Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles
Abstract
:1. Introduction
2. Experimental Setup and Test Procedure
2.1. Fuels
2.2. Test Vehicle
2.3. Test Apparatus
2.4. Test Procedure
3. Results and Discussion
3.1. Fuel Properties
3.2. Particulate Mass and Particulate Number Emissions
4. Summary and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCormick, R.L.; Alvarez, J.R.; Graboski, M.S.; Tyson, K.S.; Vertin, K. Fuel Additive and Blending Approaches to Reducing NOx Emissions from Biodiesel; SAE Technical Paper 2002-01-1658; SAE International: Warrendale, PA, USA, 2002. [Google Scholar]
- McNutt, B.; Pirkey, D.; Dulla, R.; Miller, C. A Comparison of Fuel Economy Results from EPA Tests and Actual In-Use Experience, 1974–1977 Model Year Cars; SAE Technical Paper 780037; SAE International: Warrendale, PA, USA, 1978. [Google Scholar]
- Zhai, Q.; Yang, Z.; Gao, J. Research on trends of liquid reference fuels in automobile emission standards. Auto Ind. Res. 2016, 17–23. [Google Scholar] [CrossRef]
- Wall, J.C.; Shimpi, S.A.; Yu, M.L. Fuel Sulfur Reduction for Control of Diesel Particulate Emissions; SAE Technical Paper 872139; SAE International: Warrendale, PA, USA, 1987. [Google Scholar]
- McCabe, R.W.; DiCicco, D.M.; Guo, G.; Hubbard, C.P. Effects of MMT® Fuel Additive on Emission System Components: Comparison of Clear- and MMT®-fueled Escort Vehicles from the Alliance Study; SAE Technical Paper 2004-01-1084; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Peng, G.; Yao, C. Corrigendum to “Combustion and emission characteristics of a direct-injection gasoline engine using the MMT fuel additive gasoline” [Fuel 144 (2015) 380–387]. Fuel 2016, 165, 554. [Google Scholar] [CrossRef]
- Alessandro, M.; Jelica, P.; Biagio, C.; Simone, S.; Georgios, F. Gaseous emissions from light-duty vehicles: Moving from NEDC to the new WLTP test procedure. Environ. Sci. Technol. 2015, 49, 8315–8322. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. China Vehicle Environmental Management Annual Report. Available online: http://dqhj.mee.gov.cn/jdchjgl/zhgldt/201806/P020180604354753261746.pdf (accessed on 15 January 2019).
- Arvind, T.; Besch, M.C.; Seungju, Y.; John, C.; Hemanth, K.; Carder, D.K.; Alberto, A.; Jorn, H.; Mridul, G. Characterization of particulate matter emissions from a current technology natural gas engine. Environ. Sci. Technol. 2014, 48, 8235. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. GB 18352.6-2016 Limits and Measurement Method for the Emission of Light Duty Vehicle (China 6). Available online: http://www.vecc.org.cn/180514/1-1P514104206.pdf (accessed on 15 January 2019).
- Sellnau, M.; Foster, M.; Moore, W.; Sinnamon, J.; Hoyer, K.; Klemm, W. Second generation GDCI multi-cylinder engine for high fuel efficiency and US Tier 3 emissions. SAE Int. J. Engines 2016, 9, 1002–1020. [Google Scholar] [CrossRef]
- Myung, C.L.; Ko, A.; Park, S. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1. Int. J. Autom. Technol. 2014, 15, 203–218. [Google Scholar] [CrossRef]
- Aikawa, K.; Sakurai, T.; Jetter, J.J. Development of a predictive model for gasoline vehicle particulate matter emissions. SAE Int. J. Fuels Lubr. 2010, 3, 610–622. [Google Scholar] [CrossRef]
- Aikawa, K.; Jetter, J.J. Impact of gasoline composition on particulate matter emissions from a direct-injection gasoline engine: Applicability of the particulate matter index. Int. J. Engine Res. 2014, 15, 298–306. [Google Scholar] [CrossRef]
- Khalek, I.A.; Bougher, T.; Jetter, J.J. Particle emissions from a 2009 gasoline direct injection engine using different commercially available fuels. SAE Int. J. Fuels Lubr. 2010, 3, 623–637. [Google Scholar] [CrossRef]
- Leach, F.; Stone, R.; Richardson, D. The Influence of Fuel Properties on Particulate Number Emissions from a Direct Injection Spark Ignition Engine; SAE Technical Paper 2013-01-1558; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Chapman, E.; Winston-Galant, M.; Geng, P.; Latigo, R.; Boehman, A. Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI); SAE Technical Paper 2016-01-2250; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Chapman, E.; Winston-Galant, M.; Geng, P.; Konzack, A. Global Market Gasoline Range Fuel Review using Fuel Particulate Emission Correlation Indices; SAE Technical Paper 2016-01-2251; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Chen, L.; Liang, Z.; Xin, Z.; Shuai, S. Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions. Fuel 2017, 189, 131–140. [Google Scholar] [CrossRef]
- Chen, L.; Stone, R.; Richardson, D. A study of mixture preparation and PM emissions using a direct injection engine fuelled with stoichiometric gasoline/ethanol blends. Fuel 2011, 90, 120–130. [Google Scholar] [CrossRef]
- He, X.; Ratcliff, M.A.; Zigler, B.T. Effects of gasoline direct injection engine operating parameters on particle number emissions. Energy Fuels 2012, 26, 2014–2027. [Google Scholar] [CrossRef]
- Ye, S.; Li, L.; Jing, S.; Shi, Z. Uncertainty estimation in light-duty vehicle type I test. Energy Conserv. Environ. Prot. Transp. 2017, 13, 9–13. [Google Scholar] [CrossRef]
- JCGM: 200 Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 15 January 2019).
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Überall, A.; Otte, R.; Eilts, P.; Krahl, J. A literature research about particle emissions from engines with direct gasoline injection and the potential to reduce these emissions. Fuel 2015, 147, 203–207. [Google Scholar] [CrossRef]
- Mwangi, J.K.; Lee, W.-J.; Tsai, J.-H.; Wu, T.S. Emission reductions of nitrogen oxides, particulate matter and polycyclic aromatic hydrocarbons by using microalgae biodiesel, butanol and water in diesel engine. Aerosol Air Qual. Res. 2015, 15, 901–914. [Google Scholar] [CrossRef]
- Georgios, K.; Daniel, S.; Diep, V.; Robert, R.; Maryam, H.; Akua, A.A.; Durbin, T.D. Evaluating the effects of aromatics content in gasoline on gaseous and particulate matter emissions from SI-PFI and SIDI vehicles. Environ. Sci. Technol. 2015, 49, 7021–7031. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Regulated and unregulated exhaust emissions from CNG fueled vehicles in light of Euro 6 regulations and the new WLTP/GTR 15 test procedure. SAE Int. J. Engines 2015, 8, 1300–1312. [Google Scholar] [CrossRef]
- Whitaker, P.; Kapus, P.; Ogris, M.; Hollerer, P. Measures to reduce particulate emissions from gasoline DI engines. SAE Int. J. Engines 2011, 4, 1498–1512. [Google Scholar] [CrossRef]
- Storey, J.M.E.; Barone, T.L.; Norman, K.M.; Lewis, S.A. Ethanol blend effects on direct injection spark-ignition gasoline vehicle particulate matter emissions. SAE Int. J. Fuels Lubr. 2010, 3, 650–659. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Oßwald, P.; Hansen, N.; Kohsehöinghaus, K. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 2014, 44, 40–102. [Google Scholar] [CrossRef]
Specification | Unit | Fuel A | Fuel B | Fuel C | Fuel D | China 6 Primary Reference Fuel Standard | China 6 Market Fuel Standard |
---|---|---|---|---|---|---|---|
Density | kg/m³ | 740 | 740 | 745 | 744 | 735–755 (RON92–94) 745–760 (RON95–98) | 720–775 |
Research Octane Number (RON) | Unit | 93.47 | 93.65 | 93.73 | 90.54 | RON92–94 RON95–98 | ≥89 (#89) ≥92 (#92) ≥95 (#95) |
Reid Vapor Pressure (RVP) | kPa | 57.5 | 56.0 | 57.0 | 56.0 | 56–60 | 45–85 (1st Nov.–30th Apr.) 40–65 (1st May–31st Oct.) |
Sulfur | ppm | 1 | <1 | <1 | 1 | ≤10 | ≤10 |
Mn | mg/L | <1 | <1 | <1 | <1 | ≤2 | ≤2 |
Pb | mg/L | <1 | <1 | <1 | <1 | ≤5 | ≤5 |
Fe | mg/L | <1 | <1 | <1 | <1 | ≤10 | ≤10 |
T10 | °C | 58 | 58 | 57 | 57 | 50–65 | ≤70 |
T50 | °C | 92 | 93 | 92 | 95 | 90–105 | ≤110 |
T90 | °C | 153 | 160 | 162 | 175 | 150–165 | ≤190 |
FBP | °C | 191 | 198 | 200 | 216 | 190–200 | ≤205 |
Aromatic | Vol% | 28.3 | 28.8 | 30.8 | 31.2 | 27–32 (RON92–94) 30–35 (RON95–98) | ≤35 |
Technical Specifications | Vehicle A (SUV) | Vehicle B (MPV) |
---|---|---|
Displacement | 1490 cc | 1998 cc |
Fuel Injection | Direct Injection | Direct Injection |
Boost | Turbocharger | Turbocharger |
Power | 124 kW | 191 kW |
Cylinder/Valves | 4/16 | 4/16 |
Transmission | 7 DCT | 6AT |
Curb mass | 1575 kg | 1878 kg |
Fuel consumption at New European Driving Cycle (NEDC) | 6.6 L/100 km | 8.8 L/100 km |
Fuel A | Fuel B | Fuel C | Fuel D | |
---|---|---|---|---|
PMI | 1.38 | 1.60 | 2.04 | 2.39 |
PEI | 0.89 | 1.22 | 1.59 | 1.92 |
Test Fuel | Test 1 | Test 2 | Average | Combined Standard Uncertainty | ||
---|---|---|---|---|---|---|
Vehicle A | PM mg/km | A | 2.58 | 2.53 | 2.55 | 0.02 |
B | 3.58 | 3.49 | 3.54 | 0.04 | ||
C | 4.12 | 4.18 | 4.15 | 0.03 | ||
D | 5.70 | 5.58 | 5.64 | 0.06 | ||
PN #/km | A | 2.79 × 1012 | 3.26 × 1012 | 3.02 × 1012 | 1.67 × 1011 | |
B | 4.08 × 1012 | 3.87 × 1012 | 3.98 × 1012 | 7.84 × 1010 | ||
C | 4.55 × 1012 | 5.06 × 1012 | 4.80 × 1012 | 1.82 × 1011 | ||
D | 5.59 × 1012 | 5.29 × 1012 | 5.44 × 1012 | 1.12 × 1011 | ||
Vehicle B | PM mg/km | A | 1.92 | 1.95 | 1.94 | 0.02 |
B | 2.53 | 2.24 | 2.39 | 0.10 | ||
C | 3.36 | 3.29 | 3.32 | 0.03 | ||
D | 5.54 | 4.82 | 5.18 | 0.26 | ||
PN #/km | A | 1.45 × 1012 | 1.69 × 1012 | 1.57 × 1012 | 8.30 × 1010 | |
B | 1.75 × 1012 | 1.77 × 1012 | 1.76 × 1012 | 1.33 × 1010 | ||
C | 3.48 × 1012 | 3.28 × 1012 | 3.38 × 1012 | 7.54 × 1010 | ||
D | 3.94 × 1012 | 3.79 × 1012 | 3.87 × 1012 | 5.97 × 1010 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, X.; Hu, S.; Ma, C. Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles. Atmosphere 2019, 10, 111. https://doi.org/10.3390/atmos10030111
Zhao Y, Li X, Hu S, Ma C. Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles. Atmosphere. 2019; 10(3):111. https://doi.org/10.3390/atmos10030111
Chicago/Turabian StyleZhao, Yaowei, Xinghu Li, Shouxin Hu, and Chenfei Ma. 2019. "Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles" Atmosphere 10, no. 3: 111. https://doi.org/10.3390/atmos10030111
APA StyleZhao, Y., Li, X., Hu, S., & Ma, C. (2019). Effects of the Particulate Matter Index and Particulate Evaluation Index of the Primary Reference Fuel on Particulate Emissions from Gasoline Direct Injection Vehicles. Atmosphere, 10(3), 111. https://doi.org/10.3390/atmos10030111