Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data
Abstract
:1. Introduction
2. Data and Methods
2.1. COSMIC RO and ERA-Interim Data
2.2. Methods to Derive Vertical Wave Parameters of GWs
2.3. Methods to Derive Horizontal Wave Parameters of GWs
2.4. Method to Derive Magnitudes of GW PMF
2.5. Flowchart for Determining Magnitudes of GW PMF
3. Results and Analysis
3.1. Validation of the Strategy
3.2. Seasonal Variations of Magnitude of GW PMF from June 2006 to May 2013
3.3. Time-Latitudinal Distributions of GW PMF Magnitudes from June 2006 to May 2013
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Preusse, P.; Alexander, M.J.; Warner, C.D. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Vincent, R.A.; Fritts, D.C. A Climatology of Gravity-Wave Motions in the Mesopause Region at Adelaide, Australia. J. Atmos. Sci. 1987, 44, 748–760. [Google Scholar] [CrossRef]
- Alexander, M.J.; Geller, M.; McLandress, C.; Polavarapu, S.; Preusse, P.; Sassi, F.; Sato, K.; Eckermann, S.; Ern, M.; Hertzog, A.; et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 2010, 136, 1103–1124. [Google Scholar] [CrossRef]
- Geller, M.A.; Alexander, M.J.; Love, P.T.; Bacmeister, J.; Ern, M.; Hertzog, A.; Manzini, E.; Preusse, P.; Sato, K.; Scaife, A.A.; et al. A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models. Am. J. Clim. Chang. 2013, 26, 6383–6405. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.; Alexander, S.P.; de la Torre, A. Stratospheric gravity wave momentum flux from radio occultations. J. Geophys. Res. Atmos. 2016, 121, 4443–4467. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.J.; Alexander, S.P.; Klekociuk, A.R.; Love, P.T.; Vincent, R.A. Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J. Geophys. Res. Atmos. 2014, 119, 11973–11996. [Google Scholar] [CrossRef]
- Pramitha, M.; Ratnam, M.V.; Leena, P.P.; Krishna Murthy, B.V.; Vijaya Bhaskar Rao, S. Identification of inertia gravity wave sources observed in the troposphere and the lower stratosphere over a tropical station Gadanki. Atmos. Res. 2016, 176, 202–211. [Google Scholar] [CrossRef]
- Tsuda, T.; Inoue, T.; Kato, S.; Fukao, S.; Fritts, D.C.; Vanzandt, T.E. MST Radar Observations of a Saturated Gravity Wave Spectrum. J. Atmos. Sci. 1989, 46, 2440–2447. [Google Scholar] [CrossRef] [Green Version]
- Eckermann, S.D.; Vincent, R.A. Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia. Pure Appl. Geophys. 1989, 130, 509–532. [Google Scholar] [CrossRef]
- Li, T.; Leblanc, T.; McDermid, I.S.; Wu, D.L.; Dou, X.K.; Wang, S. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J.; Gille, J.; Cavanaugh, C.; Coffey, M.; Craig, C.; Eden, T.; Francis, G.; Halvorson, C.; Hannigan, J.; Khosravi, R.; et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.L.; Waters, J.W. Observations of gravity waves with the UARS Microwave Limb Sounder. In Gravity Wave Processes, NATO ASI Series; Hamilton, K., Ed.; Springer: Berlin, Germany, 1997; pp. 103–120. [Google Scholar]
- Rocken, C.; Anthes, R.; Exner, M.; Hunt, D.; Sokolovskiy, S.; Ware, R.; Gorbunov, M.; Schreiner, W.; Feng, D.; Herman, B.; et al. Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res. Atmos. 1997, 102, 29849–29866. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. Atmos. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Ratnam, M.V. Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Schmidt, T.; de la Torre, A.; Wickert, J. Global gravity wave activity in the tropopause region from CHAMP radio occultation data. Geophys. Res. Lett. 2008, 35, 428–451. [Google Scholar] [CrossRef]
- Noersomadi; Tsuda, T. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation. Ann. Geophys. 2016, 34, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.P.; Tsuda, T.; Kawatani, Y.; Takahashi, M. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Rapp, M.; Dörnbrack, A.; Kaifler, B. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmos. Meas. Tech. 2018, 11, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Nath, D.; Chen, W.; Guharay, A. Climatology of stratospheric gravity waves and their interaction with zonal mean wind over the tropics using GPS RO and ground-based measurements in the two phases of QBO. Theor. Appl. Climatol. 2014, 119, 757–769. [Google Scholar] [CrossRef]
- Tsuda, T.; Hocke, K. Vertical Wave Number Spectrum of Temperature Fluctuations in the Stratosphere using GPS Occultation Data. Q. J. R. Meteorol. Soc. 2002, 80, 925–938. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Gravity wave activity during stratospheric sudden warmings in the 2007–2008 Northern Hemisphere winter. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Xu, X.H.; Yu, D.C.; Luo, J. The Spatial and Temporal Variability of Global Stratospheric Gravity Waves and Their Activity during Sudden Stratospheric Warming Revealed by COSMIC Measurements. Adv. Atmos. Sci. 2018, 35, 1533–1546. [Google Scholar] [CrossRef]
- Khan, A.; Jin, S. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations. J. Atmos. Sol. Terr. Phys. 2016, 138–139, 23–31. [Google Scholar] [CrossRef]
- Yu, D.; Xu, X.; Luo, J.; Li, J. On the Relationship between Gravity Waves and Tropopause Height and Temperature over the Globe Revealed by COSMIC Radio Occultation Measurements. Atmosphere 2019, 10, 75. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J. On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech. 2013, 6, 3169–3180. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett. 2015, 42, 6860–6867. [Google Scholar] [CrossRef]
- Hierro, R.; Steiner, A.K.; de la Torre, A.; Alexander, P.; Llamedo, P.; Cremades, P. Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events-a case study. Atmos. Meas. Tech. 2018, 11, 3523–3539. [Google Scholar] [CrossRef]
- Preusse, P.; Ern, M.; Bechtold, P.; Eckermann, S.D.; Kalisch, S.; Trinh, Q.T.; Riese, M. Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys. 2014, 14, 10483–10508. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Preusse, P.; Gille, J.C.; Hepplewhite, C.L.; Mlynczak, M.G.; Russell, J.M., III; Riese, M. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Wei, J.; Bölöni, G.; Achatz, U. Efficient modeling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-flux convergence versus direct approach. J. Atmos. Sci. 2019, 76, 2715–2738. [Google Scholar] [CrossRef]
- Anthes, R.A.; Ector, D.; Hunt, D.C.; Kuo, Y.H.; Liu, H.; Manning, K.; McCormick, C.; Meehan, T.K.; Randel, W.J.; Rocken, C.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- Fong, C.J.; Shiau, W.T.; Lin, C.T.; Kuo, T.C.; Chu, C.H.; Yang, S.K.; Yen, N.L.; Chen, S.S.; Kuo, Y.H.; Liou, Y.A.; et al. Constellation Deployment for the FORMOSAT-3/COSMIC Mission. IEEE. Trans. Geosci. Remote Sens. 2008, 46, 3367–3379. [Google Scholar] [CrossRef] [Green Version]
- Fong, C.J.; Yang, S.K.; Chu, C.H.; Huang, C.Y.; Yeh, J.J.; Lin, C.T.; Kuo, T.C.; Liu, T.Y.; Yen, N.L.; Chen, S.S.; et al. FORMOSAT-3/COSMIC Constellation Spacecraft System Performance: After One Year in Orbit. IEEE. Trans. Geosci. Remote Sens. 2008, 46, 3380–3394. [Google Scholar] [CrossRef]
- Tsuda, T.; Lin, X.; Hayashi, H. Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data. Atmos. Meas. Tech. 2011, 4, 1627–1636. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE. Trans. Signal. Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Zeng, Z.; Randel, W.; Sokolovskiy, S.; Deser, C.; Kuo, Y.H.; Hagan, M.; Du, J.; Ward, W. Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data. J. Geophys. Res. Atmos. 2008, 113, D03102. [Google Scholar] [CrossRef]
- Preusse, P.; Dörnbrack, A.; Eckermann, S.D.; Riese, M.; Schaeler, B.; Bacmeister, J.T.; Broutman, D.; Grossmann, K.U. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J. Geophys. Res. Atmos. 2002, 107, CRI 6–1–CRI 6–23. [Google Scholar] [CrossRef]
- John, S.R.; Kumar, K.K. A discussion on the methods of extracting gravity wave perturbations from space-based measurements. Geophys. Res. Lett. 2013, 40, 2406–2410. [Google Scholar] [CrossRef]
- Guest, F.M.; Reeder, M.J.; Marks, C.J.; Karoly, D.J. Inertia–Gravity Waves Observed in the Lower Stratosphere over Macquarie Island. J. Atmos. Sci. 2000, 57, 737–752. [Google Scholar] [CrossRef]
- Serafimovich, A.; Hoffmann, P.; Peters, D.; Lehmann, V. Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars. Atmos. Chem. Phys. 2005, 5, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Bian, J.C.; Liu, Y.; Bai, Z.X.; Qiao, S. Statistical analysis of inertial gravity wave parameters in the lower stratosphere over Northern China. Clim. Dyn. 2018, 52, 563–575. [Google Scholar] [CrossRef]
- Ehard, B.; Kaifler, B.; Kaifler, N.; Rapp, M. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements. Atmos. Meas. Tech. 2015, 8, 4645–4655. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Trinh, Q.T.; Preusse, P.; Gille, J.C.; Mlynczak, M.G.; Russell, J.M., III; Riese, M. GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth. Syst. Sci. Data 2018, 10, 857–892. [Google Scholar] [CrossRef]
- Yan, X.; Arnold, N.; Remedios, J. Global observations of gravity waves from High Resolution Dynamics Limb Sounder temperature measurements: A yearlong record of temperature amplitude and vertical wavelength. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Khaykin, S.M.; Hauchecorne, A.; Mzé, N.; Keckhut, P. Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett. 2015, 42, 1251–1258. [Google Scholar] [CrossRef]
- De la Torre, A.; Alexander, P.; Schmidt, T.; Llamedo, P.; Hierro, R. On the distortions in calculated GW parameters during slanted atmospheric soundings. Atmos. Meas. Tech. 2018, 11, 1363–1375. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.Y.; Zhang, S.D.; Huang, C.M.; Huang, K.M.; Gong, Y.; Gan, Q. The vertical wave number spectra of potential energy density in the stratosphere deduced from the COSMIC satellite observation. Q. J. R. Meteorol. Soc. 2019, 145, 318–336. [Google Scholar] [CrossRef]
- Zhang, F. Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci. 2004, 61, 440–457. [Google Scholar] [CrossRef]
- Mirzaei, M.; Zülicke, C.; Mohebalhojeh, A.R.; Ahmadi-Givi, F.; Plougonven, R. Structure, energy, and parameterization of inertia–gravity waves in dry and moist simulations of a baroclinic wave life cycle. J. Atmos. Sci. 2014, 71, 2390–2414. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, F. Mesoscale Gravity Waves in Moist Baroclinic Jet–Front Systems. J. Atmos. Sci. 2014, 71, 929–952. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, F.; Richter, J.H. An Analysis of Gravity Wave Spectral Characteristics in Moist Baroclinic Jet-Front Systems. J. Atmos. Sci. 2016, 73, 3133–3155. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, J.; Luo, J.; Yu, D. Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data. Atmosphere 2019, 10, 598. https://doi.org/10.3390/atmos10100598
Xu X, Li J, Luo J, Yu D. Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data. Atmosphere. 2019; 10(10):598. https://doi.org/10.3390/atmos10100598
Chicago/Turabian StyleXu, Xiaohua, Juan Li, Jia Luo, and Daocheng Yu. 2019. "Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data" Atmosphere 10, no. 10: 598. https://doi.org/10.3390/atmos10100598
APA StyleXu, X., Li, J., Luo, J., & Yu, D. (2019). Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data. Atmosphere, 10(10), 598. https://doi.org/10.3390/atmos10100598