Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley
Abstract
:1. Introduction
2. Site and Instrumentation
3. Methodology
3.1. Roughness and Wind Variation
3.2. Wind Direction (Circular Statistics)
3.3. Estimation of Turbulent Energy Fluxes and Surface Albedo
3.4. Land Surface Temperature
3.5. Ground Heat Flux at the Surface
4. Results
4.1. Air Temperature
4.2. Air Moisture
4.3. Wind Profiles and Momentum Flux
4.4. Soil Temperature and Soil Moisture
4.5. Land Surface Temperatures and Albedo
4.6. Energy Fluxes and Stability
4.7. Irradiance Fluxes
4.8. Energy-Balance Components and Imbalance
5. Discussions
5.1. Air Temperature
5.2. Air Moisture
5.3. Wind Speed and Momentum Flux
5.4. Soil and Surface Temperature and Moisture
5.5. Energy-Balance Components and Imbalance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PBL | Planetary boundary layer |
SBL | Surface boundary layer |
Imb | Imbalance term |
LW | Long-Wave irradiance |
SW | Short-wave irradiance |
WMO | World Meteorological Organization |
References
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Arya, S. Introduction to Micrometeorology, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Garratt, J. Review: The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Rigby, J.; Jin, Y.; Albertson, J.; Porporato, A. Approximate analytical solution to diurnal Atmospheric Boundary Layer growth under well-watered conditions. Bound.-Layer Meteorol. 2015, 156. [Google Scholar] [CrossRef]
- Busch, N. The surface boundary layer. Bound.-Layer Meteorol. 1973, 4, 213–240. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics, 1st ed.; Edward Arnold: London, UK, 1990; p. 291. [Google Scholar]
- Oke, T. Boundary Layer Climates, 2nd ed.; Taylor and Francis Group: London, UK, 1987. [Google Scholar]
- Prueger, J.; Kustas, W. Aerodynamic Methods for Estimation Turbulent Fluxes, 1st ed.; USDA-ARS/UNL Faculty: Lincoln, Nebraska, 2005; p. 1394. [Google Scholar]
- Piere, P.; Fuch, M. Comparison of Bowen ratio and aerodynamic estimates of evapotranspiration. Agric. For. Meteorol. 1990, 49, 243–256. [Google Scholar] [CrossRef]
- Kalthoff, N.; Fiebig-Wittmaack, M.; Meißner, C.; Kohler, M.; Uriarte, M.; Bischoff-Gauß, I.; Gonzales, E. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environ. 2006, 65, 420–443. [Google Scholar] [CrossRef]
- Geiger, R.; Aron, R.; Todhunter, P. The Climate Near the Ground, 1st ed.; Rowman & Littlefield Publishing Inc.: Lanham, MD, USA, 2003. [Google Scholar]
- LeMone, M.; Ikeda, K.; Grossman, R.; Rotach, M. Horizontal variability of 2 m temperature at night during CASES-97. J. Atmos. Sci. 2003, 60, 2431–2449. [Google Scholar] [CrossRef]
- Eder, F.; Serafimovich, A.; Foken, T. Coherent structures at a forest edge: Properties, coupling and impact of secondary circulations. Bound.-Layer Meteorol. 2013, 148, 285–308. [Google Scholar] [CrossRef]
- Marth, L. Computing turbulent fluxes near the surface: Needed improvements. Agric. For. Meteorol. 2010, 150, 501–509. [Google Scholar]
- Cuxart, J.; Wrenger, B.; Martínez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jiménez, M.A.; Lothon, M.; Lohou, F.; Hartogensis, O.; Dünnermann, J.; et al. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos. Chem. Phys. 2016, 16, 9489–9504. [Google Scholar] [CrossRef] [Green Version]
- Simó, G.; Cuxart, J.; Jiménez, M.; Martínez-Villagrasa, D.; Picos, R.; López-Grifol, A.; Martí, B. Observed atmospheric and surface variability on heterogeneous terrain at the hectometer scale and related advective tranports. J. Geophys. Res. Atmos. 2019, 124. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Cuxart, J.; Conangla, L.; Jiménez, M. Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J. Geophys. Res. Atmos. 2015, 120, 1008–1022. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M.; Takahashi, K. Physical controls on frost events in the central Andes of Peru using in situ observations and energy flux models. Agric. For. Meteorol. 2017, 239, 58–70. [Google Scholar] [CrossRef]
- Sulca, J.; Vuille, M.; Silva, Y.; Takahashi, K. Teleconnections between the Peruvian Central Andes and Northeast Brazil during extreme rainfall events in Austral summer. J. Hydrometeorol. 2015, 17, 499–515. [Google Scholar] [CrossRef]
- Moya-Álvarez, A.; Gálvez, J.; Holguín, A.; Estevan, R.; Kumar, S.; Villalobos, E.; Martínez-Castro, D.; Silva, Y. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 2018, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Silva-Vidal, Y.; Moya-Álvarez, A.; Martínez-Castro, D. Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmos. Res. 2019, 1. [Google Scholar] [CrossRef]
- Flores-Rojas, J.; Moya-Alvarez, A.; Kumar, S.; Martínez-Castro, D.; Villalobos-Puma, E.; Silva-Vidal, Y. Analysis of Possible Triggering Mechanisms of Severe Thunderstorms in the Tropical Central Andes of Peru, Mantaro Valley. Atmosphere 2019, 10, 301–331. [Google Scholar]
- Martínez-Castro, D.; Kumar, S.; Flores-Rojas, J.; Moya-Álvarez, A.; Valdivia-Prado, J.; Villalobos-Puma, E.; Castillo-Velarde, C.; Silva-Vidal, Y. The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Moya-Álvarez, A.; Estevan, R.; Kumar, S.; Flores-Rojas, J.; Ticse, J.; Martínez-Castro, D.; Silva-Vidal, Y. Influence of PBL parameterization schemes in WRF-ARW model on short-range precipitation’s forecasts in the complex orography of Peruvian Central Andes. Atmos. Res. 2019, 1. [Google Scholar] [CrossRef]
- Yin, J.; Albertson, J.; Rigby, J.; Porporato, A. Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings. Water Resour. Res. 2015, 51, 8476–8493. [Google Scholar] [CrossRef]
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A.; Hasson, S. Analysis of rainfall seasonality from observations and climate models. Clim. Dyn. 2015, 44, 3281–3301. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 2013, 3, 811–815. [Google Scholar] [CrossRef]
- Silva, Y.; Trasmonte, G.; Giráldez, L. Variabilidad de las Lluvias en el Valle del Mantaro Memoria del Subproyecto: Pronóstico Estacional de Lluvias Y Temperatura en la Cuenca del río Mantaro Para su Aplicación en la Agricultura; Fondo Editorial CONAM-Instituto Geofísico del Perú: Lima, Peru, 2010. [Google Scholar]
- IGP. Atlas Climático de Precipitación y Temperatura del Aire en la Cuenca del río Mantaro. Volumen I; Fondo Editorial CONAM-Instituto Geofísico del Perú: Lima, Peru, 2005. [Google Scholar]
- Trasmonte, G.; Silva, Y.; Segura, B.; Latínez, K. Variabilidad de las Temperaturas máximas y mínimas en el Valle del Mantaro. Memoria del Subproyecto “Pronóstico Estacional de Lluvias y Temperatura en la Cuenca del río Mantaro Para su Aplicación en la Agricultura”; Fondo Editorial CONAM-InstitutoGeofísico del Perú: Lima, Peru, 2010. [Google Scholar]
- Jammalamadaka, S.; Sengupta, A. Topics in Circular Statistics. World Sci. Singap. 2001, 5, 1–20. [Google Scholar]
- Yin, J.; Porporato, A. Diurnal cloud cycle biases in climate models. Nat. Commun. 2017, 8, 2269. [Google Scholar] [CrossRef] [Green Version]
- Berens, P. CircStat: A MATLAB toolbox for Circular Statistics. J. Stat. Softw. 2009, 31, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bowen, I. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Monin, A.; Obukhov, A. Basic laws of turbulent mixing in the ground layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Foken, T.; Richter, S.; Muller, H. Zur Genauigkeit der Bowen-Ratio-Methode. Wetter und Leben 1997, 49, 57–77. [Google Scholar]
- Ohmura, A. Objective criteria for rejecting data for Bowen ratio flux calculations. J. Appl. Meteorol. 1982, 21, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Malek, E.; McCurdy, G.; Giles, B. Evaporation from margin and moist playa of a closed desert valley. J. Hydrol. 1990, 120, 15–34. [Google Scholar] [CrossRef]
- Malek, E.; Bingham, G. Partinioning of radiation and energy balance components in an inhomogeneous desert valley. J. Arid. Environ. 1997, 37, 193–207. [Google Scholar] [CrossRef]
- Malek, E.; McCurdy, G.; Giles, B. Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid. Environ. 1999, 42, 71–80. [Google Scholar] [CrossRef]
- Beringer, J.; Tapper, N. The influence of subtropical cold fronts on the surface energy balance of a semi-arid site. J. Arid. Environ. 2000, 44, 437–450. [Google Scholar] [CrossRef]
- Silva, B.; Strobl, S.; Beck, E.; Bendix, J. Canopy evapotranspiration, leaf transpiration and water use efficiency of an andean pasture in SE-Ecuador—A case study. Erdkunde 2016, 70, 5–18. [Google Scholar] [CrossRef]
- Foken, T.; Nappo, C. Micrometeorology, 1st ed.; Springer: Berlin/Heildelberg, Germany, 2008. [Google Scholar]
- Oncley, S.; Foken, T.; Vogt, R.E.A. The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteorol. 2007, 123, 1–28. [Google Scholar] [CrossRef]
- Foken, T.; Mauder, M.; Liebethal, C.; Wimmer, F.; Beyrich, F.; Leps, J.; Raasch, S.; DeBruin, H.A.R.; Meijninger, W.; Bang, J. Energy balance closure for the LITFASS-2003 experiment. Theor. Appl. Climatol. 2010, 101, 149–160. [Google Scholar] [CrossRef]
- Garratt, J. The Atmospheric Boundary Layer, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mauder, M.; Oncley, S.; Vogt, R.; Weidinger, T.; Ribeiro, L.; Bernhofer, C.; Foken, T.; Kohsiek, W.; De Bruin, H.; Liu, H. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound.-Layer Meteorol. 2007, 123, 29–54. [Google Scholar] [CrossRef]
- Leuning, E.; Van Gorsela, E.; Massman, W.; Isaac, P. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Porteous, A. Dictionary of Environmental Science and Technology, 4th ed.; Chinchester: New York, NY, USA, 1994; p. 439. [Google Scholar]
- Platero Morejón, I.; Esteban Arredondo, R.; García Parrado, F. Climatology of surface albedo at Camaguey Actinometric Station. Opt. Pura Apl. 2015, 48, 259–269. [Google Scholar] [CrossRef]
- WMO. Guide to Climatological Practices, 2nd ed.; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Simó, G.; Martínez-Villagrasa, D.; Jiménez, M.; Caselles, V.; Cuxart, J. Impact of the Surface—Atmosphere Variables on the Relation Between Air and Land Surface Temperatures. Pure Appl. Geophys. 2018, 175, 3939–3953. [Google Scholar] [CrossRef]
- Snyder, W.; Wan, Z.; Zhang, Y.; Feng, Y. Classification based emissivity for land surface temperature measurement from space. J. Remote. Sens. 1998, 14, 2753–2774. [Google Scholar] [CrossRef]
- Garay, O.; Ochoa, A. Primera AproximacióN Para la Identificación de los Diferentes tipos de Suelo Agrícola en el Valle del río Mantaro, 1st ed.; Instituto Geofísico del Perú: Lima, Peru, 2010. [Google Scholar]
- Ortega-Farias, S.; Cuenca, R.; Ek, M. Daytime variation of sensible heat flux estimated by the bulk aerodynamic method over a grass canopy. Agric. For. Meteorol. 1996, 81, 131–143. [Google Scholar] [CrossRef]
- Kleier, C.; Rundel, P. Energy balance and temperature relations of Azorella compacta, a high elevation cushion plant of the central Andes. Plant Biol. 2009, 11, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Khodayar, S.; Kalthoff, N.; Fiebig-Wittmaack, M.; Kohler, M. Evolution of the atmospheric boundary-layer structure of an arid Andes Valley. Meteorol. Atmos. Phys. 2008, 99, 181–198. [Google Scholar] [CrossRef]
Temperature (C) | Relative Humidity (%) | Wind Speed (m s) | Wind Direction (degrees) | Soil Heat Flux (W m) | Soil Temperature (C) | Soil Moisture (%) | |
---|---|---|---|---|---|---|---|
Sensor | HMP60 | HMP60 | 03002 Wind Sentry Set | 03002 Wind Sentry Set | HFP01 soil heat flux plate | Decagon 5TM VWC | Decagon 5TM VWC |
Company | Campbell Scientific | Campbell Scientific | Campbell Scientific | Campbell Scientific | Campbell Scientific | ICT International | ICT International |
Range | −40 to 60 | 0–100 | 0–50 | 0–360 | ±2000 | −40 to 50 | 0–100 |
Accuracy | ±0.6 | 3% for 0–90 5% for 90–100 | ±0.5 | ±1.0 | −15% to +5% | ±1 | 0.08 for 0–50 0.1 for 50–100 |
CMP10 Pyranometer | CHP1 Pyrheliometer | CGR4 Pyrgeometer | |
---|---|---|---|
Company | Kipp & Zonen | Kipp & Zonen | Kipp & Zonen |
Spectral range (50% points) | 285 to 2800 nm | 200 to 4000 nm | 4500 a 42000 nm |
Sensitivity | 7 to 14 V W m | 7 to 14 V W m | 5 a 15 V W m |
Response time | <5 s | <5 s | <18 s |
Directional response (up to 80 with 1000 W m beam) | <10 W m | - | - |
Temperature dependence of sensitivity (−20 C to +50 C) | <1% | <0.5% | - |
Operational temperature range | −40 C to +80 C | −40 to +80 C | −40 a +80 C |
Maximum solar irradianciance | 4000 W m | 4000 W m | - |
Limits for net irradiance | - | - | −250 a + 250 W m |
Month | Air | Relative | Water mixing | Wind Speed | Wind Direction | Soil Heat | ||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature (C) | Humidity (%) | Ratio (g kg) | (m s) | (degrees) | Flux (W m) | |||||
(2 m) | (29 m) | (2 m) | (29 m) | (2 m) | (29 m) | (2 m) | (29 m) | (29 m) | (8 cm depth) | |
May | ||||||||||
5 h | 2.13 | 5.51 | 85.71 | 67.57 | 5.68 | 4.78 | 0.40 | 1.43 | 110.5 | −23.50 |
6 h | 1.82 | 4.97 | 85.02 | 68.86 | 5.53 | 4.78 | 0.36 | 1.55 | 126.0 | −24.00 |
7 h | 2.21 | 4.79 | 84.32 | 69.35 | 5.62 | 4.83 | 0.32 | 1.39 | 119.7 | −24.18 |
July | ||||||||||
5 h | 2.46 | 5.05 | 74.96 | 63.24 | 5.19 | 4.76 | 0.54 | 1.45 | 123.0 | −19.84 |
6 h | 1.88 | 4.59 | 76.72 | 65.58 | 5.11 | 4.72 | 0.57 | 1.35 | 147.4 | −20.41 |
7 h | 1.81 | 4.37 | 76.88 | 65.31 | 5.10 | 4.65 | 0.50 | 1.24 | 136.1 | −20.90 |
September | ||||||||||
5 h | 4.32 | 6.43 | 75.64 | 66.21 | 5.95 | 5.49 | 0.58 | 1.50 | 150.5 | −38.24 |
6 h | 3.85 | 6.08 | 76.60 | 67.22 | 5.85 | 5.44 | 0.51 | 1.37 | 170.9 | −38.73 |
7 h | 4.76 | 6.10 | 74.81 | 67.27 | 6.05 | 5.59 | 0.43 | 1.12 | 174.3 | −38.02 |
November | ||||||||||
5 h | 7.01 | 8.79 | 83.03 | 70.71 | 7.81 | 6.93 | 0.33 | 1.42 | 16.44 | −39.14 |
6 h | 6.81 | 8.49 | 83.64 | 71.80 | 7.77 | 6.95 | 0.26 | 1.32 | 125.5 | −39.45 |
7 h | 8.93 | 9.12 | 76.23 | 70.38 | 8.08 | 7.48 | 0.31 | 0.92 | −72.95 | −36.46 |
January | ||||||||||
5 h | 8.09 | 8.73 | 87.73 | 81.17 | 8.79 | 8.27 | 0.25 | 1.06 | −71.73 | −31.58 |
6 h | 7.73 | 8.58 | 88.42 | 81.10 | 8.66 | 8.12 | 0.30 | 1.13 | −87.37 | −31.82 |
7 h | 8.35 | 8.71 | 86.96 | 81.21 | 8.85 | 8.67 | 0.29 | 1.04 | −36.70 | −31.33 |
March | ||||||||||
5 h | 8.64 | 8.97 | 90.28 | 86.50 | 9.37 | 9.03 | 0.17 | 0.83 | −33.78 | −25.92 |
6 h | 8.55 | 8.92 | 90.24 | 85.99 | 9.31 | 8.94 | 0.13 | 0.82 | −33.90 | −25.82 |
7 h | 8.71 | 9.02 | 90.14 | 85.57 | 9.39 | 8.96 | 0.18 | 0.78 | 8.32 | −25.65 |
Month | Sensible Heat | Latent Heat | Momentum | Richardson | Bowen | Soil | Soil |
---|---|---|---|---|---|---|---|
Flux (W m) | Flux (W m) | Flux (N m) | Number | Ratio | Temperature (C) | Moisture (%) | |
2 cm depth | 2 cm depth | ||||||
May | |||||||
5 h | −26.53 | −1.00 | 0.034 | 0.13 | 8.47 | 8.38 | 8.5 |
6 h | −21.47 | 1.39 | 0.033 | 0.07 | 7.34 | 7.96 | 8.5 |
7 h | 2.12 | 13.83 | 0.040 | −0.42 | 5.91 | 7.91 | 8.6 |
July | |||||||
5 h | −23.40 | −4.24 | 0.032 | 0.08 | 8.42 | 6.03 | 5.4 |
6 h | −22.33 | −4.16 | 0.034 | 0.05 | 8.26 | 5.49 | 5.5 |
7 h | −0.94 | 2.54 | 0.042 | −0.27 | 7.49 | 5.37 | 5.5 |
September | |||||||
5 h | −20.21 | −2.02 | 0.032 | 0.09 | 8.74 | 7.31 | 10.8 |
6 h | −14.19 | 1.85 | 0.034 | −0.02 | 8.49 | 6.84 | 10.8 |
7 h | 18.91 | 12.35 | 0.048 | −0.51 | 7.76 | 7.43 | 10.9 |
November | |||||||
5 h | −15.67 | 9.86 | 0.030 | 0.05 | 4.70 | 10.04 | 14.3 |
6 h | −3.25 | 21.26 | 0.036 | −0.19 | 3.77 | 9.80 | 14.3 |
7 h | 26.75 | 40.57 | 0.050 | −0.71 | 2.42 | 11.42 | 14.5 |
January | |||||||
5 h | −4.27 | 13.99 | 0.030 | −0.17 | 2.36 | 11.03 | 18.1 |
6 h | −0.19 | 18.99 | 0.033 | −0.27 | 2.83 | 10.63 | 18.2 |
7 h | 19.85 | 36.31 | 0.047 | −0.63 | 2.19 | 11.28 | 18.2 |
March | |||||||
5 h | −1.56 | 12.56 | 0.027 | −0.25 | 1.31 | 13.03 | 21.6 |
6 h | −0.50 | 14.35 | 0.026 | −0.28 | 1.76 | 12.82 | 21.6 |
7 h | 12.86 | 29.43 | 0.036 | −0.57 | 1.58 | 12.91 | 21.6 |
Month | Global SW | Direct SW | Diffuse SW | Reflected SW | Net SW | Emitted LW | Incident LW | Net LW |
---|---|---|---|---|---|---|---|---|
(W m) | (W m) | (W m) | (W m) | (W m) | (W m) | (W m) | (W m) | |
May | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −326.11 | 264.77 | −61.34 |
6 h | 0 | 0 | 0 | 0 | 0 | −324.69 | 263.69 | −61.00 |
7 h | 33.64 | 17.61 | 16.86 | −10.21 | 23.43 | −328.73 | 266.29 | −62.44 |
July | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −325.99 | 271.75 | −54.24 |
6 h | 0 | 0 | 0 | 0 | 0 | −322.77 | 267.68 | −55.09 |
7 h | 18.77 | 8.40 | 10.75 | −6.56 | 12.21 | −325.77 | 272.66 | −53.11 |
September | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −333.25 | 269.76 | −63.49 |
6 h | 0 | 0 | 0 | 0 | 0 | −331.94 | 270.22 | −61.72 |
7 h | 68.36 | 24.04 | 43.45 | −19.57 | 48.79 | −343.24 | 277.75 | −65.49 |
November | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −351.4 | 300.2 | −51.20 |
6 h | 9.85 | 1.28 | 8.77 | −2.27 | 6.58 | −351.4 | 298.4 | −53.00 |
7 h | 139.5 | 44.64 | 97.65 | −25.64 | 113.86 | −367.4 | 299.2 | −68.20 |
January | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −357.2 | 318.2 | −39.00 |
6 h | 0 | 0 | 0 | 0 | 0 | −356.1 | 316.6 | −39.50 |
7 h | 62.58 | 16.94 | 52.79 | −10.68 | 51.9 | −362.5 | 316.5 | −46.00 |
March | ||||||||
5 h | 0 | 0 | 0 | 0 | 0 | −362.6 | 335.0 | −27.60 |
6 h | 0 | 0 | 0 | 0 | 0 | −361.6 | 332.2 | −29.40 |
7 h | 27.09 | 1.73 | 26.79 | −4.72 | 22.37 | −363.8 | 332.7 | −31.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Rojas, J.L.; Cuxart, J.; Piñas-Laura, M.; Callañaupa, S.; Suárez-Salas, L.; Kumar, S.; Moya-Alvarez, A.S.; SIlva, Y. Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley. Atmosphere 2019, 10, 779. https://doi.org/10.3390/atmos10120779
Flores-Rojas JL, Cuxart J, Piñas-Laura M, Callañaupa S, Suárez-Salas L, Kumar S, Moya-Alvarez AS, SIlva Y. Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley. Atmosphere. 2019; 10(12):779. https://doi.org/10.3390/atmos10120779
Chicago/Turabian StyleFlores-Rojas, José Luis, Joan Cuxart, Manuel Piñas-Laura, Stephany Callañaupa, Luis Suárez-Salas, Shailendra Kumar, Aldo S. Moya-Alvarez, and Yamina SIlva. 2019. "Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley" Atmosphere 10, no. 12: 779. https://doi.org/10.3390/atmos10120779
APA StyleFlores-Rojas, J. L., Cuxart, J., Piñas-Laura, M., Callañaupa, S., Suárez-Salas, L., Kumar, S., Moya-Alvarez, A. S., & SIlva, Y. (2019). Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley. Atmosphere, 10(12), 779. https://doi.org/10.3390/atmos10120779