APOL1-Risk Genotype Induces Inflammatory and Hypoxic Gene Expression in Donor Kidneys
Abstract
1. Introduction
1.1. APOL1 and Kidney Disease
1.2. APOL1 Expression and Its Implication in Kidney Transplantation
1.3. Organ Preservation Methods and Their Impact on APOL1 Gene Expression and Hypoxic Stress
2. Materials and Methods
2.1. Donors and Kidneys
2.2. Donor Genotyping
2.3. RNA Extraction and Real-Time PCR Analysis
2.4. Statistical Analysis
3. Results
3.1. Donor Characteristics and APOL1 Genotyping
3.2. APOL1 mRNA Expression Patterns
3.3. mRNA Expression Patterns of Hypoxia- and APOL1-Related Genes
3.3.1. HIF-1α Expression Patterns
3.3.2. IFN-γ Expression Patterns
3.3.3. KIM-1 Expression Pattern
3.3.4. TGF-β Expression Pattern
4. Discussion
4.1. Genotype-Specific APOL1 Responses to Hypoxia and Injury
4.2. Impact of Kidney Preservation Methods on APOL1 and Cytokine Expression
4.3. APOL1-Mediated Kidney Injury and Graft Outcomes
4.4. APOL1 Genotype and Its Emerging Importance in Transplant Evaluation and Outcomes
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APOL1 | Apolipoprotein 1 |
AKI | Acute kidney injury |
cFSGS | Collapsing focal segmental glomerulosclerosis |
CIT | Cold ischemia time |
CS | Cold storage |
DBD | Donation after brain death |
HIF-1α | Hypoxia-inducible transcription factor-1 alpha |
HMP | Hypothermic machine perfusion |
IFN-γ | Interferon-gamma |
IRI | Ischemia and reperfusion injury |
KDPI | Kidney donor profile index |
KTx | Kidney transplant |
NMP | Normothermic machine perfusion |
RRV | Renal risk variant |
SCD | Standard criteria donor |
TGF-β | Transforming growth factor-beta |
References
- Duchateau, P.N.; Pullinger, C.R.; Orellana, R.E.; Kunitake, S.T.; Naya-Vigne, J.; O’Connor, P.M.; Malloy, M.J.; Kane, J.P. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J. Biol. Chem. 1997, 272, 25576–25582. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef]
- Nichols, B.; Jog, P.; Lee, J.H.; Blackler, D.; Wilmot, M.; D’Agati, V.; Markowitz, G.; Kopp, J.B.; Alper, S.L.; Pollak, M.R.; et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015, 87, 332–342. [Google Scholar] [CrossRef]
- Hopper, T.; Olabisi, O.A. APOL1-Mediated Kidney Disease. JAMA 2024, 331, 1668–1669. [Google Scholar] [CrossRef]
- Ruchi, R.; Genovese, G.; Lee, J.; Charoonratana, V.T.; Bernhardy, A.J.; Alper, S.L.; Kopp, J.B.; Thadhani, R.; Friedman, D.J.; Pollak, M.R. Copy Number Variation at the APOL1 Locus. PLoS ONE 2015, 10, e0125410. [Google Scholar] [CrossRef]
- Freedman, B.I.; Moxey-Mims, M.M.; Alexander, A.A.; Astor, B.C.; Birdwell, K.A.; Bowden, D.W.; Bowen, G.; Bromberg, J.; Craven, T.E.; Dadhania, D.M.; et al. APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO): Design and Rationale. Kidney Int. Rep. 2020, 5, 278–288. [Google Scholar] [CrossRef]
- Bruggeman, L.A.; O’Toole, J.F.; Sedor, J.R. APOL1 polymorphisms and kidney disease: Loss-of-function or gain-of-function? Am. J. Physiol.-Ren. Physiol. 2019, 316, F1–F8. [Google Scholar] [CrossRef]
- Freedman, B.I.; Kopp, J.B.; Langefeld, C.D.; Genovese, G.; Friedman, D.J.; Nelson, G.W.; Winkler, C.A.; Bowden, D.W.; Pollak, M.R. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 2010, 21, 1422–1426. [Google Scholar] [CrossRef]
- Daneshpajouhnejad, P.; Kopp, J.B.; Winkler, C.A.; Rosenberg, A.Z. The evolving story of apolipoprotein L1 nephropathy: The end of the beginning. Nat. Rev. Nephrol. 2022, 18, 307–320. [Google Scholar] [CrossRef]
- Reeves-Daniel, A.M.; DePalma, J.A.; Bleyer, A.J.; Rocco, M.V.; Murea, M.; Adams, P.L.; Langefeld, C.D.; Bowden, D.W.; Hicks, P.J.; Stratta, R.J.; et al. The APOL1 gene and allograft survival after kidney transplantation. Am. J. Transplant. 2011, 11, 1025–1030. [Google Scholar] [CrossRef]
- Schödel, J.; Ratcliffe, P.J. Mechanisms of hypoxia signalling: New implications for nephrology. Nat. Rev. Nephrol. 2019, 15, 641–659. [Google Scholar] [CrossRef]
- Lentine, K.L.; Mannon, R.B. Apolipoprotein L1: Role in the evaluation of kidney transplant donors. Curr. Opin. Nephrol. Hypertens. 2020, 29, 645–655. [Google Scholar] [CrossRef]
- Lee, B.T.; Kumar, V.; Williams, T.A.; Abdi, R.; Bernhardy, A.; Dyer, C.; Conte, S.; Genovese, G.; Ross, M.D.; Friedman, D.J.; et al. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am. J. Transplant. 2012, 12, 1924–1928. [Google Scholar] [CrossRef]
- Unes, M.; Kurashima, K.; Caliskan, Y.; Portz, E.; Jain, A.; Nazzal, M. Normothermic ex vivo perfusion of deceased donor kidneys and its clinical potential in kidney transplantation outcomes. Int. J. Artif. Organs 2023, 46, 618–628. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Barlow, A.D.; Hunter, J.P.; Nicholson, M.L. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br. J. Surg. 2015, 102, 1433–1440. [Google Scholar] [CrossRef]
- Grampp, S.; Krüger, R.; Lauer, V.; Uebel, S.; Knaup, K.X.; Naas, J.; Höffken, V.; Weide, T.; Schiffer, M.; Naas, S.; et al. Hypoxia hits APOL1 in the kidney. Kidney Int. 2023, 104, 53–60. [Google Scholar] [CrossRef]
- Pollak, M.R.; Friedman, D.J. APOL1-associated kidney disease: Modulators of the genotype-phenotype relationship. Curr. Opin. Nephrol. Hypertens. 2025, 34, 191–198. [Google Scholar]
- Juliar, B.A.; Stanaway, I.B.; Sano, F.; Fu, H.; Smith, K.D.; Akilesh, S.; Scales, S.J.; El Saghir, J.; Bhatraju, P.K.; Liu, E.; et al. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep. 2024, 43, 114310. [Google Scholar] [CrossRef]
- Hung, A.M.; Assimon, V.A.; Chen, H.C.; Yu, Z.; Vlasschaert, C.; Triozzi, J.L.; Chan, H.; Wheless, L.; Wilson, O.; Shah, S.C.; et al. Genetic Inhibition of APOL1 Pore-Forming Function Prevents APOL1-Mediated Kidney Disease. J. Am. Soc. Nephrol. 2023, 34, 1889–1899. [Google Scholar] [CrossRef]
- Kormann, R.; Jannot, A.S.; Narjoz, C.; Ribeil, J.A.; Manceau, S.; Delville, M.; Joste, V.; Prié, D.; Pouchot, J.; Thervet, E.; et al. Roles of APOL1 G1 and G2 variants in sickle cell disease patients: Kidney is the main target. Br. J. Haematol. 2017, 179, 323–335. [Google Scholar] [CrossRef]
- Santoriello, D.; Husain, S.A.; De Serres, S.A.; Bomback, A.S.; Crew, R.J.; Vasilescu, E.R.; Serban, G.; Campenot, E.S.; Kiryluk, K.; Mohan, S.; et al. Donor APOL1 high-risk genotypes are associated with increased risk and inferior prognosis of de novo collapsing glomerulopathy in renal allografts. Kidney Int. 2018, 94, 1189–1198. [Google Scholar] [CrossRef]
- Bhattacharjee, R.N.; Patel, S.V.B.; Sun, Q.; Jiang, L.; Richard-Mohamed, M.; Ruthirakanthan, A.; Aquil, S.; Al-Ogaili, R.; Juriasingani, S.; Sener, A.; et al. Renal Protection Against Ischemia Reperfusion Injury: Hemoglobin-based Oxygen Carrier-201 Versus Blood as an Oxygen Carrier in Ex Vivo Subnormothermic Machine Perfusion. Transplantation 2020, 104, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Dorweiler, B.; Pruefer, D.; Andrasi, T.B.; Maksan, S.M.; Schmiedt, W.; Neufang, A.; Vahl, C.F. Ischemia-Reperfusion Injury: Pathophysiology and Clinical Implications. Eur. J. Trauma Emerg. Surg. 2007, 33, 600–612. [Google Scholar] [CrossRef]
- Hamar, M.; Urbanellis, P.; Kaths, M.J.; Kollmann, D.; Linares, I.; Ganesh, S.; Wiebe, A.; Cen, J.Y.; Yip, P.; John, R.; et al. Normothermic Ex Vivo Kidney Perfusion Reduces Warm Ischemic Injury of Porcine Kidney Grafts Retrieved After Circulatory Death. Transplantation 2018, 102, 1262–1270. [Google Scholar] [CrossRef]
- Malek, M.; Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Ren. Inj. Prev. 2015, 4, 20–27. [Google Scholar]
- Ponticelli, C. Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrol. Dial. Transplant. 2014, 29, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Julian, B.A.; Pastan, S.O.; Israni, A.K.; Schladt, D.; Gautreaux, M.D.; Hauptfeld, V.; Bray, R.A.; Gebel, H.M.; Kirk, A.D.; et al. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am. J. Transplant. 2015, 15, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Pastan, S.O.; Israni, A.K.; Schladt, D.; Julian, B.A.; Gautreaux, M.D.; Hauptfeld, V.; Bray, R.A.; Gebel, H.M.; Kirk, A.D.; et al. APOL1 Genotype and Kidney Transplantation Outcomes From Deceased African American Donors. Transplantation 2016, 100, 194–202. [Google Scholar] [CrossRef]
Kidney 1 | Kidney 1 | Kidney 2 | Kidney 2 | Kidney 3 | Kidney 3 | |
---|---|---|---|---|---|---|
APOL1 genotype | G1/G0 | G1/G0 | G0/G0 | G0/G0 | G2/G2 | G2/G2 |
Preservation method | CS | NMP | CS | NMP | CS | NMP |
Donor type | DBD | DBD | DBD | DBD | DBD | DBD |
Age (yo) | 70 | 70 | 47 | 47 | 64 | 64 |
KDPI (%) | 100 | 100 | 86 | 86 | 96 | 96 |
CIT (hours) | 17 | 17 | 31 | 31 | 26 | 26 |
Previous HMP | - | - | + | + | + | + |
Urine output (mL/hour) | 0 | 75 | 0 | 5 | 0 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unes, M.; Kolli, S.; Mehta, S.; Manithody, C.; Bruno, J.; Lentine, K.L.; Jain, A.; Nazzal, M.; Caliskan, Y. APOL1-Risk Genotype Induces Inflammatory and Hypoxic Gene Expression in Donor Kidneys. Genes 2025, 16, 1078. https://doi.org/10.3390/genes16091078
Unes M, Kolli S, Mehta S, Manithody C, Bruno J, Lentine KL, Jain A, Nazzal M, Caliskan Y. APOL1-Risk Genotype Induces Inflammatory and Hypoxic Gene Expression in Donor Kidneys. Genes. 2025; 16(9):1078. https://doi.org/10.3390/genes16091078
Chicago/Turabian StyleUnes, Meghan, Sree Kolli, Shaurya Mehta, Chandrashekhara Manithody, Jonathan Bruno, Krista L. Lentine, Ajay Jain, Mustafa Nazzal, and Yasar Caliskan. 2025. "APOL1-Risk Genotype Induces Inflammatory and Hypoxic Gene Expression in Donor Kidneys" Genes 16, no. 9: 1078. https://doi.org/10.3390/genes16091078
APA StyleUnes, M., Kolli, S., Mehta, S., Manithody, C., Bruno, J., Lentine, K. L., Jain, A., Nazzal, M., & Caliskan, Y. (2025). APOL1-Risk Genotype Induces Inflammatory and Hypoxic Gene Expression in Donor Kidneys. Genes, 16(9), 1078. https://doi.org/10.3390/genes16091078