Recent Trends in the Daily Rainfall Regime in Southern West Africa
Abstract
:1. Introduction
- Report recent trends in extreme rainfall in Southern West Africa, based on long series of daily rainfall covering the period 1950–2014 quite homogeneously over the 4° N–12° N and 10° W–10° E domains;
- Compare the characteristics of recent rainfall regime changes in different sub-divisions in the SWA region. The sub-divisions created from the Southern West African region is mainly based on the differences in the configuration of rainfall patterns; and
- Analyze separately the influence of each rainfall season in the sub-divisions of SWA, which shows a bimodal distribution, and their contributions to rainfall trends over the study period.
2. Region, Data, and Methodology
2.1. Climate of Southern West Africa
2.2. Rainfall Data, Areas, and Periods of Study
- If its annual total is 2 (respectively 5) times the mean annual total of the whole series, then the flag equals 1 (respectively 2), or else the flag = 0;
- The same algorithm for the mean number of wet days;
- The same algorithm for the mean intensity of wet days; and
- An interannual average of monthly totals is computed, and rainy/dry months are classified according to a threshold of 90 mm. Then, the flag value is equal to the number of months that have not recorded rains.
- The coastal region, the southernmost sub-division of SWA from 4° N to 7° N;
- The inland region, representing the middle sub-division of SWA from 7° N to 9° N;
- The Sudan region, the northernmost sub-division of SWA from 9° N to 12° N;
- The West region of SWA (referred to as swaWEST) from 10° W to 3° W;
- The central region of SWA (referred to as swaCENTRAL) from 3° W to 3° E; and
- The East region of SWA (referred to as swaEAST) from 3° E to 10° E.
2.3. Methodology
3. Regional Rainfall Trends and Sub-Regional Contrasts at the Seasonal Scale
3.1. Regional Rainfall Trends
3.2. South–North (Coastal–Sudan) Disparity
3.3. East–West Disparity
3.4. Disparities between the Two Rainy Seasons (AMJJ and SON) in the SWA Coastal and Inland Regions.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC. Climate change 2013: The Physical Science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle:Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Kingston, D.G.; Todd, M.C.; Taylor, R.G.; Thompson, J.R.; Arnell, N.W. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett. 2009, 36, L20403. [Google Scholar] [CrossRef]
- Murray, S.J.; Foster, P.N.; Prentice, I.C. Evaluation of global continental hydrology as simulated by theLand-surface Processes and eXchanges Dynamic Global Vegetation Model. Hydrol. Earth Syst. Sci. 2011, 15, 91–105. [Google Scholar] [CrossRef]
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earths Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. Extreme Precipitation Events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. J. Clim. 2002, 15, 2377–2394. [Google Scholar] [CrossRef]
- Bettolli, M.L.; Penalba, O.C.; Vargas, W.M. Synoptic weather types in the south of South America and their relationship to daily rainfall in the core crop-producing region in Argentina. Aust. Meteorol. Oceanogr. J. 2010, 60, 37–48. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.M.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Garrett, C.; Müller, P. Supplement to extreme events. Bull. Amer. Meteor. Soc. 2008, 89, 45–56. [Google Scholar] [CrossRef]
- Sen Roy, S. A spatial analysis of extreme hourly precipitation patterns in India. Int. J. Climatol. 2009, 29, 345–355. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Mayooran, T.; Laheetharan, A. The Statistical Distribution of Annual Maximum Rainfall in Colombo District. Sri Lankan J. Appl. Stat. 2014, 15, 107–130. [Google Scholar] [CrossRef]
- Giannini, A.; Salack, S.; Lodoun, T.; Ali, A.; Gaye, A.T.; Ndiaye, O. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Climatol. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T.; Quantin, G.; Pugin, A.-C.F.; Blanchet, J.; Ali, A. From pointwise testing to a regional vision: An integrated statistical approach to detect nonstationarity in extreme daily rainfall. Application to the Sahelian region. J. Geophys. Res. Atmos. 2013, 118, 8222–8237. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T.; Quantin, G. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Galle, S.; Grippa, M.; Peugeot, C.; Bouzou Moussa, I.; Cappelaere, B.; Demarty, J.; Mougin, E.; Panthou, G.; Adjomayi, P.; Agbossou, E.K.; et al. AMMA-CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Taylor, C.; Belusic, D.; Guichard, F.; Parker, D.; Vischel, T.; Bock, O.; Harris, P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over Southern and West Africa. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Goula, B.T.A.; Soro, E.G.; Kouassi, W.; Srohourou, B. Trends and breaks at the level of daily rainfall extremes in the Ivory Coast (West Africa). Hydrol. Sci. J. 2012, 57, 1067–1080. [Google Scholar] [CrossRef]
- Bichet, A.; Diedhiou, A. Less frequent and more intense rainfall along the coast of the Gulf of Guinea in West and Central Africa (1981−2014). Clim. Res. 2018, 76, 191–201. [Google Scholar] [CrossRef]
- Nguyen, H.; Thorncroft, C.D.; Zhang, C. Guinean coastal rainfall of the West African Monsoon. Q. J. R. Meteorol. Soc. 2011, 137, 1828–1840. [Google Scholar] [CrossRef]
- Yabi, I.; Afouda, F. Extreme rainfall years in Benin (West Africa). Quat. Int. 2012, 262, 39–43. [Google Scholar] [CrossRef]
- Nicholson, S.E. Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Mon. Weather Rev. 1981, 109, 2191–2208. [Google Scholar] [CrossRef]
- Le Barbé, L.; Lebel, T.; Tapsoba, D. Rainfall variability in West Africa during the years 1950–1990. J. Clim. 2002, 15, 187–202. [Google Scholar] [CrossRef]
- Lebel, T.; Cappelaere, B.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E.; et al. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, J.; Aly, C.; Vischel, T.; Panthou, G.; Sané, Y.; DiopKane, M. Trend in the co-occurrence of extreme daily rainfall in West Africa since 1950. J. Geophys. Res. Atmos. 2018, 123, 1536–1551. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P. Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Q. J. R. Meteorol. Soc. 2018, 144, 1628–1648. [Google Scholar] [CrossRef] [Green Version]
- Acheampong, P.K. Rainfall Anomaly along the Coast of Ghana—Its Nature and Causes. Geografiska Annaler Ser. A Phys. Geogr. 1982, 64, 199–211. [Google Scholar]
- Omotosho, J.B. The separate contributions of squall lines, thunderstorms and the monsoon to the total rainfall in Nigeria. J. Clim. 1985, 5, 543–552. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Joly, M.; Voldoire, A. Influence of ENSO on the West African Monsoon: Temporal Aspects and Atmospheric Processes. J. Clim. 2009, 22, 3193–3210. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Janicot, S.; Caniaux, G.; Chauvin, F.; de Coëtlogon, G.; Fontaine, B.; Hall, N.; Kiladis, G.; Lafore, J.-P.; Lavaysse, C.; Lavender, S.L.; et al. Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett. 2011, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Madden–Julian Oscillation: Bridging Weather and Climate. Bull. Am. Meteor. Soc. 2013, 94, 1849–1870. [Google Scholar] [CrossRef]
Sub-Division | Annual Totals | Number of Wet Days | Mean Intensity of Wet Days | Extreme/Annual Totals |
---|---|---|---|---|
Coastal | 5%; 4% | 1%; 2% | 6% **; 3% | 6%; 2% |
Inland | 4%; −1% | −1%; −2% | 6% **; 2% | −3%; −7% |
Sudan | −1%; 1% | −3%; 1% | 4% **; 0% | 10% **; 4% |
Sub-Division | Annual Totals | Number of Wet Days | Mean Intensity of Wet Days | Extreme/Annual Totals |
---|---|---|---|---|
swaEAST | 7%*; 4% | −2%; 1% | 10% ***; 2% | 14% ***; 5% |
swaWEST | −5%; −1% | 3%; 3% | −5% **; −2% | −17% ***; −8% |
swaCENTRAL | 4%; 2% | −2%; 0% | 6% **; 2% | 9%; 2% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkrumah, F.; Vischel, T.; Panthou, G.; Klutse, N.A.B.; Adukpo, D.C.; Diedhiou, A. Recent Trends in the Daily Rainfall Regime in Southern West Africa. Atmosphere 2019, 10, 741. https://doi.org/10.3390/atmos10120741
Nkrumah F, Vischel T, Panthou G, Klutse NAB, Adukpo DC, Diedhiou A. Recent Trends in the Daily Rainfall Regime in Southern West Africa. Atmosphere. 2019; 10(12):741. https://doi.org/10.3390/atmos10120741
Chicago/Turabian StyleNkrumah, Francis, Théo Vischel, Geremy Panthou, Nana Ama Browne Klutse, David C. Adukpo, and Arona Diedhiou. 2019. "Recent Trends in the Daily Rainfall Regime in Southern West Africa" Atmosphere 10, no. 12: 741. https://doi.org/10.3390/atmos10120741
APA StyleNkrumah, F., Vischel, T., Panthou, G., Klutse, N. A. B., Adukpo, D. C., & Diedhiou, A. (2019). Recent Trends in the Daily Rainfall Regime in Southern West Africa. Atmosphere, 10(12), 741. https://doi.org/10.3390/atmos10120741