J. Physiol. Biochem. 2008, 64, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hayaishi-Okano, R.; Yamasaki, Y.; Kajimoto, Y.; Sakamoto, K.Y.; Ohtoshi, K.; Katakami, N.; Kawamori, D.; Miyatsuka, T.; Hatazaki, M.; Hazama, Y.; et al. Association of NAD(P)H oxidase p22 phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes. Diabetes Care 2003, 26, 458–463. [Google Scholar] [CrossRef]
- Itoh, H.; Doi, K.; Tanaka, T.; Fukunaga, Y.; Hosoda, K.; Inoue, G.; Nishimura, H.; Yoshimasa, Y.; Yamori, Y.; Nakao, K. Hypertension and insulin resistance: Role of peroxisome proliferator-activated receptor γ. Clin. Exp. Pharmacol. Physiol. 1999, 26, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Valle, I.; Alvarez-Barrientos, A.; Arza, E.; Lamas, S.; Monsalve, M. PGC-1a regulates the mitochondrial antioxidant defence system in vascular endothelial cells. Cardiovasc. Res. 2005, 66, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Montes-de-Oca-García, A.; Corral-Pérez, J.; Velázquez-Díaz, D.; Perez-Bey, A.; Rebollo-Ramos, M.; Marín-Galindo, A.; Gómez-Gallego, F.; Calderon-Dominguez, M.; Casals, C.; Ponce-González, J.G. Influence of Peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1 α gene rs8192678polymorphism by gender on different health-related parameters in healthy young adults. Front. Physiol. 2022, 13, 885185. [Google Scholar] [CrossRef]
- Fanelli, M.; Filippi, E.; Sentinelli, F.; Romeo, S.; Fallarino, M.; Buzzetti, R.; Leonetti, F.; Baroni, M.G. The Gly482Ser missense mutation of the peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α) gene associates with induced insulin sensitivity in normal and glucose-intolerant obese subjects. Dis. Markers 2005, 21, 175–180. [Google Scholar] [CrossRef]
- Weng, S.W.; Lin, T.K.; Wang, P.W.; Chen, I.Y.; Lee, H.C.; Chen, S.D.; Chuang, Y.C.; Liou, C.W. Gly482Ser polymorphism in the peroxisome proliferator-activated receptor γ coactivator-1 α gene is associated with oxidative stress and abdominal obesity. Metabolism 2010, 59, 581–586. [Google Scholar] [CrossRef]
- He, F.; Antonucci, L.; Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020, 41, 405–416. [Google Scholar] [CrossRef]
- Zazueta, C.; Jimenez-Uribe, A.P.; Pedraza-Chaverri, J.; Buelna-Chontal, M. Genetic variations on redox control in cardiometabolic diseases: The role of NRF2. Antioxidants 2022, 11, 507. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yoh, K.; Kobayashi, A.; Ishii, Y.; Kure, S.; Koyama, A.; Sakamoto, T.; Sekizawa, K.; Motohashi, H.; Yamamoto, M. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem. Biophys. Res. Commun. 2004, 321, 72–79. [Google Scholar] [CrossRef]
- Nunes dos Santos, K.; Florentino, R.M.; França, A.; Lima Filho, A.C.M.; Santos, M.L.D.; Missiaggia, D.; Fonseca, M.D.C.; Brasil Costa, I.; Vidigal, P.V.T.; Nathanson, M.H.; et al. Polymorphism in the Promoter Region of NFE2L2 gene Is a genetic marker of susceptibility to cirrhosis associated with alcohol abuse. Int. J. Mol. Sci. 2019, 20, 3589. [Google Scholar] [CrossRef] [PubMed]
- Gusti, A.M.T.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants 2021, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.G.V.; Schwanke, C.H.A.; Santos, A.F.R.; Jobim, P.F.; Müssel, D.P.; da Cruz, I. Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population. Genet. Mol. Res. 2005, 4, 691–703. [Google Scholar] [PubMed]
- Nakanishi, S.; Yamane, K.; Ohishi, W.; Nakashima, R.; Yoneda, M.; Nojima, H.; Watanabe, H.; Kohno, N. Manganese superoxide dismutase Ala16Val polymorphism is associated with the development of type 2 diabetes in Japanese-Americans. Diabetes Res. Clin. Pract. 2008, 81, 381–385. [Google Scholar] [CrossRef]
- Hernández Guerrero, C.; Hernández Chávez, P.; Martínez Castro, N.; Parra Carriedo, A.; García Del Rio, S.; Pérez Lizaur, A. Glutathione peroxidase-1 PRO200LEU polymorphism (Rs1050450) is associated with morbid obesity independently of the presence of prediabetes or diabetes in women from central Mexico. Nutr. Hosp. 2015, 32, 1516–1525. [Google Scholar]
- Buraczynska, M.; Buraczynska, K.; Dragan, M.; Ksiazek, A. Pro198Leu polymorphism in the glutathione peroxidase 1 gene contributes to diabetic peripheral neuropathy in type 2 diabetes patients. Neuro-Mol. Med. 2017, 19, 147–153. [Google Scholar] [CrossRef]
- Tang, T.S.; Prior, S.L.; Li, K.W.; Ireland, H.A.; Bain, S.C.; Hurel, S.J.; Cooper, J.A.; Humphries, S.E.; Stephens, J.W. Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 417–425. [Google Scholar] [CrossRef]
- Wang, J.; Yu, M.; Chen, J.; Zhu, L.; Liu, J.; Xu, J. Association of nuclear factor erythroid-2-related factor 2 gene polymorphisms with diabetic nephropathy in Chinese patients. Int. J. Gen. Med. 2021, 14, 1231–1237. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Chang, X.; Wang, J.; Luo, M.; Wintergerst, K.A.; Miao, L.; Cai, L. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J. Cell. Mol. Med. 2016, 20, 2078–2088. [Google Scholar] [CrossRef]
- Hiroi, M.; Nagahara, Y.; Miyauchi, R.; Misaki, Y.; Goda, T.; Kasezawa, N.; Sasaki, S.; Yamakawa-Kobayashi, K. The combination of genetic variations in the PRDX3 gene and dietary fat intake contribute to obesity risk. Obesity 2011, 19, 882–887. [Google Scholar] [CrossRef]
- Eriksson, J.W. Metabolic stress in insulin’s target cells leads to ROS accumulation-A hypothetical common pathway causing insulin resistance. FEBS Lett. 2007, 581, 3734–3742. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.; Ferreira-Sae, M.C.; Tucunduva, A.C.; Mill, J.G.; Costa, F.O.; Krieger, J.E.; Franchini, K.G.; Pereira, A.C.; Nadruz, W., Jr. CYBA C242T polymorphism is associated with obesity and diabetes mellitus in Brazilian hypertensive patients. Diabet. Med. 2012, 29, e55–e61. [Google Scholar] [CrossRef]
- Kim, T.; Yang, Q. Peroxisome-proliferator-activated receptors regulate redox signalling in the cardiovascular system. World J. Cardiol. 2013, 5, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Kruzliak, P.; Haley, A.P.; NIkolajević-Starčević, J.; Gaspar, L.; Petrovic, D. Polymorphisms of the Peroxisome Proliferator-Activated Receptor-γ (rs1801282) and its coactivator-1 (rs8192673) are associated with obesity indexes in subjects with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 42. [Google Scholar] [CrossRef]
- Galbete, C.; Toledo, E.; Martinez-Gonzales, M.A.; Martinez, J.A.; Guillen-Grima, F.; Marti, A. Pro12Ala variant of the PPARG2 gene increases body mass index: An updated meta-analysis encompassing 49,092 subjects. Obesity 2013, 21, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Okauchi, Y.; Iwahashi, H.; Okita, K.; Yuan, M.; Matsuda, M.; Tanaka, T.; Miyagawa, J.; Funahashi, T.; Horikawa, Y.; Shimomura, I.; et al. PGC-1 α Gly482Ser polymorphism is associated with the plasma adiponectin level in type 2 diabetic men. Endocr. J. 2008, 55, 991–997. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a transcription factor for stress respond and beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Marzec, J.; Kleeberger, S.R. Functional polymorphisms in Nrf2: Implications for human disease. Free Radic. Biol. Med. 2015, 88, 362–372. [Google Scholar] [CrossRef]
- Liu, D.; Liu, L.; Hu, Z.; Song, Z.; Wang, Y.; Chen, Z. Evaluation of the oxidative stress–related genes ALOX5, ALOX5AP, GPX1, GPX3 and MPO for contribution to the risk of type 2 diabetes mellitus in the Han Chinese population. Diabetes Vasc. Dis. Res. 2018, 15, 336–339. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.S.; González-Reyes, S.; García-Niño, W.R.; Moreno-Macías, H.; Rodríguez-Arellano, M.E.; Vargas-Alarcón, G.; Zúñiga, J.; Barquera, R.; Pedraza-Chaverri, J. Association of nuclear factor-erythroid 2-related factor 2, thioredoxin interacting protein, and heme oxygenase-1 gene polymorphisms with diabetes and obesity in Mexican patients. Oxidative Med. Cell. Longev. 2016, 2016, 7367641, Erratum in Oxidative Med. Cell. Longev. 2017, 2017, 7543194. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, K.M.; Shin, J.; Kang, K.D.; Nho, C.W.; Cho, Y.S. Genetic risk score combining six genetic variants associated with the cellular NRF2 expression levels correlates with Type 2 diabetes in the human population. Genes Genom. 2019, 41, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Lara-Hernández, F.; Melero, R.; Quiroz-Rodríguez, M.E.; Moya-Valera, C.; de Jesús Gallardo-Espinoza, M.; Álvarez, L.; Valarezo-Torres, I.L.; Briongos-Figuero, L.; Abadía-Otero, J.; Mena-Martin, F.J.; et al. Genetic interactions between oxidative stress and body mass index in a Spanish population. Redox Biol. 2025, 80, 103531. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Guerrero, C.; Parra-Carriedo, A.; Ruiz-de-Santiago, D.; Galicia-Castro, O.; Buenrostro-Janregui, M.; Diaz-Gutierrez, C. Genetic polymorphisms of antioxidant enzyme CAT and SOD affect the outcome of clinical, biochemical and anthropometric variables in prople with obesity under dietary intervention. Genes Nutr. 2018, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Yanasegaran, K.; Yung Ern Ng, J.; Chua, E.W.; Nawi, A.M.; Yuen Ng, P.; Manaf, M.R.A. Single nucleotide polymorphisms (SNPs) that are associated with obesity and type 2 diabetes among Asians: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 20062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čolak, E.; Žorić, L. Interrelation of Oxidative Stress and Genetics in Pathophysiology of Obesity and Obesity-Related Conditions. Genes 2025, 16, 489. https://doi.org/10.3390/genes16050489
Čolak E, Žorić L. Interrelation of Oxidative Stress and Genetics in Pathophysiology of Obesity and Obesity-Related Conditions. Genes. 2025; 16(5):489. https://doi.org/10.3390/genes16050489
Chicago/Turabian StyleČolak, Emina, and Lepša Žorić. 2025. "Interrelation of Oxidative Stress and Genetics in Pathophysiology of Obesity and Obesity-Related Conditions" Genes 16, no. 5: 489. https://doi.org/10.3390/genes16050489
APA StyleČolak, E., & Žorić, L. (2025). Interrelation of Oxidative Stress and Genetics in Pathophysiology of Obesity and Obesity-Related Conditions. Genes, 16(5), 489. https://doi.org/10.3390/genes16050489