Phenotypes and the Importance of Genetic Analysis in Adult Patients with Nephrolithiasis and/or Nephrocalcinosis: A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
- Age ≥ 18 years;
- Kidney stone disease: NL and/or NC;
- Onset of kidney stone disease before 40 years of age;
- The presence of at least one of the following: family history of NL and/or NC, indicative phenotype (such as distal renal tubular acidosis, particular stone composition), recurrent NL, and chronic kidney disease (CKD).
- Patients diagnosed with a known non-genetic cause of kidney-stone-related disease.
2.2. Clinical Assessments
2.3. Genetic Testing
- Genes related to calcium metabolism: ADCY10, CASR, CLCN5, CLDN16, CLDN19, CYP24A1, GNA11, HNF4A, OCRL, VDR;
- Genes related to renal tubular acidosis: ATP6V0A4, ATP6V1B1, SLC4A1, CA2, FOXI1;
- Genes related to phosphate metabolism: SLC9A3R1, ALPL, SLC34A1, SLC34A3;
- Genes related to uric acid metabolism: UMOD, HPRT1, PRPS1, SLC22A12, SLC2A9;
- Bartter syndrome genes: BSND, CLCNKA, CLCNKB, KCNJ1, MAGED2, SLC12A1;
- Cystinuria genes: SLC3A1, SLC7A9;
- Genes related to oxalate metabolism: AGXT, GRHPR, HOGA1, SLC26A1;
- Other genes: genes related to xanthinuria (XDH and MOCOS genes), Molybdenum cofactor deficiency (MOCS1 and MOCS2 genes), Molybdenum cofactor deficiency C (GPHN gene), adenine phosphoribosyltransferase deficiency (APRT gene), and 3-methylglutaconic aciduria type VIIB (CLPB gene).
2.4. Study Endpoints
- -
- To review the genotype and phenotype of hereditary NL and/or NC in adult patients from a single center;
- -
- To compare the clinical and biological characteristics of patients with positive and negative genetic diagnosis;
- -
- To evaluate the clinical utility of molecular genetic diagnosis.
2.5. Statistical Analysis
3. Results
3.1. Study Cohort and Genetic Analysis
3.2. Genotype and Phenotype of the Positive Patients
3.2.1. Mendelian Forms of NL/NC
Cystinuria
Hereditary Distal Renal Tubular Acidosis
Dent Disease
Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis
Infantile Hypercalcemia Type 1
Primary Hyperoxaluria Type 1
Bartter Syndrome Type 2
Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD)
3.2.2. Patients with a Possible Genetic Diagnosis for NL/NC
3.2.3. P/LP Monoallelic Variants Predisposing to NL/NC
3.2.4. Monoallelic VUS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chewcharat, A.; Curhan, G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis 2021, 49, 27–39. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zengb, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ge, J.; Han, W.; Wang, D.; Zhao, Y.; Shen, Y.; Chen, J.; Chen, D.; Wu, J.; Shen, N.; et al. Risk factors for kidney stone disease recurrence: A comprehensive meta-analysis. BMC Urol. 2022, 22, 62. [Google Scholar] [CrossRef]
- Daudon, M.; Jungers, P.; Bazin, D.; Williams, J.C., Jr. Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 2018, 46, 459–470. [Google Scholar] [CrossRef]
- Hao, X.; Shao, Z.; Zhang, N.; Jiang, M.; Cao, X.; Li, S.; Guan, Y.; Wang, C. Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture. Nat. Commun. 2023, 14, 7498. [Google Scholar] [CrossRef]
- Halbritter, J. Genetics of kidney stone disease-Polygenic meets monogenic. Nephrol. Ther. 2021, 17S, S88–S94. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 1997, 8, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, H.H.; Yencilek, F.; Eryildirim, B.; Sarica, K. Family history in stone disease: How important is it for the onset of the disease and the incidence of recurrence? Urol. Res. 2010, 38, 105–109. [Google Scholar] [CrossRef]
- Goldfarb, D.S.; Avery, A.R.; Beara-Lasic, L.; Duncan, G.E.; Goldberg, J. A Twin Study of Genetic Influences on Nephrolithiasis in Women and Men. Kidney Int. Rep. 2018, 4, 535–540. [Google Scholar] [CrossRef]
- Geraghty, R.; Lovegrove, C.; Howles, S.; Sayer, J.A. Role of Genetic Testing in Kidney Stone Disease: A Narrative Review. Curr. Urol. Rep. 2024, 25, 311–323. [Google Scholar] [CrossRef]
- Hill, F.; Sayer, J.A. Precision medicine in renal stone-formers. Urolithiasis 2019, 47, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Skolarikos, A.; Jung, H.; Neisius, A.; Petřík, A.; Somani, B.; Tailly, T.; Gambaro, G. Uroweb-European Association of Urology [Internet]. EAU Guidelines on Urolithiasis. Available online: https://uroweb.org/guidelines/urolithiasis (accessed on 27 August 2024).
- American Urological Association Kidney Stones: Medical Mangement Guideline. Available online: https://www.auanet.org/guidelines-and-quality/guidelines/kidney-stones-medical-mangement-guideline (accessed on 27 August 2024).
- Ferraro, P.M.; D’Addessi, A.; Gambaro, G. When to suspect a genetic disorder in a patient with renal stones, and why. Nephrol. Dial. Transplant. 2013, 28, 811–820. [Google Scholar] [CrossRef]
- Edvardsson, V.O.; Goldfarb, D.S.; Lieske, J.C.; Beara-Lasic, L.; Anglani, F.; Milliner, D.S.; Palsson, R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 2013, 28, 1923–1942. [Google Scholar] [CrossRef]
- Policastro, L.J.; Saggi, S.J.; Goldfarb, D.S.; Weiss, J.P. Personalized Intervention in Monogenic Stone Formers. J. Urol. 2018, 199, 623–632. [Google Scholar] [CrossRef]
- Halbritter, J.; Baum, M.; Hynes, A.M.; Rice, S.J.; Thwaites, D.T.; Gucev, Z.S.; Fisher, B.; Spaneas, L.; Porath, J.D.; Braun, D.A.; et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 2015, 26, 543–551. [Google Scholar] [CrossRef]
- Cogal, A.G.; Arroyo, J.; Shah, R.J.; Reese, K.J.; Walton, B.N.; Reynolds, L.M.; Kennedy, G.N.; Seide, B.M.; Senum, S.R.; Baum, M.; et al. Comprehensive Genetic Analysis Reveals Complexity of Monogenic Urinary Stone Disease. Kidney Int. Rep. 2021, 6, 2862–2884. [Google Scholar] [CrossRef]
- Anderegg, M.A.; Olinger, E.G.; Bargagli, M.; Geraghty, R.; Taylor, L.; Nater, A.; Bruggmann, R.; Sayer, J.A.; Vogt, B.; Schaller, A.; et al. Prevalence and characteristics of genetic disease in adult kidney stone formers. Nephrol. Dial. Transplant. 2024, 39, 1426–1441. [Google Scholar] [CrossRef]
- Santoro, G.; Lombardi, G.; Andreola, S.; Salvagno, G.L.; Treccani, M.; Locatelli, E.; Ferraro, P.M.; Lippi, G.; Malerba, G.; Gambaro, G. Association analysis of 10 candidate genes causing Mendelian calcium nephrolithiasis in the INCIPE study: A South European general population cohort. Clin. Kidney J. 2023, 16, 521–527. [Google Scholar] [CrossRef]
- Schönauer, R.; Scherer, L.; Nemitz-Kliemchen, M.; Hagemann, T.; Hantmann, E.; Seidel, A.; Müller, L.; Kehr, S.; Voigt, C.; Stolzenburg, J.-U.; et al. Systematic assessment of monogenic etiology in adult-onset kidney stone formers undergoing urological intervention–evidence for genetic pretest probability. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 190, 279–288. [Google Scholar] [CrossRef]
- Payne, N.G.; Boddu, S.P.; Wymer, K.M.; Heidenberg, D.J.; Van Der Walt, C.; Mi, L.; Keddis, M.; Stern, K.L. The Use of Genetic Testing in Nephrolithiasis Evaluation: A Retrospective Review from a Multidisciplinary Kidney Stone Clinic. Urology 2024, 193, 20–26. [Google Scholar] [CrossRef]
- KDIGO CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 136–150. [Google Scholar]
- Blueprint Genetics. Available online: https://blueprintgenetics.com/tests/panels/metabolic-disorders/nephrolithiasis-panel/ (accessed on 16 August 2024).
- Invitae. Available online: https://www.invitae.com/us/providers/test-catalog/test-72037 (accessed on 16 August 2024).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Oddsson, A.; Sulem, P.; Helgason, H.; Edvardsson, V.O.; Thorleifsson, G.; Sveinbjörnsson, G.; Haraldsdottir, E.; Eyjolfsson, G.I.; Sigurdardottir, O.; Olafsson, I.; et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 2015, 6, 7975. [Google Scholar] [CrossRef] [PubMed]
- Pearce, R.J.; Sui, W.; Yang, H.; Chi, T.; Stoller, M. The Yield of Genetic Testing in Management of Nephrolithiasis. Urology 2024, 193, 27–34. [Google Scholar] [CrossRef]
- Daga, A.; Majmundar, A.J.; Braun, D.A.; Gee, H.Y.; Lawson, J.A.; Shril, S.; Jobst-Schwan, T.; Vivante, A.; Schapiro, D.; Tan, W.; et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 2018, 93, 204–213. [Google Scholar] [CrossRef]
- Spasiano, A.; Treccani, M.; De Tomi, E.; Malerba, G.; Gambaro, G.; Ferraro, P.M. Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease. Genes 2024, 15, 1470. [Google Scholar] [CrossRef]
- Martins, M.C.; Meyers, A.A.; Whalley, N.A.; Rodgers, A.L. Cystine: A promoter of the growth and aggregation of calcium oxalate crystals in normal undiluted human urine. J. Urol. 2002, 167, 317–321. [Google Scholar] [CrossRef]
- Elkoushy, M.A.; Andonian, S. Characterization of patients with heterozygous cystinuria. Urology 2012, 80, 795–799. [Google Scholar] [CrossRef]
- Rhodes, H.L.; Yarram-Smith, L.; Rice, S.J.; Tabaksert, A.; Edwards, N.; Hartley, A.; Woodward, M.N.; Smithson, S.L.; Tomson, C.; Welsh, G.I.; et al. Clinical and Genetic Analysis of Patients with Cystinuria in the United Kingdom. Clin. J. Am. Soc. Nephrol. 2015, 10, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.; Alhasan, K.A.; Taha Elawad, A.; Salim, S.; Abdelhakim, M.; Nashabat, M.; Raina, R.; Kari, J.; Alfadhel, M. Diversity of Phenotype and Genetic Etiology of 23 Cystinuria Saudi Patients: A Retrospective Study. Front. Pediatr. 2020, 8, 569389. [Google Scholar] [CrossRef]
- Dasgupta, D.; Wee, M.J.; Reyes, M.; Li, Y.; Simm, P.J.; Sharma, A.; Schlingmann, K.P.; Janner, M.; Biggin, A.; Lazier, J.; et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 2014, 25, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, C.; Singh, G.; Moore, B.; Strande, N.T.; Bucaloiu, I.D.; Chang, A.R. Risk of Nephrolithiasis in Adults Heterozygous for SLC34A3 Ser192Leu in an Unselected Health System Cohort. J. Am. Soc. Nephrol. 2023, 34, 1819–1821. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- Sadeghi-Alavijeh, O.; Chan, M.M.Y.; Moochhala, S.H.; Genomics England Research Consortium; Howles, S.; Gale, D.P.; Böckenhauer, D. Rare variants in the sodium-dependent phosphate transporter gene SLC34A3 explain missing heritability of urinary stone disease. Kidney Int. 2023, 104, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, J.-J.; Wei, L.-Y.; Ding, Y.; Liu, M.; Li, W.-J.; Su, C. Biallelic and monoallelic pathogenic variants in CYP24A1 and SLC34A1 genes cause idiopathic infantile hypercalcemia. Orphanet J. Rare Dis. 2024, 19, 126. [Google Scholar] [CrossRef]
- Stephan, R.; Hoppe, B. Genetic kidney stones disease in adults. Nephrol. Dial. Transplant. 2024, 39, 1381–1383. [Google Scholar] [CrossRef]
Characteristics | Positive Genetic Test (N = 29) | Negative Genetic Test (N = 20) | p Value | |
---|---|---|---|---|
General Features | Age at genetic test, years, mean ± SD | 34.86 ± 9.23 | 35.50 ± 11.65 | 0.83 |
Age at onset, years, mean ± SD | 20.52 ± 9.68 | 24.20 ± 10.71 | 0.21 | |
Gender, n (%) | 0.25 | |||
Male | 12 (41.4%) | 11 (55%) | ||
Female | 17 (58.6%) | 9 (45%) | ||
Hypertension, n (%) | 1 (3.4%) | 5 (25%) | 0.03 | |
Diabetes, n (%) | 3 (10.3%) | 0 (0%) | 0.26 | |
Obesity (BMI ≥ 30 kg/m2), n (%) | 2 (6.9%) | 1 (5%) | 1 | |
Dyslipidemia, n (%) | 3 (10.3%) | 1 (5%) | 0.63 | |
Hyperuricemia, n (%) | 5 (17.2%) | 3 (15%) | 0.83 | |
Family history of NL/NC, n (%) | 20 (69%) | 14 (70%) | 0.93 | |
Nephrolithiasis, n (%) | 18 (62.1%) | 19 (95%) | 0.10 | |
Recurrent NL, n (%) | 23 (79.3%) | 15 (75%) | 0.75 | |
Bilateral NL, n (%) | 22 (75.9%) | 13 (65%) | 0.45 | |
Nephrocalcinosis, n (%) | 2 (6.9%) | 1 (5%) | 1 | |
NL + NC, n (%) | 9 (31%) | 0 (0%) | 0.007 | |
CKD, n (%) | 0.03 | |||
G1 | 9 (31%) | 8 (40%) | ||
G2 | 5 (17.2%) | 10 (50%) | ||
G3 | 7 (24.1%) | 1 (5%) | ||
G4 | 4 (13.8%) | 1 (5%) | ||
G5 Dialysis/KT | 2 (6.9%) 2 (6.9%) | 0 (0%) 0 (0%) | ||
Blood Parameters | Total calcium, mg/dL, mean ± SD | 9.36 ± 0.71 | 9.73 ± 0.70 | 0.10 |
Ionized calcium, mg/dL, mean ± SD | 4.04 ± 0.18 | 4.05 ± 0.15 | 0.83 | |
Phosphorus, mg/dL, mean ± SD | 3.40 ± 0.76 | 3.20 ± 0.72 | 0.45 | |
Magnesium (xx) mean ± SD | 2.00 ± 0.26 | 1.96 ± 0.18 | 0.59 | |
Uric acid, mg/dL, mean ± SD | 5.88 ± 1.79 | 5.74 ± 1.25 | 0.76 | |
Intact parathormone, ng/L, median (IQR) | 86.5 (47.5–132.9) | 64.3 (55.6–93.8) | 0.72 | |
eGFR, CKD-EPI no race 2021 equation, mL/min/1.73 m2, median (IQR) | 69.7 (41.0–98.0) | 85.5 (77.0–121.3) | 0.03 | |
Composition | 0.10 | |||
Stone Composition * | Calcium oxalate monohydrate, n (%) | 7 (25.9%) | 3 (15%) | |
Calcium oxalate dihydrate, n (%) | 2 (7.4%) | 2 (10%) | ||
Uric acid, n (%) | 2 (6.9%) | 1 (5%) | ||
Cystine, n (%) | 3 (11.1%) | 0 (0%) | ||
Calcium phosphate, n (%) | 7 (24.1%) | 1 (5%) | ||
Unknown, n (%) | 5 (17.2%) | 11 (55%) | ||
History of surgical interventions | Ureteroscopy with lithotripsy, n (%) | 14 (48.3%) | 9 (45%) | 0.82 |
ESWL, n (%) | 7 (24.1%) | 1 (5%) | 0.11 | |
Percutaneous nephrolithotomy, n (%) | 4 (13.8%) | 3 (15%) | 0.90 | |
Pyelolithotomy, n (%) | 5 (17.2%) | 1 (5%) | 0.37 | |
Nephrectomy, n (%) | 2 (6.9%) | 0 (%) | 1 |
Genetic Diagnosis | Patient No. | Sex/ Age (yrs) | Genetic Testing (Gene, Variant) | Inheritance | Allelic State | ACMG Class | On- Set Age (Yrs) | Clinical Diagnosis Before Genetic Test | Phenotype |
---|---|---|---|---|---|---|---|---|---|
Cystinuria type A | 1 | M/45 | SLC3A1, c.1354C>T, p.Arg452Trp; c.1094G>T, p.Arg365Leu | AR | com het | P | 35 | Cystinuria | Cystine NL, CKD G5, unilateral renal cysts |
2 | F/43 | SLC3A1, c.1400T>C, p.Met437Thr | AR | hom | P | 25 | Cystinuria, polycystic kidney disease (PKD1 mutation c.4175_4176del, p.Val1392Alafs*38) | Cystine NL, CKD G3a, bilateral kidney cysts | |
Cystinuria type B | 3 | M/53 | SLC7A9, c.313G>A, p.Gly105Arg; c.690G>A, p.Trp230* | AR | com het | P, LP | 14 | Cystinuria | Cystine NL, CKD G4 |
4 | F/52 | SLC7A9, c.313G>A, p.Gly105Arg; c.217G>A, p.Gly73Arg | AR/ AD | com het | P, LP | 29 | ESKD, NL | NL, ESKD, hemodialysis | |
Autosomal dominant distal renal tubular acidosis | 5 | F/27 | SLC4A1, c.1765C>T, p.Arg589Cys | AD/AR | het | P | 18 | dRTA | Carbapatite NL, medullary NC, dRTA, CKD G3a |
6 | M/39 | SLC4A1, c.1825G>A, p.Gly609Arg | AD | het | P | 12 | Medullary sponge kidney, dRTA | Carbapatite NL, medullary NC, dRTA, developmental delay, CKD stage G3a | |
7 | M/35 | SLC4A1, c.1825G>A, p.Gly609Arg | AD | het | P | 13 | dRTA | Carbapatite NL, medullary NC, developmental delay dRTA, CKD G3b | |
Dent disease | 8 | M/53 | CLCN5, c.1561C>T, p.Leu521Phe | XL | hem | LP | 28 | NL, NC Polycystic kidney disease | NL and NC, ESKD starting at age 28, receiving RRT (HD, afterwards KT) |
9 | F/37 | CLCN5, c.794G>A, p.Ser265Asn | XL | het | LP | 37 | NC | Severe medullary NC, mild proteinuria, CKD G1 | |
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis | 10 | F/20 | CLDN16 c.646C>T, p.Arg216Cys | AR | hom | P | 7 | NL, NC, tubulo-interstitial disease | NL and NC, hypomagnesemia, mild hypocalcemia, hypophosphatemia, hypercalcemia, proteinuria, CKD G4 |
Infantile hypercalcemia type 1 | 11 | M/25 | CYP24A1, c.428_430del, p.Glu143del; c.443T>C, p.Leu148Pro | AR | com het | P | 24 | NC | Hypercalcemia, low iPTH, bilateral NC, CKD G2, right kidney cyst |
Primary hyperoxaluria type 1 | 12 | F/42 | AGXT, c.33del, p.Lys12Argfs*34; c.508G>A, p.Gly170Arg | AR | com het | P | 6 | PH1, NL, NC | Calcium oxalate monohydrate NL, increased urinary and plasma oxalate, medullary NC, CKD G4 |
Bartter syndrome type 2 | 13 | F/32 | KCNJ1, c.658C>T, p. Leu220Phe | AR | hom | P | 12 | NC, NL, type 3 RTA, diabetes insipidus, hyperreninemic hyperaldosteronism | NL, NC, hypokalemia, hypercalciuria, weakness, polyuria, polydipsia, hyperreninemic hyperaldosteronism, CKD G3a, parathyroid adenoma |
Autosomal dominant tubulointerstitial kidney disease | 14 | F/36 | UMOD, c.686>A, p.(Met229Lys) | AD | het | P | 28 | ADTKD, NL | Progressive CKD, bland urinalysis, hyperuricemia, sporadic kidney stones, CKD G2 |
Possible Genetic Diagnosis | Patient No. | Sex/ Age (Yrs) | Genetic Testing | Inheritance | Allelic State | ACMG Class | Onset Age (Yrs) | Clinical Diagnosis Before Genetic Test | Phenotype |
---|---|---|---|---|---|---|---|---|---|
Autosomal dominant familial idiopathic hypercalciuria | 1 | F/31 | ADCY10, c.4558G>A, p.Val1520Ile | AD | Het | VUS | 15 | PH, NL | NL with calcium oxalate monohydrate stone composition and normal kidney function |
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) | 2 | M/40 | SLC34A3, c.274G>A, p.Val92Ile; c.286G>A, p.Ala96Thr | AR | com het | VUS | 37 | Idiopathic NL | Recurrent NL with multiple surgical interventions, hypophosphatemia, and normal kidney function |
Patient No. | Sex/ Age (Yrs) | Genetic Testing (Gene, Variant) | Inheritance | Allelic State | ACMG Class | Onset Age (Yrs) | Clinical Diagnosis Before Genetic Test | Phenotype |
---|---|---|---|---|---|---|---|---|
1 | F/32 | SLC3A1, c.1400T>C, p.Met467Thr | AR | het | P | 30 | NL | Calcium carbonate and struvite NL, normal kidney function, many episodes of renal colic (~20/year) with multiple urological interventions |
2 | M/30 | SLC3A1, c.(891+1_892-1)_(1617+1_1618-1)dup | AR | het | P | 28 | NL | Calcium oxalate dihydrate NL, normal kidney function |
3 | M/26 | SLC7A9, c.217G>A, p.Gly73Arg | AD | het | LP | 25 | NL | Calcium oxalate NL, normal kidney function |
4 | F/30 | SLC7A9, c.313G>A, p.Gly105Arg | AD | het | P | 20 | NL | Calcium oxalate NL, normal kidney function |
5 | F/28 | AGXT, c.107G>A, p.Arg36His and SLC34A3, c.575C>T, p.Ser192Leu | AR | het | P | 18 | NL | Calcium oxalate monohydrate NL, slight increase in urinary oxalate, CKD G2 |
6 | F/25 | AGXT, c.107G>A, p.Arg36His and SLC34A3, c.575C>T, p.Ser192Leu | AR | het | P | 20 | NL | Calcium oxalate monohydrate NL, slight increase in urinary oxalate, CKD G2 |
7 | M/18 | SLC34A3, c.1304del, p.Ser435Thrfs*46 | AR | het | P | 17 | NC | Bilateral medullary NC, borderline phosphorus, metabolic alkalosis, hypercalciuria, normal kidney function |
8 | M/23 | CLCNKB, c.(?_-1)_(*1_?)del, p.0 | AR | het | P | 5 | dRTA | NL with calcium oxalate and carbapatite stone composition, dRTA, normal kidney function |
Patient No. | Sex/ Age (Yrs) | Genetic Testing | Inheritance | Allelic State | ACMG Class | On- Set Age (Yrs) | Clinical Diagnosis Before Genetic Test | Phenotype |
---|---|---|---|---|---|---|---|---|
1 | F/39 | SLC3A1 c.1684G>C, p.Glu562Gln | AR | het | VUS | 33 | NL, NC | Oxalate and phosphate NL, bilateral severe medullary NC, CKD G2 |
2 | F/37 | SLC22A12, c.412G>A, p.Val138Met | AR | het | VUS | 29 | NL | Calcium phosphate and struvite NL, multiple urological interventions, hypouricemia, normal kidney function |
3 | F/35 | SLC22A12, c.431T>C, p.Leu144Pro | AR | het | VUS | 31 | NL, ESKD | Staghorn NL with obstructive nephropathy, ESKD |
4 | F/28 | SLC22A12, c.1427C>A, p.Ala476Asp, and HNF1B c.544 + 5G>A, het, VUS | AR | het | VUS | 11 | Genetic tubulo- interstitial disease, CKD G4 | NL, dysplastic kidney, renal cysts, tubule–interstitial kidney disease, diabetes mellitus, hyperparathyroidism, CKD G4 |
5 | M/42 | SLC26A1 c.2007C>G, p.Asp669Glu and HNF1B c.867C>G, p.Asn289Lys, het, VUS | AR | het | VUS | 4 | NL, ADTKD | Bilateral NL, uric and oxalic diathesis, multicystic and dysplastic kidney, tubulointerstitial kidney disease, CKD G3a, diabetes mellitus, pancreatic hypoplasia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, E.E.; Sorohan, B.M.; Pandele, R.; Popescu, A.; Bobeica, R.; Balanica, S.; Zilisteanu, D.S.; Iordache, A.; Lungu, A.; Ismail, G. Phenotypes and the Importance of Genetic Analysis in Adult Patients with Nephrolithiasis and/or Nephrocalcinosis: A Single-Center Experience. Genes 2025, 16, 501. https://doi.org/10.3390/genes16050501
Rusu EE, Sorohan BM, Pandele R, Popescu A, Bobeica R, Balanica S, Zilisteanu DS, Iordache A, Lungu A, Ismail G. Phenotypes and the Importance of Genetic Analysis in Adult Patients with Nephrolithiasis and/or Nephrocalcinosis: A Single-Center Experience. Genes. 2025; 16(5):501. https://doi.org/10.3390/genes16050501
Chicago/Turabian StyleRusu, Elena Emanuela, Bogdan Marian Sorohan, Robert Pandele, Andreea Popescu, Raluca Bobeica, Sonia Balanica, Diana Silvia Zilisteanu, Alexandru Iordache, Adrian Lungu, and Gener Ismail. 2025. "Phenotypes and the Importance of Genetic Analysis in Adult Patients with Nephrolithiasis and/or Nephrocalcinosis: A Single-Center Experience" Genes 16, no. 5: 501. https://doi.org/10.3390/genes16050501
APA StyleRusu, E. E., Sorohan, B. M., Pandele, R., Popescu, A., Bobeica, R., Balanica, S., Zilisteanu, D. S., Iordache, A., Lungu, A., & Ismail, G. (2025). Phenotypes and the Importance of Genetic Analysis in Adult Patients with Nephrolithiasis and/or Nephrocalcinosis: A Single-Center Experience. Genes, 16(5), 501. https://doi.org/10.3390/genes16050501