Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. Extraction, Sequencing, and Annotation of Mitochondrial DNA
2.3. Sequence Analyses
2.4. Phylogenetic Analysis
3. Results
3.1. The Mitochondrial Genome Structure and Characteristics
3.2. Nucleotide Composition Analysis
3.3. Protein-Coding Gene and Codon Preference Analysis
3.4. Nucleotide Diversity (Pi) and Nonsynonymous (Ka)/Synonymous (Ks) Mutation Rate Ratios
3.5. Analysis of Simple Sequence Repeats and Dispersed Repeats
3.6. Transfer and Ribosomal RNA Genes
3.7. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pyron, R.A.; Burbrink, F.T.; Colli, G.R.; De Oca, A.N.M.; Vitt, L.J.; Kuczynski, C.A.; Wiens, J.J. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol. Phylogenetics Evol. 2011, 58, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Lanza, B. A new specics of Lycodon from the Philippines, with a key to the genus (Reptilia Serpentes Colubridae). Trop. Zool. 1999, 12, 89–104. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, L.; Liu, Q.; Li, C.; Pyron, R.A.; Jiang, K.; Burbrink, F.T. Lycodon and Dinodon: One genus or two? Evidence from molecular phylogenetics and morphological comparisons. Mol. Phylogenetics Evol. 2013, 68, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Jiang, K.; Yan, F.; Zhang, Y. Amphibians and Reptiles in Tibet—Diversity and Evolution; Science Press: Beijing, China, 2020. [Google Scholar]
- Guo, P.; Che, J. Snakes in Qinghai-Xizang Plateau; Science Press: Beijing, China, 2024; p. 229. [Google Scholar]
- Li, P.; Zhao, E.; Dong, B. Amphibians and Reptiles of Tibet; Science Press: Beijing, China, 2010. [Google Scholar]
- Wang, K.; Ren, J.; Chen, H.; Lyu, Z.; Guo, X.; Jiang, K.; Chen, J.; Li, J.; Guo, P.; Wang, Y. The updated checklists of amphibians and reptiles of China. Biodivers. Sci. 2020, 28, 189. [Google Scholar]
- Zhenyu, L.; Jian, L.; Qilang, W.; Baocheng, Y.; Liang, Z. Lycodon fasciatus: A Snake New Record to Guangdong Province, China. Chin. J. Zool. 2012, 47, 116–118. [Google Scholar]
- Zhao, E.-M. Fauna Sinica. Reptilia Vol. III. Squamata. Serpentes; Science Press: Beijing, China, 1998. [Google Scholar]
- Siler, C.D.; Oliveros, C.H.; Santanen, A.; Brown, R.M. Multilocus phylogeny reveals unexpected diversification patterns in Asian wolf snakes (genus Lycodon). Zool. Scr. 2013, 42, 262–277. [Google Scholar] [CrossRef]
- Vogel, G.; David, P.; Pauwels, O.S.G.; Sumontha, M.; Norval, G.; Hendrix, R.; Vu, N.T.; Ziegler, T. A revision of Lycodon ruhstrati (Fischer 1886) auctorum (Squamata Colubridae), with the description of a new species from Thailand and a new subspecies from the Asian mainland. Zool. Scr. 2009, 22, 131–182. [Google Scholar]
- Lei, J.; Sun, X.; Jiang, K.; Vogel, G.; Booth, D.T. Multilocus Phylogeny of Lycodon and the Taxonomic Revision of Oligodon multizonatum. Asian Herpetol. Res. 2014, 5, 26–37. [Google Scholar]
- Wang, J.; Qi, S.; Lyu, Z.-T.; Zeng, Z.-C.; Wang, Y.-Y. A new species of the genus Lycodon (Serpentes, Colubridae) from Guangxi, China. ZooKeys 2020, 954, 85. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, L.; Wang, X.; Burbrink, F.T.; Huang, S.; Jiang, Z.; Cui, Z.; Su, Z.; He, B.; Huang, R.; et al. Confirmation of Distribution of Twin-spotted Wolf Snake, Lycodon jara (Shaw, 1802) (Serpentes, Colubridae) in China, with Detailed Morphological Description. Asian Herpetol. Res. 2024, 15, 225–231. [Google Scholar] [CrossRef]
- Hebert, S.L.; Lanza, I.R.; Nair, K.S. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech. Ageing development 2011, 131, 451–462. [Google Scholar] [CrossRef]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pei, J.; Bao, P.; Cao, M.; Guo, X. Mitogenomic diversity and phylogeny analysis of yak (Bos grunniens). BMC Genom. 2021, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Braband, A.; Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenetics Evol. 2013, 66, 776–789. [Google Scholar] [CrossRef] [PubMed]
- Madsen, O.; Scally, M.; Douady, C.J.; Kao, D.J.; DeBry, R.W.; Adkins, R.; Amrine, H.M.; Stanhope, M.J.; de Jong, W.W.; Springer, M.S. Parallel adaptive radiations in two major clades of placental mammals. Nature 2001, 409, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Arnason, U.; Gullberg, A.; Janke, A. Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates. Mol. Biol. Evol. 1997, 14, 762–768. [Google Scholar] [CrossRef]
- Hua, Y.; Xu, Y.; Zhang, W.; Li, B. Complete mitochondrial genome reveals the phylogenetic relationship of sable Martes zibellina linkouensis. Mitochondrial DNA Part A 2015, 28, 263–264. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Romanenkov, K.V. A new method of evaluating genome assemblies based on kmers frequencies. Mosc. Conf. Comput. Mol. Biol. 2017, 1–24. [Google Scholar] [CrossRef]
- Birney, E. GeneWise and Genomewise. Genome Res. 2004, 14, 988. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870. [Google Scholar]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Schleiermacher, C. REPuter: Fast computation of maximal repeats in complete genomes. Bioinformatics 1999, 15, 426–427. [Google Scholar] [CrossRef]
- Robinson, D.F.; Foulds, L.R. Comparison of phylogenetic trees. Math. Biosci. 1981, 53, 131–147. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Li, W.X.; Jakovli, I.; Zou, H.; Zhang, J. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2018, 20, 348–355. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef]
- Ranwez, V.; Douzery, E.J.; Cambon, C.; Chantret, N.; Delsuc, F. MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol. Biol. Evol. 2018, 35, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Haeseler, A.V.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Quang, M.B.; Schmidt, H.A.; Olga, C.; Dominik, S.; Woodhams, M.D.; Arndt, V.H.; Robert, L. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 5, 1530–1534. [Google Scholar]
- Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef]
- Sorenson, M.D.; Ast, J.C.; Dimcheff, D.E.; Yuri, T.; Mindell, D.P. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogenetics Evol. 1999, 12, 105–114. [Google Scholar] [CrossRef]
- Wolstenholme, D.R. Animal Mitochondrial DNA: Structure and Evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar]
- He, M.; Feng, J.; Zhao, E. The complete mitochondrial genome of the Sichuan hot-spring keel-back (Thermophis zhaoermii; Serpentes: Colubridae) and a mitogenomic phylogeny of the snakes. Mitochondrial DNA 2010, 21, 8–18. [Google Scholar] [CrossRef]
- Sun, H.; Li, E.; Sun, L.; Yan, P.; Xue, H.; Zhang, F.; Wu, X. The complete mitochondrial genome of the greater green snake Cyclophiops major (Reptilia, Serpentes, Colubridae). Mitochondrial DNA Part B 2017, 2, 309–310. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Li, H.; Shao, C. The complete mitochondrial genome of Opisthotropis latouchii (Squamata: Colubridae). Mitochondrial DNA Part B 2019, 4, 1437–1438. [Google Scholar] [CrossRef]
- Weber, C.C.; Hurst, L.D. Intronic AT Skew is a Defendable Proxy for Germline Transcription but does not Predict Crossing-Over or Protein Evolution Rates in Drosophila melanogaster. J. Mol. Evol. 2010, 71, 415. [Google Scholar] [CrossRef] [PubMed]
- Chris, S.; Francesco, F.; Andrew, B.; Bernie, C.; Hong, L.; Paul, F. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 1994, 6, 651–701. [Google Scholar]
- Quinn, T.W.; Wilson, A.C. Sequence evolution in and around the mitochondrial control region in birds. J. Mol. Evol. 1993, 37, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ki, J.S.; Hwang, D.S.; Park, T.J.; Han, S.H.; Lee, J.S. A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol. Biol. Rep. 2010, 37, 1943–1955. [Google Scholar] [CrossRef]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Tang, B.-P.; Xin, Z.-Z.; Li, Y.-T.; Zha, X.-H.; Zhang, D.-Z.; Sun, Y.; Liu, Q.-N.; Ma, Y.-F. Characterization of the complete mitochondrial genome of Helice latimera and its phylogenetic implications in Brachyura. Genomics 2020, 112, 5180–5187. [Google Scholar] [CrossRef]
- Alexander, D.; Frank, J.; Marwa, A.A.; Bernhart, S.H.; Franziska, R.; Stadler, P.F.; Martin, M.; Matthias, B. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 20, 10543–10552. [Google Scholar]
- Bu, Y.; Wu, X.; Sun, N.; Man, Y.; Jing, Y. Codon usage bias predicts the functional MYB10 gene in Populus. J. Plant Physiol. 2021, 265, 153491. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, C.D.; Montooth, K.L.; Rand, D.M. Positive and negative selection on the mitochondrial genome. Trends Genet. 2007, 23, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Dubey, B.; Meganathan, P.R.; Haque, I. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae). Mol. Biol. Rep. 2012, 39, 7403–7412. [Google Scholar] [CrossRef]
- Sun, C.H.; Liu, H.Y.; Lu, C.H. Five new mitogenomes of Phylloscopus (Passeriformes, Phylloscopidae): Sequence, structure, and phylogenetic analyses. Int. J. Biol. Macromol. 2020, 146, 638–647. [Google Scholar] [CrossRef]
- Saccone, C.; Giorgi, C.D.; Gissi, C.; Pesole, G.; Reyes, A. Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system. Gene 1999, 238, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Li, E. Phylogenetic Relationships of Serpentes Based on Mitochondrial Genomes. Ph.D. Thesis, Anhui Normal University, Wuhu, China, 2015. [Google Scholar]
- Watanabe, Y.I.; Suematsu, T.; Ohtsuki, T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front. Genet. 2014, 5, 109. [Google Scholar] [CrossRef]
- Kumazawa, Y.; Ota, H.; Nishida, M.; Ozawa, T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 1998, 150, 313. [Google Scholar] [CrossRef]
- Dong, S.; Kumazawa, Y. Complete Mitochondrial DNA Sequences of Six Snakes: Phylogenetic Relationships and Molecular Evolution of Genomic Features. J. Mol. Evol. 2005, 61, 12–22. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Castoe, T.A.; Austin, C.C.; Burbrink, F.T.; Herron, M.D.; Mcguire, J.A.; Parkinson, C.L.; Pollock, D.D. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol. Biol. 2007, 7, 123. [Google Scholar] [CrossRef]
- Wang, G.; He, S.; Huang, S.; He, M.; Zhao, E. The complete mitochondrial DNA sequence and the phylogenetic position of Achalinus meiguensis (Reptilia: Squamata). Sci. Bull. 2009, 54, 1713–1724. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Zhou, K. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships. BMC Genom. 2008, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, S. New progress in snake mitochondrial gene rearrangement. Mitochondrial DNA 2009, 20, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hou, M.; Cai, B.; Li, S.; Zhang, Z.; Yu, R.; Rao, D.; Zhang, L. Taxonomic status of Lycodon subcinctus sensu lato in China (Serpentes, Colubridae). Herpetozoa 2023, 36, 307–316. [Google Scholar] [CrossRef]
- Janssen, H.Y.; Pham, C.T.; Ngo, H.T.; Le, M.D.; Ziegler, T. A new species of Lycodon Boie, 1826 (Serpentes, Colubridae) from northern Vietnam. ZooKeys 2019, 875, 1–29. [Google Scholar] [CrossRef]
Species | Place of Collection |
---|---|
L. subcinctus | Zhexiang Town, Wangmo County, Guizhou Province, China |
L. rosozonatus | Diaoluoshan National Forest Park, Lingshui Li Autonomous County, Hainan Province, China |
L. fasciatus | Daweshan, Pingbian County, Yunnan Province, China |
L. gongshan | Wulaoshan, Lincang City, Yunnan Province, China |
L. futsingensis | Danzhu Township, Xianju County, Zhejiang Province, China |
L. aulicus | Daweshan, Pingbian County, Yunnan Province, China |
Gene | Position | Size (bp) | Start Codon | Stop Codon | Strand | |
---|---|---|---|---|---|---|
From | To | |||||
trnF | 1/1/1/1/1/1 | 65/66/67/64/67/67 | 65/66/67/64/67/67 | H/H/H/H/H/H | ||
rrn12 | 66/65/66/63/65/66 | 991/995/991/990/992/991 | 926/931/926/928/928/926 | H/H/H/H/H/H | ||
trnV | 992/996/992/991/993/992 | 1055/1059/1055/1054/1056/1055 | 64/64/64/64/64/64 | H/H/H/H/H/H | ||
rrn16 | 1056/1060/1056/1060/1065/1056 | 2525/2533/2522/2516/2530/2522 | 1470/1474/1467/1467/1466/1467 | H/H/H/H/H/H | ||
nad1 | 2526/2534/2523/2517/2531/2523 | 3490/3497/3486/3481/3494/3486 | 965/964/964/965/964/964 | ATA/ATA/ATA/ATA/ATA/ATA | TA-/T--/T--/TA-/T--/T-- | H/H/H/H/H/H |
trnl | 3491/3498/3487/3482/3495/3487 | 3555/3563/3552/3547/3559/3552 | 65/66/66/66/65/66 | H/H/H/H/H/H | ||
trnL | 4641/4575/4645/4601/4719/4645 | 4713/4647/4717/4673/4791/4717 | 73/73/73/73/73/73 | H/H/H/H/H/H | ||
trnQ | 4715/4649/4719/4675/4793/4719 | 4785/4719/4789/4745/4863/4789 | 71/71/71/71/71/71 | L/L/L/L/L/L | ||
trnM | 4787/4721/4791/4747/4865/4791 | 4850/4783/4854/4809/4927/4854 | 64/63/64/63/63/64 | H/H/H/H/H/H | ||
nad2 | 4851/4784/4855/4810/4928/4855 | 5877/5813/5884/5839/5957/5884 | 1027/1030/1030/1030/1030/1030 | ATT/ATT/ATT/ATT/ATT/ATT | T--/T--/T--/T--/T--/T-- | H/H/H/H/H/H |
trnW | 5878/5814/5885/5840/5858/5885 | 5942/5878/5948/5903/6022/5948 | 65/65/64/64/65/64 | H/H/H/H/H/H | ||
trnA | 5943/5880/5951/5909/6024/5951 | 6007/5944/6015/5973/6088/6015 | 65/65/65/65/65/65 | L/L/L/L/L/L | ||
trnN | 6008/5945/6016/5974/6089/6016 | 6079/6016/6087/6045/6160/6087 | 72/72/72/72/72/72 | L/L/L/L/L/L | ||
trnC | 6115/6052/6122/6081/6195/6112 | 6174/6111/6181/6140/6254/6184 | 60/60/60/60/60/60 | L/L/L/L/L/L | ||
trnY | 6175/6112/6182/6141/6255/6182 | 6236/6173/6244/6202/6316/6244 | 62/62/63/62/62/63 | L/L/L/L/L/L | ||
cox1 | 6238/6175/6246/6204/6318/6246 | 7783/7721/7792/7750/7864/7792 | 1546/1547/1547/1547/1547/1547 | GTG/GTG/GTG/GTG/GTG/GTG | T--/T--/TA-/TA-/TA-/TA- | H/H/H/H/H/H |
trnS2 | 7830/7767/7838/7796/7910/7838 | 7895/7832/7903/7861/7975/7903 | 66/66/66/66/66/66 | L/L/L/L/L/L | ||
trnD | 7896/7833/7904/7862/7976/7904 | 7958/7895/7967/7924/8038/7967 | 63/63/64/63/63/64 | H/H/H/H/H/H | ||
cox2 | 7959/7896/7968/7925/8039/7968 | 8643/8580/8652/8609/8723/8652 | 685/685/685/685/685/685 | ATG/ATG/ATG/ATG/ATG/ATG | T--/T--/T--/T--/T--/T-- | H/H/H/H/H/H |
trnK | 8644/8581/8653/8610/8724/8653 | 8705/8643/8714/8671/8786/8714 | 62/63/63/62/63/62 | H/H/H/H/H/H | ||
atp8 | 8706/8645/8716/8673/8788/8716 | 8864/8803/8874/8831/8946/8874 | 159/159/159/159/159/159 | ATG/ATG/ATG/ATG/ATG/ATG | TAA/TAA/TAA/TAA/TAA/TAA | H/H/H/H/H/H |
atp6 | 8855/8794/8865/8822/8937/8865 | 9535/9474/9545/9502/9617/9545 | 681/681/681/681/681/681 | ATG/ATG/ATG/ATG/ATG/ATG | TAA/TAA/TAA/TAA/TAA/TAA | H/H/H/H/H/H |
cox3 | 9535/9474/9545/9502/9617/9545 | 10318/10257/10328/10285/10400/10328 | 784/784/784/784/784/784 | ATG/ATG/ATG/ATG/ATG/ATG | T--/T--/T--/T--/T--/T-- | H/H/H/H/H/H |
trnG | 10319/10258/10329/10286/10401/10329 | 10379/10318/10389/10346/10461/10389 | 61/61/61/61/61/61 | H/H/H/H/H/H | ||
nad3 | 10380/10319/10390/10347/10462/10390 | 10722/10661/10732/10689/10804/10732 | 343/343/343/343/343/343 | ATT/ATT/ATT/ATT/ATT/ATT | T--/T--/T--/T--/T--/T-- | H/H/H/H/H/H |
trnR | 10723/10662/10733/10690/10805/10733 | 10786/10726/10797/10754/10869/10797 | 64/65/65/65/65/65 | H/H/H/H/H/H | ||
nad4L | 10787/10727/10798/10755/10870/10798 | 11077/11017/11088/11045/11160/11088 | 291/291/291/291/291/291 | ATG/ATG/ATG/ATG/ATG/ATG | TAA/TAA/TAA/TAA/TAA/TAA | H/H/H/H/H/H |
nad4 | 11077/11017/11088/11045/11160/11088 | 12413/12354/12424/12381/12497/12424 | 1337/1338/1337/1337/1338/1337 | ATG/ATG/ATG/ATG/ATG/ATG | TA-/TAA/TA-/TA-/TAA/TA- | H/H/H/H/H/H |
trnH | 12414/12355/12425/12382/12498/12425 | 12479/12420/12488/12446/12563/12488 | 66/66/64/65/66/64 | H/H/H/H/H/H | ||
trnS1 | 12480/12421/12489/12447/12564/12489 | 12536/12478/12545/12503/12621/12545 | 57/58/57/57/58/57 | H/H/H/H/H/H | ||
trnL | 12534/12476/12543/12501/12619/12543 | 12604/12546/12613/12571/12689/12613 | 71/71/71/71/71/71 | H/H/H/H/H/H | ||
nad5 | 12605/12547/12614/12572/12690/12614 | 14374/14319/14383/14341/14462/14383 | 1770/1773/1770/1770/1773/1770 | ATG/ATG/ATG/ATG/ATG/ATG | TAA/TAA/TAA/TAA/AGG/TAA | H/H/H/H/H/H |
nad6 | 14370/14311/14379/14337/14454/14379 | 14873/14808/14882/14837/14954/14882 | 504/498/504/501/501/504 | ATG/ATG/ATG/ATG/ATG/ATG | AGG/AGG/AGG/AGG/AGA/AGG | L/L/L/L/L/L |
trnE | 14883/14818/14892/14847/14964/14892 | 14944/14879/14953/14908/15025/14953 | 62/62/62/62/62/62 | L/L/L/L/L/L | ||
Cyt b | 14945/14880/14954/14909/15028/14954 | 16061/15996/16070/16025/16144/16070 | 1117/1117/1117/1117/1117/1117 | ATG/ATG/ATG/ATG/ATG/ATG | T--/T--/T--/T--/T--/T-- | H/H/H/H/H/H |
trnT | 16062/15997/16071/16026/16145/16071 | 16125/16062/16135/16089/16210/16135 | 64/66/65/64/66/65 | H/H/H/H/H/H | ||
trnP | 16126/16063/16136/16090/16211/16136 | 16188/16124/16196/16151/16272/16197 | 63/62/61/62/62/62 | L/L/L/L/L/L | ||
CR1 | 16189/16125/16197/16152/16273/16198 | 17235/17143/17261/17175/17298/17262 | 1047/1019/1065/1024/1026/1065 | |||
CR2 | 3555/3564/3553/3548/3560/3553 | 4640/4574/4644/4600/4718/4644 | 1086/1011/1092/1053/1158/1092 |
Species | trnL2-trnQ (bp) | trnQ-trnM (bp) | trnW-trnA (bp) | trnN-trnC (bp) | trnY-cox1 (bp) | cox1-trnS2 (bp) | trnK-atp8 (bp) | nad6-trnE (bp) | trnE-cytb (bp) | Count |
---|---|---|---|---|---|---|---|---|---|---|
L. subcinctus | 1 | 1 | / | 35 | 1 | 46 | / | 9 | / | 6 |
L. rosozonatus | 1 | 1 | 1 | 35 | 1 | 45 | 1 | 9 | / | 8 |
L fasciatus | 1 | 1 | 5 | 35 | 1 | 45 | 1 | 9 | / | 8 |
L. gongshan | 1 | 1 | 2 | 34 | 1 | 45 | 1 | 9 | / | 8 |
L. futsingensis | 1 | 1 | 1 | 34 | 1 | 45 | 1 | 9 | 2 | 9 |
Species | atp8-atp6 (bp) | atp6-cox3 (bp) | trnS1-trnL1 (bp) | nad5-nad6 (bp) | nad4L-nad4 (bp) | trnF-rrnS (bp) | Count |
---|---|---|---|---|---|---|---|
L. subcinctus | 10 | 1 | 3 | 5 | 1 | 0 | 5 |
L. rosozonatus | 10 | 1 | 3 | 9 | 1 | 2 | 6 |
L. fasciatus | 10 | 1 | 3 | 5 | 1 | 2 | 6 |
L. gongshan | 10 | 1 | 3 | 5 | 1 | 2 | 6 |
L. futsingensis | 10 | 1 | 3 | 9 | 1 | 3 | 6 |
L. aulicus | 10 | 1 | 3 | 5 | 1 | 2 | 6 |
Species | Whole Genome | AT Skew | GC Skew | PCGs | AT Skew | GC Skew | tRNAs | AT Skew | GC Skew | rRNAs | AT Skew | GC Skew | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (bp) | AT (%) | Size (bp) | AT (%) | Size (bp) | AT (%) | Size (bp) | AT (%) | |||||||||
L. subcinctus | 17,235 | 58.6 | 0.173 | −0.387 | 10,695 | 58.2 | 0.176 | −0.436 | 904 | 58.1 | 0.185 | −0.150 | 2396 | 58.1 | 0.340 | −0.227 |
L. rosozonatus | 17,143 | 59.4 | 0.165 | −0.380 | 10,704 | 59.3 | 0.160 | −0.426 | 910 | 58.1 | 0.174 | −0.168 | 2405 | 59.0 | 0.321 | −0.208 |
L. fasciatus | 17,261 | 58.5 | 0.150 | −0.374 | 10,698 | 58.3 | 0.146 | −0.416 | 907 | 58.1 | 0.184 | −0.163 | 2393 | 58.6 | 0.323 | −0.213 |
L. gongshan | 17,175 | 58.2 | 0.154 | −0.370 | 10,698 | 57.7 | 0.149 | −0.409 | 902 | 58.1 | 0.172 | −0.138 | 2385 | 58.7 | 0.317 | −0.216 |
L. futsingensis | 17,298 | 59.0 | 0.159 | −0.384 | 10,704 | 59.4 | 0.148 | −0.424 | 910 | 57.8 | 0.171 | −0.167 | 2394 | 59.2 | 0.315 | −0.209 |
L. aulicus | 17,262 | 58.5 | 0.150 | −0.374 | 10,698 | 58.3 | 0.146 | −0.414 | 907 | 58.1 | 0.184 | −0.163 | 2393 | 58.6 | 0.323 | −0.213 |
AA | Codon | Count | RSCU | AA | Codon | Count | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU(F) | 85/89/84/96/86/87 | 0.86/0.88/0.83/0.92/0.87/0.88 | Tyr | UAU(Y) | 38/27/38/40/41/40 | 0.74/0.51/0.7/0.75/0.77/0.75 |
Phe | UUC(F) | 113/114/119/112/111/110 | 1.14/1.12/1.17/1.08/1.13/1.12 | Tyr | UAC(Y) | 65/78/71/64/66/66 | 1.26/1.49/1.3/1.25/1.23/1.25 |
Leu | UUA(L) | 86/81/84/81/80/80 | 0.90/0.87/0.90/0.88/0.83/0.83 | Stop codon | UAA | 4/4//4/4/4/4 | 3.20/2.67/3.20/2.67/3.2/3.20 |
Leu | UUG(L) | 20/20/17/23/19/19 | 0.21/0.22/0.18/0.25/0.20/0.20 | Stop codon | UAG | 0/0/0/0/0/0 | 0/0/0/0/0/0 |
Leu | CUU(L) | 59/57/69/70/76/78 | 0.62/0.61/0.74/0.76/0.79/0.81 | His | CAU(H) | 13/20/15/13/15/17 | 0.25/0.37/0.28/0.25/0.28/0.31 |
Leu | CUC(L) | 63/70/64/55/70/69 | 0.66/0.75/0.68/0.59/0.73/0.72 | His | CAC(H) | 90/88/92/91/93/92 | 1.75/1.63/1.72/1.75/1.72/1.69 |
Leu | CUA(L) | 316/297/283/294/286/286 | 3.32/3.20/3.02/3.18/2.98/2.98 | Gln | CAA(Q) | 91/86/83/84/86/86 | 1.88/1.79/1.71/1.79/1.81/1.81 |
Leu | CUG(L) | 27/32/46/32/45/44 | 0.28/0.34/0.49/0.35/0.47/0.46 | Gln | CAG(Q) | 6/10//14/10/9/9 | 0.12/0.21/0.29/0.21/0.19/0.19 |
Ile | AUU(I) | 121/149/131/150/132/133 | 0.81/0.96/0.91/0.99/0.91/0.91 | Asn | AAU(N) | 34/46/32/44/33/33 | 0.45/0.58/0.44/0.55/0.44/0.44 |
Ile | AUC(I) | 177/161/158/154/158/158 | 1.19/1.04/1.09/1.01/1.09/1.09 | Asn | AAC(N) | 117/112/115/117/116/116 | 1.55/1.42/1.56/1.45/1.56/1.56 |
Met | AUA(M) | 232/241/220/242/228/229 | 1.74/1.75/1.66/1.72/1.70/1.71 | Lys | AAA(K) | 91/95/87/90/86/87 | 1.80/1.90/1.74/1.82/1.74/1.76 |
Met | AUG(M) | 35/34/45/39/40/39 | 0.26/0.25/0.34/0.28/0.30/0.29 | Lys | AAG(K) | 10/5//13/9/13/12 | 0.20/0.10/0.26/0.18/0.26/0.24 |
Val | GUU(V) | 30/33/51/40/55/55 | 0.75/0.78/1.15/0.98/1.30/1.30 | Asp | GAU(D) | 11/13/14/13/12/12 | 0.37/0.47/0.50/0.47/0.43/0.43 |
Val | GUC(V) | 38/35/38/34/25/25 | 0.95/0.83/0.86/0.83/0.59/0.59 | Asp | GAC(D) | 49/42/42/42/44/44 | 1.63/1.53/0.50/1.53/1.57/1.57 |
Val | GUA(V) | 70/74/68/67/70/70 | 1.75/1.75/1.54/1.63/1.66/1.66 | Glu | GAA(E) | 74/80/71/83/74/74 | 1.61/1.70/1.58/1.78/1.61/1.61 |
Val | GUG(V) | 22/27/20/23/19/19 | 0.55/0.64/0.45/0.56/0.45/0.45 | Glu | GAG(E) | 18/14/19/10/18/18 | 0.39/0.30/0.42/0.22/0.39/0.39 |
Ser | UCU(S) | 44/39/30/39/28/27 | 1.04/0.92/0.69/0.89/0.63/0.61 | Cys | UGU(C) | 12/13/14/12/14/14 | 0.74/0.73/0.88/0.73/0.85/0.85 |
Ser | UCC(S) | 51/59/63/64/73/72 | 1.20/1.39/1.45/1.47/1.65/1.64 | Cys | UGC(C) | 22/21/18/21/19/19 | 1.26/1.27/1.12/1.27/1.15/1.15 |
Ser | UCA(S) | 106/103/107/107/110/109 | 2.49/2.42/2.46/2.45/2.48/2.48 | Trp | UGA(W) | 77/87/80/83/81/80 | 1.60/1.76/1.63/1.69/1.65/1.63 |
Ser | UCG(S) | 7/9//6/5/5/6 | 0.16/0.21/0.14/0.11/0.11/0.14 | Trp | UGG(W) | 12/19/18/15/17/18 | 0.40/0.24/0.37/0.31/0.35/0.37 |
Pro | CCU(P) | 14/20/16/18/19/18 | 0.29/0.41/0.33/0.38/0.40/0.38 | Arg | CGU(R) | 4/3//5/8/5/5 | 0.27/0.21/0.33/0.53/0.33/0.33 |
Pro | CCC(P) | 49/33/60/47/44/45 | 1.02/0.68/1.23/0.98/0.94/0.96 | Arg | CGC(R) | 12/13/14/9/13/13 | 0.80/0.90/0.93/0.60/0.85/0.85 |
Pro | CCA(P) | 125/128/109/123/118/118 | 2.59/2.65/2.24/2.56/2.51/2.51 | Arg | CGA(R) | 37/37/33/38/37/37 | 2.47/2.55/2.20/2.53/2.43/2.43 |
Pro | CCG(P) | 5/12//10/4/7/7 | 0.10/0.25/0.21/0.08/0.15/0.15 | Arg | CGG(R) | 7/5//8/5/6/6 | 0.47/0.34/0.53/0.33/0.39/0.39 |
Thr | ACU(T) | 40/51/50/56/48/47 | 0.35/0.47/0.45/0.52/0.44/0.44 | Ser | AGU(S) | 11/12//12/13/9/9 | 0.26/0.28/0.28/0.30/0.20/0.20 |
Thr | ACC(T) | 186/168/176/157/160/158 | 1.61/1.56/1.59/1.46/1.48/1.46 | Ser | AGC(S) | 36/33/43/34/41/41 | 0.85/0.78/0.99/0.78/0.92/0.93 |
Thr | ACA(T) | 222/208/207/204/212/212 | 1.92/1.93/1.87/1.90/1.96/1.96 | Stop codon | AGA | 1/1/0/1/0/0 | 0.80/0.67/0/0.67/0/0 |
Thr | ACG(T) | 5/15/9/12/13/15 | 0.13/0.05/0.08/0.11/0.12/0.14 | Stop codon | AGG | 0/1//1/1/1/1 | 0/0.67/0.80/0.67/0.80/0.80 |
Ala | GCU(A) | 25/39/39/38/45/45 | 0.45/0.68/0.66/0.65/0.73/0.73 | Gly | GGU(G) | 22/29/14/23/22/22 | 0.44/0.59/0.28/0.47/0.44/0.44 |
Ala | GCC(A) | 105/93/100/96/104/106 | 1.88/1.61/1.68/1.64/1.70/1.72 | Gly | GGC(G) | 58/42/52/55/56/56 | 1.15/0.85/1.05/1.12/1.13/1.13 |
Ala | GCA(A) | 85/97/93/96/91/91 | 1.52/1.68/1.56/1.64/1.49/1.47 | Gly | GGA(G) | 76/87/67/74/75/75 | 1.51/1.77/1.35/1.51/1.51/1.51 |
Ala | GCG(A) | 9/2//6/4/5/5 | 0.16/0.03/0.10/0.07/0.08/0.08 | Gly | GGG(G) | 45/39/66/44/46/46 | 0.90/0.79/1.33/0.90/0.92/0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Lu, A.; Sun, K. Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny. Genes 2025, 16, 493. https://doi.org/10.3390/genes16050493
Zhu F, Lu A, Sun K. Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny. Genes. 2025; 16(5):493. https://doi.org/10.3390/genes16050493
Chicago/Turabian StyleZhu, Fei, Anqiong Lu, and Ke Sun. 2025. "Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny" Genes 16, no. 5: 493. https://doi.org/10.3390/genes16050493
APA StyleZhu, F., Lu, A., & Sun, K. (2025). Mitochondrial Genomes of Six Snakes (Lycodon) and Implications for Their Phylogeny. Genes, 16(5), 493. https://doi.org/10.3390/genes16050493