Temporal Changes in Air Quality during a Festival Season in Kannur, India
Abstract
:1. Introduction
2. Methods
2.1. Observational Site and General Meteorology
2.2. Observation of Trace Gases and AOD
2.3. Quantitative Analysis of Particulate Matter
3. Model Description
NCAR-Tropospheric Ultra Violet Visible (TUV) and Master Mechanism (MM) Model
4. Results and Discussions
4.1. Observation of Aerosol Optical Depth during Vishu Festival
4.2. Quantitative Analysis of Metal Concentrations Present in PM10
4.3. Variation of Surface Ozone and NO2 during Fireworks
4.4. Rate of Change of O3 on Diurnal Scale during Fire Bursting
4.5. Correlation between PM10 and Trace Gases
4.6. Model Simulation for JNO2
4.7. Model Simulation for O3
4.8. Correlation of Particulate Matter and Meteorological Parameters
4.9. Air Quality Index during Vishu
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Molina, M.J.; Molina, L.T. Critical Review: Megacities and atmospheric pollution. J. Air Waste Manag. 2004, 54, 644–680. [Google Scholar] [CrossRef]
- Chan, K.C.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Agus, E.L.; Lingard, J.J.N.; Tomlin, A.S. Suppression of nucleation mode particles by biomass burning in an urban environment: A case study. J. Environ. Monit. 2008, 10, 979–988. [Google Scholar] [CrossRef]
- Kwasny, F.; Madl, P.; Hofmann, W. Comparing lung deposition of ultrafine particles caused by fireworks and traffic. J. Aerosol Sci. 2009, 29, 5–6. [Google Scholar]
- Burkart, J.; Steiner, G.; Reischl, G.; Moshammer, H.; Neuberger, M.; Hitzenberger, R. Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J. Aerosol Sci. 2010, 41, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly, A.; Smargiassi, A.; Kosatsky, T.; Fournier, M.; Dabek-Zlotorzynska, E.; Celo, V.; Mathieu, D.; Servranckx, R.; D’amours, R.; Malo, A.; et al. Characterisation of particulate during fireworks displays. Atmos. Environ. 2010, 44, 4325–4329. [Google Scholar] [CrossRef]
- Nastos, P.T.; Paliatsos, A.G.; Anthracopoulos, M.B.; Roma, E.S.; Kostas, N. Outdoor particulate matter and childhood asthma admissions in Athens, Greece: A time series study. Environ. Health 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Gadi, R.; Mandal, T.K.; Dixit, C.K.; Singh, K.; Saud, T.; Singh, N.; Gupta, P.K. Study of temporal variation in ambient air quality during Diwali festival in India. Environ. Monit. Assess. 2010, 169, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on paediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef]
- Licudine, J.A.; Yee, H.; Chang, W.L.; Whelen, A.C. Hazardous metals in ambient air due to New Year fireworks during 2004–2011 celebrations in Pearl City, Hawaii. Public Health Rep. 2012, 127, 440. [Google Scholar] [CrossRef]
- Bapna, M.; Raman, R.S.; Ramachandran, S.; Rajesh, T.A. Airborne black carbon concentrations over an urban region in western India, temporal variability, effects of meteorology and source regions. Environ. Sci. Pollut. Res. 2013, 20, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, P.K.; Bharali, C.; Pathak, B.; Kalita, G. The role of precursor gases and meteorology on temporal evolution of O3 at a tropical location in northeast India. Environ. Sci. Pollut. Res. 2014, 21, 6696–6713. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Z.; Wang, J.; Peng, X.; Shi, G.L.; Feng, Y.C. Estimation of direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric fine and coarse particles. Atmos. Chem. Phys. Discuss. 2014, 14, 11075–11101. [Google Scholar] [CrossRef]
- Shon, Z.H.; Jeong, J.H.; Kim, Y.K. Characteristics of atmospheric metalliferous particles during large-scale fireworks in Korea. Adv. Meteorol. 2015, 2015, 3–13. [Google Scholar] [CrossRef]
- Xu, J.; Ding, G.A.; Yan, P.; Zhang, J.C.; Wang, S.F.; Meng, Z.Y.; Zhang, Y.M.; Liu, Y.C.; Zhang, X.L. Effect of firecracker setting-off on the fine particle pollution in Beijing downtown areas. J. Saf. Environ. 2006, 5, 79–82. [Google Scholar]
- Agrawal, A.; Upadhyay, V.K.; Sachdeva, K. Study of aerosol behavior on the basis of morphological characteristics during festival events in India. Atmos. Environ. 2011, 45, 3640–3644. [Google Scholar] [CrossRef]
- Crespo, J.; Yubero, E.; Nicolás, J.F.; Lucarelli, F.; Nava, S.; Chiari, M.; Calzolai, J. High-time Resolution and Size-segregated Elemental Composition in High intensity Pyrotechnic Exposures. J. Hazard. Mater. 2012, 241, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Azhagurajan, A.; Selvakumar, N.; Suresh, A. Environment friendly fireworks manufacturing using nano scale flash powder. J. Sci. Ind. Res. 2014, 73, 479–484. [Google Scholar]
- Lin, C.C.; Huang, K.L.; Chen, H.L.; Tsai, J.H.; Chiu, Y.P.; Lee, J.T.; Chen, S.J. Influences of Beehive Firework Displays on Ambient Fine Particles during the Lantern Festival in the YanShuei Area of Southern Taiwan. Aerosol Air Qual. Res. 2014, 14, 1998–2009. [Google Scholar] [CrossRef]
- Caballero, S.; Galindo, N.; Castañer, R.; Giménez, J.; Crespo, J. Real-Time Measurements of Ozone and UV Radiation during Pyrotechnic Displays. Aerosol Air Qual. Res. 2015, 15, 2150–2157. [Google Scholar] [CrossRef]
- Kulshrestha, U.C.; Rao, N.T.; Azhaguvel, S.; Kulshrestha, M.J. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmos. Environ. 2004, 38, 4421–4425. [Google Scholar] [CrossRef]
- Cinzia, P.; Suresh, T.; Maria, C.; Stefano, D.T.; Elena, R.; Silvia, C. Chemical characterization of atmospheric PM in Delhi, India during different periods of the year including Diwali festival. Atmos. Pollut. Res. 2011, 2, 418–427. [Google Scholar]
- Kankal, S.B.; Gaikwad, R.W. Studies on noise and air quality monitoring at Shirdi (Maharashtra), India. Adv. Appl. Sci. Res. 2011, 2, 63–75. [Google Scholar]
- Pachauri, T.; Singla, V.; Satsangi, A.; Lakhani, A.; Kumari, K.M. Characterization of major pollution events (dust, haze, and two festival events) at Agra, India. Environ. Sci. Pollut. Res. 2013, 20, 5737–5752. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Payra, S.; Verma, S.; Soni, M. Aerosol particle behavior during Dust Storm and Diwali over an urban location in north western India. Nat. Hazards 2013, 69, 1767–1779. [Google Scholar] [CrossRef]
- Vyas, B.M.; Saraswat, V. Studies of atmospheric aerosol’s parameters during pre diwali to post diwali festival period over Indian semi-arid station at, Udaipur. Appl. Phys. Res. 2012, 4, 40–55. [Google Scholar] [CrossRef]
- Singh, B.P.; Srivastava, A.K.; Tiwari, S.; Singh, S.; Singh, R.K.; Bisht, D.S.; Lal, D.M.; Singh, A.K.; Mall, R.K.; Srivastava, M.K. Radiative impact of fireworks at a tropical Indian location: A case study. Adv. Meteorol. 2014, 2014, 197072. [Google Scholar] [CrossRef]
- Smith, R.M.; Vu, D.D. Changes in forced expiratory flow due to air pollution from fireworks. Environ. Res. 1975, 9, 321–331. [Google Scholar] [CrossRef]
- Bach, W.; Dickinson, L.; Weiner, B.; Costello, G. Some adverse health effects due to air pollution from fireworks. Hawaii Med. J. 1972, 31, 459–465. [Google Scholar] [PubMed]
- Vecchi, R.; Bernardoni, V.; Cricchio, D.; Alessandro, A.D.; Fermo, P.; Lucarelli, F.; Nava, S.; Piazzalunga, A.; Vallia, G. The impact of fireworks on air borne particles. Atmos. Environ. 2008, 42, 1121–1132. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Amato, F.; Peya, J.; Pandolfi, M.; Kuenzli, N.; Bouso, L.; Rivera, M.; Gibbons, W. Effect of fireworks events on urban background trace metal aerosol concentrations: Is the cocktail worth the show. J. Hazard. Mater. 2010, 183, 945–949. [Google Scholar] [CrossRef]
- Camilleri, R.; Vella, A.J. Effect of fireworks on ambient air quality in Malta. Atmos. Environ. 2010, 44, 4521–4527. [Google Scholar] [CrossRef]
- Drewnick, F.; Hings, S.S.; Curtius, J.; Eerdekens, G.; Williams, J. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos. Environ. 2006, 40, 4316–4327. [Google Scholar] [CrossRef]
- Godri, K.J.; Green, D.C.; Fuller, G.W.; Dall’Osto, M.; Beddows, D.C.; Kelly, F.J.; Harrison, R.M.; Mudway, I.S. Particulate oxidative burden associated with firework activity. Environ. Sci. Technol. 2010, 1, 8295–8301. [Google Scholar] [CrossRef]
- Croteau, G.; Dills, R.; Beaudreau, M.; Davis, M. Emission factors and exposures from ground-level pyrotechnics. Atmos. Environ. 2010, 44, 3295–3303. [Google Scholar] [CrossRef]
- Reka, S.; Abhilash, S.P.; Neha, S.P.; Sunil, K.P.; Beig, G. Sensitivity of online coupled model to extreme pollution event over a mega city Delhi. Atmos. Pollut. Res. 2016, 7, 25–30. [Google Scholar]
- Thakur, B.; Chakraborty, S.; Debsarka, R.A.; Chakrabarty, S.; Srivastava, R.C. Air pollution from fireworks during festival of lights (Deepawali) in Howrah, India—A case study. Atmósfera 2010, 23, 347–365. [Google Scholar]
- Tiwari, S.; Chate, D.M.; Srivastava, M.K. Statistical evaluation of PM10 and distribution of PM, PM2.5, and PM10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi. Nat. Hazards 2012, 61, 521–531. [Google Scholar] [CrossRef]
- Chatterjee, A.; Sarkar, C.; Adak, A.; Mukherjee, U.; Ghosh, S.K.; Raha, S. Ambient air quality during Diwali Festival over Kolkata-A mega city in India. Aerosol Air Qual. Res. 2013, 13, 1133–1144. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Hospital indoor PM10/PM2.5 and associated trace elements in Huangzhou, China. Sci. Total Environ. 2006, 366, 124–135. [Google Scholar] [CrossRef]
- Becker, J.M.; Iskandrian, S.; Conkling, J. Fatal and near-fatal asthma in children exposed to fireworks. Ann. Allergy Asthma Immunol. 2000, 85, 512–513. [Google Scholar] [CrossRef]
- Bull, M.J.; Agran, P.; Gardner, H.G.; Laraque, D.; Pollack, S.H.; Smith, G.A. Fireworks related injuries to children. Pediatrics 2001, 108, 190–191. [Google Scholar]
- Kannan, G.K.; Gupta, M.; Kapoor, J.C. Estimation of gaseous products and particulate matter emission from garden biomass combustion in a simulation fire test chamber. Atmos. Environ. 2004, 38, 6701–6710. [Google Scholar] [CrossRef]
- Barman, S.C.; Singh, R.; Negi, M.P.S.; Bhargava, S.K. Ambient air quality of Lucknow City (India) during use of fireworks on Diwali Festival. Environ. Monit. Assess. 2008, 137, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Ambade, B.; Ghosh, S. Characterization of PM10 in the ambient air during Deepawali festival of Rajnandgaon District, India. Nat. Hazards 2013, 69, 589–598. [Google Scholar] [CrossRef]
- Baranyai, E.; Simon, E.; Braun, M.; Tóthmérész, B.; Posta, J.; Fábián, I. The effect of a fireworks event on the amount and elemental concentration of deposited dust collected in the city of Debrecen, Hungary. Air Qual. Atmos. Health. 2015, 8, 359–365. [Google Scholar] [CrossRef]
- Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Internsh. 2006, 32, 815–830. [Google Scholar] [CrossRef]
- Mandal, P.; Prakash, M.; Bassin, J.K. Impact of Diwali celebrations on urban air and noise quality in Delhi City, India. Environ. Monit. Assess. 2012, 184, 209–215. [Google Scholar] [CrossRef]
- Nishanth, T.; Praseed, K.M.; Rathnakaran, K.; Satheesh Kumar, M.K.; Ravi Krishna, R.; Valsaraj, K.T. Atmospheric pollution in a semi-urban, coastal region in India following festival seasons. Atmos. Environ. 2012, 47, 295–306. [Google Scholar] [CrossRef]
- Swamy, Y.V.; Sharma, A.R.; Nikhil, G.N.; Venkanna, R.; Chitanya, N.S.K.; Sinha, P.R. The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years. Environ. Monit. Assess. 2013, 185, 7309–7325. [Google Scholar]
- Saha, U.; Talukdar, S.; Jana, S.; Maitra, A. Effects of air pollution on meteorological parameters during Deepawali festival over an Indian urban metropolis. Atmos. Environ. 2014, 98, 530–539. [Google Scholar] [CrossRef]
- Myriam, T.; Oliver, R.; Dirk, W.; Dietrich, P. Burden of outdoor air pollution in Kerala, India- A first health risk assessment at state level. Int. J. Environ. Res. Public Health 2015, 12, 10602–10619. [Google Scholar]
- Josna, J.D.; Kalaiarasan, P.; Akhil, N.G. Air quality study of selected areas in Kerala state. Int. Res. J. Eng. Technol. 2017, 4, 3517–3521. [Google Scholar]
- Morys, M.; Mims, F.M.; Hagerup, S.; Anderson, S.E.; Baker, A.; Kia, J.; Walkup, T. Design, calibration, and performance of Microtops II handheld ozone monitor and sun photometer. J. Geophys. Res. 2001, 106, 14573–14582. [Google Scholar] [CrossRef]
- Nishanth, T.; Praseed, K.M.; Satheesh Kumar, M.K.; Valsaraj, K.T. Influence of ozone precursors and PM10 on the variation of surface ozone over Kannur, India. Atmos. Res. 2014, 138, 112–124. [Google Scholar] [CrossRef]
- Madronich, S.; Flocke, S. The role of solar radiation in atmospheric chemistry. In Handbook of Environmental Chemistry; Springer: Heidelberg/Berlin, Germany, 1999; Volume 2, pp. 1–26. [Google Scholar]
- Flynn, J.; Lefer, B.; Rappengluck, B.; Leuchner, M.; Perna, R.; Dibb, J.; Ziemba, L.; Anderson, C.; Stutz, J.; Brune, W.; et al. Impact of clouds and aerosols on ozone production in Southeast Texas. Atmos. Environ. 2010, 44, 4126–4133. [Google Scholar] [CrossRef]
- Gustavo, G.; Palancar Rafael, P.; Fernandez, T.; Beatriz, M. Photolysis rate coefficients calculations from broadband UV-B irradiance: Model-measurement interaction. Atmos. Environ. 2005, 39, 857–866. [Google Scholar]
- Stamnes, K.; Tsay, S.; Wiscombe, W.J.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Demore, W.B. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling. California Institute of Technology Pasadena; Jet. Propulsion Laboratory Publications: La Cañada Flintridge, CA, USA, 2000. [Google Scholar]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Aumont, B.; Madronich, S.; Bey, I.; Tyndall, G.S. Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modelling approach. J. Atmos. Chem. 2000, 35, 59–75. [Google Scholar] [CrossRef]
- Madronich, S. Chemical evolution of gaseous air pollutants down-wind of tropical megacities: Mexico City case study. Atmos. Environ. 2006, 40, 6012–6018. [Google Scholar] [CrossRef]
- Angstrom, A. On the atmospheric transmission of sun radiation and on dust in the air. Geograf. Ann. 1929, 12, 130–159. [Google Scholar]
- Schuster, G.L.; Dovobik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distribution. J. Geophys. Res. 2006, 111, D07207. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Neil, N.T.; Kinnie, S. Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J. Geophys. Res. 1999, 103, 31333–31349. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Tulleken, R.; Amanatidis, G.T.; Paliatsos, A.G.; Asimakopoulos, D.N. Statistical evaluation of selected air pollutants in Athens, Greece. Environmetrics 1995, 6, 349–361. [Google Scholar] [CrossRef]
- Junge, C.E. The size distribution and ageing of natural aerosols as determined from electrical and optical measurements in the atmosphere. J. Meteorol. 1955, 12, 13–25. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D. Investigation on the wavelength dependence of the aerosol optical depth in Athens area. Q. J. R. Meteorol. Soc. 2006, 132, 2217–2234. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Dubovic, O.; Eck, T.F. Modified Angstrom exponent for the characterization of sub micrometre aerosols. Appl. Opt. 2001, 40, 2368–2375. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Dubovic, O.; Smirnov, A.; Slutsker, I.; Lobert, J.M.; Ramanathan, V. Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000. J. Geophys. Res. 2001, 106, 28555–28566. [Google Scholar] [CrossRef]
- Christopher, S.A.; Wang, J.; Ji, Q.; Tsay, S. Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE. J. Geophys. Res. 2003, 108, 8596. [Google Scholar] [CrossRef]
- Ogunjobi, K.O.; He, Z.; Kim, K.W.; Kim, Y.J. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea. Atmos. Environ. 2004, 38, 1313–1323. [Google Scholar] [CrossRef]
- Ramachandran, S. Spectral aerosol optical characteristics during the northeast monsoon over the Arabian Sea and the tropical Indian Ocean: Angstrom parameters and anthropogenic influence. J. Geophys. Res. 2004, 109, D19208. [Google Scholar] [CrossRef]
- Lal, S.; Venkataramani, S.; Naja, M.; Kuniyal, C.J.; Mandal, T.K.; Bhuyan, P.K.; Kumari, K.M.; Tripathi, S.M.; Sarkar, U.; Das, T.; et al. Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environ. Sci. Pollut. Res. 2017, 24, 20972–20981. [Google Scholar] [CrossRef] [PubMed]
- Attri, A.K.; Kumar, U.; Jain, V.K. Formation of ozone by fireworks. Nature 2001, 411, 1015. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Mor, S.; Kaushik, C.P. Short-term variation in air quality associated with firework events: A case study. J. Environ. Monit. 2003, 5, 260–264. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Dentener, F.J.; Crutzen, P. Reaction of N2O5 on tropospheric aerosol: Impact on the global distributions of NOx, O3 and OH. J. Geophys. Res. 1993, 98, 7149–7163. [Google Scholar] [CrossRef]
- Prospero, J.M.; Schmitt, R.; Cuevas, E.; Savoie, D.L.; Graustein, W.C.; Turekian, K.K.; Volz-Thomas, A.; Diaz, A.; Oltmans, S.J.; Levy, H., II. Temporal variability of summer time ozone and aerosol in the free troposphere over the eastern North Atlantic. Geophys. Res. Lett. 1995, 22, 2925–2928. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 1996, 381, 681–683. [Google Scholar] [CrossRef]
- Dickerson, R.R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.L.; Doddrige, B.G.; Holben, B.N. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef]
- Bauer, S.E.; Balkanski, Y.; Schulz, M.; Hauglustaine, D.A.; Dentener, F. Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. J. Geophys. Res. 2004, 109, D02304. [Google Scholar] [CrossRef]
- Bonasoni, P.; Cristofanelli, F.; Calzolari, U.; Bonafè, F.; Evangelisti, S.A.; Zauli, S.S.; van Dingenen, R.; Colombo, T.; Balkanski, Y. Aerosol-ozone correlations during dust transport episodes. Atmos. Chem. Phys. 2004, 4, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, R.; Tie, X.; Hess, P. Chemical characterization of ozone formation in the Houston-Galveston area. J. Geophys. Res. 2004, 109, D12301. [Google Scholar] [CrossRef]
- Ruidavets, J.B.; Cournot, M.; Cassadou, S.; Giroux, M.; Meybeck, M.; Ferrieres, J. Ozone air pollution is associated with acute myocardial infarction. Circulation 2005, 111, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McElroy, M.B.; Munger, J.W.; Hao, J.; Ma, H.; Nielsen, C.P.; Chen, Y. Variations of O3 and CO in summertime at a rural site near Beijing. Atmos. Chem. Phys. 2008, 8, 6355–6363. [Google Scholar] [CrossRef]
- Boubel, R.W.; Fox, D.L.; Turner, D.B.; Stern, A.C. Fundamentals of Air Pollution, 3rd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Dayan, U.; Levy, I. Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel. J. Geophys. Res. 2002, 107, 4813. [Google Scholar] [CrossRef]
- Pearce, J.; Beringer, J.; Nicholls, N.; Hyndman, R.J.; Uotila, P.; Tapper, N.J. Investigating the influence of synoptic-scale meteorology on air quality using self-organizing maps and generalized additive modeling. Atmos. Environ. 2011, 45, 128–136. [Google Scholar] [CrossRef]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Morsy, E.A.; Mohammed, A.M.F.; Saud, W.A.; Esawee, A.L.; Awad, A.H. Modelling particulate matter concentrations in Makkah, applying a statistical modelling approach. Aerosol Air Qual. Res. 2013, 13, 901–910. [Google Scholar] [CrossRef]
- Munir, S.; Habeebullah, T.M.; Mohammed, A.M.F.; Morsy, E.A.; Rehan, M.; Ali, K. Analysing PM2.5 and its Association with PM10 and Meteorology in the Arid Climate of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 2017, 17, 453–464. [Google Scholar] [CrossRef]
- Charron, A.; Harrison, R.M. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ. 2003, 37, 4109–4119. [Google Scholar] [CrossRef]
- Nasir, U.P.; Brahmaiah, D. Impact of fireworks on ambient air quality: A case study. Int. J. Environ. Sci. Technol. 2015, 12, 1379–1386. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Latitude | 11.9° N |
Longitude | 75.4° E |
Time Zone | 5.5 |
Temperature | 305 K |
Air Number Density | 2.44 × 1019 molecules/cm3 |
Relative Humidity | 72% |
Surface Albedo | 0.10 |
Parcel Elevation | 5 m |
Overhead O3 Column | 265 DU (OMI) |
AOD at 550 nm | 0.5 |
Aerosol Angstrom Coefficient | 1 |
Aerosol Single Scattering Albedo | 0.72 |
Parameter | Values |
---|---|
Latitude | 11.9° N |
Longitude | 75.4° E |
Temperature | 308 K |
Relative Humidity | 66% |
Ozone Column | 360 DU (OMI) |
AOD at 550 nm | 0.52 |
Aerosol SSA | 0.72 |
Aerosol Angstrom Coefficient | 0.88 |
Metals | Concentrations (µg/m3) | Average % of Increase of Metal Concentration on Vishu Day | |||||
---|---|---|---|---|---|---|---|
13 April (Pre Vishu) | 15 April (Vishu) | 17 April (Post Vishu) | |||||
Avg. | Std. dev | Avg. | Std. dev | Avg. | Std. dev | ||
Na | 0.61 | 0.14 | 1.50 | 0.21 | 0.74 | 0.08 | 145.90 |
Hg | 0.06 | 0.03 | 0.28 | 0.11 | 0.08 | 0.01 | 366.67 |
Cu | 8.00 | 1.76 | 26.0 | 2.52 | 11.0 | 1.95 | 225.00 |
Pb | 11.8 | 1.03 | 32.0 | 2.43 | 13.0 | 1.45 | 171.19 |
Ba | 16.0 | 1.50 | 38.0 | 4.31 | 22.0 | 1.60 | 137.50 |
Ca | 1.12 | 0.16 | 3.18 | 0.60 | 1.32 | 0.40 | 183.93 |
Fe | 0.48 | 0.12 | 0.91 | 0.36 | 0.54 | 0.15 | 89.58 |
Zn | 0.36 | 0.09 | 0.71 | 0.20 | 0.41 | 0.11 | 97.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
CT, R.; T, N.; MK, S.K.; M, B.; KT, V. Temporal Changes in Air Quality during a Festival Season in Kannur, India. Atmosphere 2019, 10, 137. https://doi.org/10.3390/atmos10030137
CT R, T N, MK SK, M B, KT V. Temporal Changes in Air Quality during a Festival Season in Kannur, India. Atmosphere. 2019; 10(3):137. https://doi.org/10.3390/atmos10030137
Chicago/Turabian StyleCT, Resmi, Nishanth T, Satheesh Kumar MK, Balachandramohan M, and Valsaraj KT. 2019. "Temporal Changes in Air Quality during a Festival Season in Kannur, India" Atmosphere 10, no. 3: 137. https://doi.org/10.3390/atmos10030137
APA StyleCT, R., T, N., MK, S. K., M, B., & KT, V. (2019). Temporal Changes in Air Quality during a Festival Season in Kannur, India. Atmosphere, 10(3), 137. https://doi.org/10.3390/atmos10030137