A Review of the Representation of Aerosol Mixing State in Atmospheric Models
Abstract
:1. Introduction
1.1. Terminology
1.2. General Evolution of Aerosol Mixing-State in the Atmosphere
1.3. Measurement Techniques
2. Effects of Mixing State on Aerosol Properties
2.1. Effects on Particle Hygroscopicity
2.1.1. Impacts on CCN Concentrations
2.1.2. Wet Deposition
2.2. Direct Impacts on Optical Properties and Radiation
2.2.1. Enhancement of BC Absorption Due to Internal Mixing
2.2.2. Mixing Rule
2.2.3. Effects of Aerosol Population Mixing-State Representation on Radiation
2.2.4. Aerosol Particle Shape and Radiation
2.3. Mixing-State and Ice Activation
2.4. Equilibrium Thermodynamics and Heterogeneous Chemistry
2.4.1. Inorganic
2.4.2. Organic
3. Modelling Approaches
3.1. Hygroscopicity-Based Representations
3.1.1. Two Hygroscopicity Categories
3.1.2. Related Approaches
3.1.3. Ageing Schemes
3.2. Categorization by Black Carbon Mass Fraction
3.3. Detailed Categorization by Chemical Composition
3.4. Source-Oriented
3.5. Particle-Resolving
4. Summary and Recommendations
Funding
Conflicts of Interest
Abbreviations
AAOD | Aerosol Absorption Optical Depth |
AOD | Aerosol Optical Depth |
APM | Advanced Particle Microphysics |
ATRAS | Aerosol Two-dimensional bin module for foRmation and Aging Simulation |
AURAMS | A Unified Regional Air-quality Modelling System |
BC | Black Carbon |
CanAM | Canadian Aerosol Module |
CAM | Community Atmosphere Model |
CARES | Carbonaceous Aerosols and Radiative Effects |
CCCma AGCM | Canadian Centre for Climate modelling and analysis Atmospheric General Circulation Model |
CCM | Community Climate Model |
CIT | California Institute of Technology |
CTM | Chemical Transport Model |
DAMS | Detailed Aerosol Mixing State |
DRE | Direct Radiative Effect |
DRF | Direct Radiative Forcing |
EC | Elemental Carbon |
ECHAM | European Centre HAmburg Model |
GATOR-GCMOM | Gas, Aerosol, Transport, Radiation, General Circulation, Mesoscale, and Ocean Model |
GATORG | Gas, Aerosol, Transport, Radiation, and General Circulation model |
GCM | General Circulation Model |
GEM-MACH | Global Environmental Multiscale model—Modelling Air quality and CHemistry |
GEOS-Chem | Goddard Earth Observing System coupled to Chemistry |
GISS | Goddard Institute for Space Studies |
GLOMAP | GLObal Model of Aerosol Processes |
GMXe | Global Model aerosol extension |
HIPPO | HIAPER Pole-to-Pole Observations |
HTDMA | hygroscopicity tandem differential mobility analyzer |
INP | Ice-Nucleating Particles |
LLPS | Liquid-Liquid Phase Separation |
MAC | Mass Absorption Cross-section |
MADE | Modal Aerosol Dynamics model for Europe |
MADMS | Modal Aerosol Dynamics model for multiple Modes and fractal Shapes |
MADRID-BC | Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution with resolution of a mixing state of Black Carbon |
MAM | Modal Aerosol Module |
MATRIX | Multiconfiguration Aerosol TRacker of mIXing state |
MEC | mass extinction cross-section |
MEGAPOLI | Megacities & Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation |
MESSy | Modular Earth Submodel System |
MOZART | Model for Ozone and Related chemical Tracers |
MSC | Mass Scattering Cross-section |
MSR | Mixing-State Resolved |
NEXAFS | Near-Edge X-ray Absorption Fine-structure Spectroscopy |
NRMSE | Normalised Root-Mean-Square Error |
NorESM | Norwegian Earth System Model |
NWP | Numerical Weather Prediction |
OC | Organic Carbon |
PartMC-MOSAIC | Particle Monte Carlo model-Model for Simulating Aerosol Interactions and Chemistry |
PLA | Piecewise Lognormal Approximation |
PAM | PLA Aerosol Model |
POA | Primary Organic Aerosol |
POC | Primary Organic Carbon |
RH | Relative Humidity |
SALSA | Sectional Aerosol module for Large Scale Applications |
SCRAM | Size-Composition Resolved Aerosol Model |
SOA | Secondary Organic Aerosol |
SOWC | Source-Oriented WRF-Chem |
SSA | Single Scattering Albedo |
STXM | Scanning Transmission X-ray Microscopy |
UCD/CIT | University of California at Davis / California Institute of Technology |
UKCA | United Kingdom Chemistry and Aerosols |
VTDMA | Volatility Tandem Differential Mobility Analyzer |
WRF | Weather Research and Forecasting model |
References
- Kodros, J.K.; Hanna, S.J.; Bertram, A.K.; Leaitch, W.R.; Schulz, H.; Herber, A.B.; Zanatta, M.; Burkart, J.; Willis, M.D.; Abbatt, J.P.D.; et al. Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect. Atmos. Chem. Phys. 2018, 18, 11345–11361. [Google Scholar] [CrossRef]
- Adachi, K.; Chung, S.H.; Buseck, P.R. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ellis, A.; Edwards, R.; Saunders, M.; Chakrabarty, R.K.; Subramanian, R.; Timms, N.E.; van Riessen, A.; Smith, A.M.; Lambrinidis, D.; Nunes, L.J.; et al. Individual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall. Geophys. Res. Lett. 2016, 43, 11875–11883. [Google Scholar] [CrossRef]
- Li, W.; Shao, L.; Zhang, D.; Ro, C.U.; Hu, M.; Bi, X.; Geng, H.; Matsuki, A.; Niu, H.; Chen, J. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Clean. Prod. 2016, 112, 1330–1349. [Google Scholar] [CrossRef]
- Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Pei, X.; Hallquist, M.; Eriksson, A.C.; Pagels, J.; Donahue, N.M.; Mentel, T.; Svenningsson, B.; Brune, W.; Pathak, R.K. Morphological transformation of soot: Investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors. Atmos. Chem. Phys. 2018, 18, 9845–9860. [Google Scholar] [CrossRef]
- Vaden, T.D.; Song, C.; Zaveri, R.A.; Imre, D.; Zelenyuk, A. Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Proc. Natl. Acad. Sci. USA 2010, 107, 6658–6663. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, E.; Baltensperger, U.; Burtscher, H. Growth and Structural Change of Combustion Aerosols at High Relative Humidity. Environ. Sci. Technol. 1995, 29, 2982–2986. [Google Scholar] [CrossRef] [PubMed]
- Zangmeister, C.D.; You, R.; Lunny, E.M.; Jacobson, A.E.; Okumura, M.; Zachariah, M.R.; Radney, J.G. Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol. Carbon 2018, 136, 85–93. [Google Scholar] [CrossRef]
- Zhang, R.; Khalizov, A.F.; Pagels, J.; Zhang, D.; Xue, H.; McMurry, P.H. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA 2008, 105, 10291–10296. [Google Scholar] [CrossRef] [PubMed]
- Riemer, N.; West, M. Quantifying aerosol mixing state with entropy and diversity measures. Atmos. Chem. Phys. 2013, 13, 11423–11439. [Google Scholar] [CrossRef]
- O’Brien, R.E.; Wang, B.; Laskin, A.; Riemer, N.; West, M.; Zhang, Q.; Sun, Y.; Yu, X.Y.; Alpert, P.; Knopf, D.A.; et al. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization. J. Geophys. Res. Atmos. 2015, 120, 9591–9605. [Google Scholar] [CrossRef]
- Healy, R.M.; Riemer, N.; Wenger, J.C.; Murphy, M.; West, M.; Poulain, L.; Wiedensohler, A.; O’Connor, I.P.; McGillicuddy, E.; Sodeau, J.R.; et al. Single particle diversity and mixing state measurements. Atmos. Chem. Phys. 2014, 14, 6289–6299. [Google Scholar] [CrossRef]
- Ching, J.; Kajino, M. Aerosol mixing state matters for particles deposition in human respiratory system. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Giorio, C.; Tapparo, A.; Dall’Osto, M.; Beddows, D.C.S.; Esser-Gietl, J.K.; Healy, R.M.; Harrison, R.M. Local and Regional Components of Aerosol in a Heavily Trafficked Street Canyon in Central London Derived from PMF and Cluster Analysis of Single-Particle ATOFMS Spectra. Environ. Sci. Technol. 2015, 49, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.; Fast, J.; West, M.; Riemer, N. Metrics to quantify the importance of mixing state for CCN activity. Atmos. Chem. Phys. 2017, 17, 7445–7458. [Google Scholar] [CrossRef]
- Hughes, M.; Kodros, J.; Pierce, J.; West, M.; Riemer, N. Machine Learning to Predict the Global Distribution of Aerosol Mixing State Metrics. Atmosphere 2018, 9, 15. [Google Scholar] [CrossRef]
- Kirpes, R.M.; Bondy, A.L.; Bonanno, D.; Moffet, R.C.; Wang, B.; Laskin, A.; Ault, A.P.; Pratt, K.A. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic. Atmos. Chem. Phys. 2018, 18, 3937–3949. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, G.; Li, L.; Wang, X.; Li, M.; Sheng, G.; Fu, J.; Zhou, Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmos. Environ. 2011, 45, 3447–3453. [Google Scholar] [CrossRef]
- Pratt, K.A.; Murphy, S.M.; Subramanian, R.; DeMott, P.J.; Kok, G.L.; Campos, T.; Rogers, D.C.; Prenni, A.J.; Heymsfield, A.J.; Seinfeld, J.H.; et al. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmos. Chem. Phys. 2011, 11, 12549–12565. [Google Scholar] [CrossRef]
- Fierce, L.; Riemer, N.; Bond, T.C. When is cloud condensation nuclei activity sensitive to particle characteristics at emission? J. Geophys. Res. Atmos. 2013, 118, 13476–13488. [Google Scholar] [CrossRef]
- Riemer, N.; Vogel, H.; Vogel, B. Soot aging time scales in polluted regions during day and night. Atmos. Chem. Phys. 2004, 4, 1885–1893. [Google Scholar] [CrossRef]
- Petters, M.D.; Prenni, A.J.; Kreidenweis, S.M.; DeMott, P.J.; Matsunaga, A.; Lim, Y.B.; Ziemann, P.J. Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Zuberi, B.; Johnson, K.S.; Aleks, G.K.; Molina, L.T.; Molina, M.J.; Laskin, A. Hydrophilic properties of aged soot. Geophys. Res. Lett. 2005, 32, L01807. [Google Scholar] [CrossRef]
- Pöschl, U.; Letzel, T.; Schauer, C.; Niessner, R. Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo[a]pyrene: O3 and H2O Adsorption, Benzo[a]pyrene Degradation, and Atmospheric Implications. J. Phys. Chem. A 2001, 105, 4029–4041. [Google Scholar] [CrossRef]
- Chameides, W.L.; Stelson, A.W. Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res. 1992, 97, 20565. [Google Scholar] [CrossRef]
- Alexander, B.; Park, R.J.; Jacob, D.J.; Li, Q.B.; Yantosca, R.M.; Savarino, J.; Lee, C.C.W.; Thiemens, M.H. Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Dentener, F.J.; Carmichael, G.R.; Zhang, Y.; Lelieveld, J.; Crutzen, P.J. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. Atmos. 1996, 101, 22869–22889. [Google Scholar] [CrossRef]
- George, C.; Ammann, M.; D’Anna, B.; Donaldson, D.J.; Nizkorodov, S.A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; Uno, I.; Li, J.; Wang, Z.; Chen, X.; Fu, P.; Yang, T.; Kobayashi, H.; Shimizu, A.; et al. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China. Atmos. Environ. 2017, 159, 83–91. [Google Scholar] [CrossRef]
- Croft, B.; Lohmann, U.; von Salzen, K. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model. Atmos. Chem. Phys. 2005, 5, 1931–1949. [Google Scholar] [CrossRef]
- He, C.; Li, Q.; Liou, K.N.; Qi, L.; Tao, S.; Schwarz, J.P. Microphysics-based black carbon aging in a global CTM: Constraints from HIPPO observations and implications for global black carbon budget. Atmos. Chem. Phys. 2016, 16, 3077–3098. [Google Scholar] [CrossRef]
- Moise, T.; Flores, J.M.; Rudich, Y. Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes. Chem. Rev. 2015, 115, 4400–4439. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Rahim, M.F.; Pal, D.; Ariya, P.A. Physicochemical studies of aerosols at Montreal Trudeau Airport: The importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 2019, 246, 734–744. [Google Scholar] [CrossRef]
- Kuwata, M.; Kondo, Y. Dependence of size-resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Swietlicki, E.; Hansson, H.C.; Hämeri, K.; Svenningsson, B.; Massling, A.; Mcfiggans, G.; Mcmurry, P.H.; Petäjä, T.; Tunved, P.; Gysel, M.; et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review. Tellus B Chem. Phys. Meteorol. 2008, 60, 432–469. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Moore, M.J.K.; Petters, M.D.; Kreidenweis, S.M.; Roberts, G.C.; Prather, K.A. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 2009, 9, 3303–3316. [Google Scholar] [CrossRef]
- Kajino, M.; Igarash, Y.; Fujitani, Y. Which is more efficiently deposited in the human respiratory tract through inhalation, fresh soot or aged soot? Sensitivity of regional depositions to size distribution and hygroscopicity of aerosols. J. Jpn. Soc. Atmos. Environ. Taiki Kankyo Gakkaishi 2014, 49, 101–108. [Google Scholar]
- Nenes, A.; Seinfeld, J.H. Parameterization of cloud droplet formation in global climate models. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Sotiropoulou, R.E.P.; Nenes, A.; Adams, P.J.; Seinfeld, J.H. Cloud condensation nuclei prediction error from application of Köhler theory: Importance for the aerosol indirect effect. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Kalkavouras, P.; Bossioli, E.; Bezantakos, S.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.; Kouvarakis, G.; Protonotariou, A.P.; Dandou, A.; Biskos, G.; et al. New particle formation in the southern Aegean Sea during the Etesians: Importance for CCN production and cloud droplet number. Atmos. Chem. Phys. 2017, 17, 175–192. [Google Scholar] [CrossRef]
- Kalkavouras, P.; Bougiatioti, A.; Kalivitis, N.; Tombrou, M.; Nenes, A.; Mihalopoulos, N. Regional New Particle Formation as Modulators of Cloud Condensation Nuclei and Cloud Droplet Number in the Eastern Mediterranean. Atmos. Chem. Phys. Discuss. 2018, 1–30. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef]
- McFiggans, G.; Artaxo, P.; Baltensperger, U.; Coe, H.; Facchini, M.C.; Feingold, G.; Fuzzi, S.; Gysel, M.; Laaksonen, A.; Lohmann, U.; et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 2006, 6, 2593–2649. [Google Scholar] [CrossRef]
- Kim, N.; Park, M.; Yum, S.S.; Park, J.S.; Shin, H.J.; Ahn, J.Y. Impact of urban aerosol properties on cloud condensation nuclei (CCN) activity during the KORUS-AQ field campaign. Atmos. Environ. 2018, 185, 221–236. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Barnard, J.C.; Easter, R.C.; Riemer, N.; West, M. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. J. Geophys. Res. 2010, 115, D17210. [Google Scholar] [CrossRef]
- Anttila, T. Sensitivity of cloud droplet formation to the numerical treatment of the particle mixing state. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Fountoukis, C.; Kalivitis, N.; Pandis, S.N.; Nenes, A.; Mihalopoulos, N. Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics. Atmos. Chem. Phys. 2009, 9, 7053–7066. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Nenes, A.; Fountoukis, C.; Kalivitis, N.; Pandis, S.N.; Mihalopoulos, N. Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol. Atmos. Chem. Phys. 2011, 11, 8791–8808. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zhang, Y.; Du, W.; Zhang, F.; Tan, H.; Xu, H.; Fan, T.; Jin, X.; Fan, X.; et al. Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain. Atmos. Chem. Phys. 2018, 18, 11739–11752. [Google Scholar] [CrossRef]
- Mahish, M.; Jefferson, A.; Collins, D. Influence of Common Assumptions Regarding Aerosol Composition and Mixing State on Predicted CCN Concentration. Atmosphere 2018, 9, 54. [Google Scholar] [CrossRef]
- Che, H.C.; Zhang, X.Y.; Wang, Y.Q.; Zhang, L.; Shen, X.J.; Zhang, Y.M.; Ma, Q.L.; Sun, J.Y.; Zhang, Y.W.; Wang, T.T. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Fierce, L.; Riemer, N.; Bond, T.C. Toward Reduced Representation of Mixing State for Simulating Aerosol Effects on Climate. Bull. Am. Meteorol. Soc. 2017, 98, 971–980. [Google Scholar] [CrossRef]
- Oshima, N.; Koike, M.; Zhang, Y.; Kondo, Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. J. Geophys. Res. 2009, 114, D18202. [Google Scholar] [CrossRef]
- Ching, J.; Zaveri, R.A.; Easter, R.C.; Riemer, N.; Fast, J.D. A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei. J. Geophys. Res. Atmos. 2016, 121, 5912–5929. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Fast, J.D.; Takigawa, M. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS). Atmos. Chem. Phys. 2014, 14, 10315–10331. [Google Scholar] [CrossRef]
- Matsui, H.; Hamilton, D.S.; Mahowald, N.M. Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Lee, H.H.; Chen, S.H.; Kleeman, M.J.; Zhang, H.; DeNero, S.P.; Joe, D.K. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California. Atmos. Chem. Phys. 2016, 16, 8353–8374. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Moteki, N.; Fast, J.D.; Zaveri, R.A. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact. J. Geophys. Res. Atmos. 2013, 118, 2304–2326. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Yu, F.; Pan, X.; Li, J.; Ge, B.; Wang, Z.; Hu, M.; Yang, W.; Chen, H. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model. Atmos. Environ. 2017, 163, 44–56. [Google Scholar] [CrossRef]
- Vignati, E.; Karl, M.; Krol, M.; Wilson, J.; Stier, P.; Cavalli, F. Sources of uncertainties in modelling black carbon at the global scale. Atmos. Chem. Phys. 2010, 10, 2595–2611. [Google Scholar] [CrossRef]
- Liu, X.; Easter, R.C.; Ghan, S.J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.F.; Gettelman, A.; Morrison, H.; Vitt, F.; et al. Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev. 2012, 5, 709–739. [Google Scholar] [CrossRef]
- Lesins, G.; Chylek, P.; Lohmann, U. A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. Atmos. 2002, 107, 5–12. [Google Scholar] [CrossRef]
- Liu, L.; Mishchenko, M. Scattering and Radiative Properties of Morphologically Complex Carbonaceous Aerosols: A Systematic Modeling Study. Remote Sens. 2018, 10, 1634. [Google Scholar] [CrossRef]
- Klingmüller, K.; Steil, B.; Brühl, C.; Tost, H.; Lelieveld, J. Sensitivity of aerosol radiative effects to different mixing assumptions in the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate model. Geosci. Model Dev. 2014, 7, 2503–2516. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhu, L.; Xu, L. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia. Adv. Atmos. Sci. 2013, 30, 1201–1212. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Kalashnikova, O.V.; Garay, M.J.; Martonchik, J.V.; Diner, D.J. MISR Dark Water aerosol retrievals: Operational algorithm sensitivity to particle non-sphericity. Atmos. Meas. Tech. 2013, 6, 2131–2154. [Google Scholar] [CrossRef]
- Saleh, R.; Cheng, Z.; Atwi, K. The Brown–Black Continuum of Light-Absorbing Combustion Aerosols. Environ. Sci. Technol. Lett. 2018, 5, 508–513. [Google Scholar] [CrossRef]
- Pokhrel, R.P.; Beamesderfer, E.R.; Wagner, N.L.; Langridge, J.M.; Lack, D.A.; Jayarathne, T.; Stone, E.A.; Stockwell, C.E.; Yokelson, R.J.; Murphy, S.M. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 2017, 17, 5063–5078. [Google Scholar] [CrossRef]
- Valenzuela, A.; Reid, J.P.; Bzdek, B.R.; Orr-Ewing, A.J. Accuracy required in measurements of refractive index and hygroscopic response to reduce uncertainties in estimates of aerosol radiative forcing efficiency. J. Geophys. Res. Atmos. 2018. [Google Scholar] [CrossRef]
- Bones, D.L.; Henricksen, D.K.; Mang, S.A.; Gonsior, M.; Bateman, A.P.; Nguyen, T.B.; Cooper, W.J.; Nizkorodov, S.A. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Laskin, A.; Laskin, J.; Nizkorodov, S.A. Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discuss. 2013, 165, 473. [Google Scholar] [CrossRef]
- Updyke, K.M.; Nguyen, T.B.; Nizkorodov, S.A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 2012, 63, 22–31. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X.; Gong, P.; Wang, C.; Cong, Z. Review of brown carbon aerosols: Recent progress and perspectives. Sci. Total Environ. 2018, 634, 1475–1485. [Google Scholar] [CrossRef]
- Fard, M.M.; Krieger, U.K.; Peter, T. Shortwave radiative impact of liquid–liquid phase separation in brown carbon aerosols. Atmos. Chem. Phys. 2018, 18, 13511–13530. [Google Scholar] [CrossRef]
- Fuller, K.A.; Malm, W.C.; Kreidenweis, S.M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. Atmos. 1999, 104, 15941–15954. [Google Scholar] [CrossRef]
- Chen, Y.; Penner, J.E. Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos. Chem. Phys. 2005, 5, 2935–2948. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Effects of Externally-Through-Internally-Mixed Soot Inclusions within Clouds and Precipitation on Global Climate. J. Phys. Chem. A 2006, 110, 6860–6873. [Google Scholar] [CrossRef]
- Ghan, S.J.; Liu, X.; Easter, R.C.; Zaveri, R.; Rasch, P.J.; Yoon, J.H.; Eaton, B. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing. J. Clim. 2012, 25, 6461–6476. [Google Scholar] [CrossRef]
- He, C.; Flanner, M.G.; Chen, F.; Barlage, M.; Liou, K.N.; Kang, S.; Ming, J.; Qian, Y. Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmos. Chem. Phys. 2018, 18, 11507–11527. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Khalizov, A.F.; Xue, H.; Wang, L.; Zheng, J.; Zhang, R. Enhanced Light Absorption and Scattering by Carbon Soot Aerosol Internally Mixed with Sulfuric Acid. J. Phys. Chem. A 2009, 113, 1066–1074. [Google Scholar] [CrossRef]
- Forestieri, S.D.; Helgestad, T.M.; Lambe, A.T.; Renbaum-Wolff, L.; Lack, D.A.; Massoli, P.; Cross, E.S.; Dubey, M.K.; Mazzoleni, C.; Olfert, J.S.; et al. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos. Chem. Phys. 2018, 18, 12141–12159. [Google Scholar] [CrossRef]
- Cappa, C.D.; Onasch, T.B.; Massoli, P.; Worsnop, D.R.; Bates, T.S.; Cross, E.S.; Davidovits, P.; Hakala, J.; Hayden, K.L.; Jobson, B.T.; et al. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science 2012, 337, 1078–1081. [Google Scholar] [CrossRef]
- Lack, D.A.; Langridge, J.M.; Bahreini, R.; Cappa, C.D.; Middlebrook, A.M.; Schwarz, J.P. Brown carbon and internal mixing in biomass burning particles. Proc. Natl. Acad. Sci. USA 2012, 109, 14802–14807. [Google Scholar] [CrossRef]
- Liu, S.; Aiken, A.C.; Gorkowski, K.; Dubey, M.K.; Cappa, C.D.; Williams, L.R.; Herndon, S.C.; Massoli, P.; Fortner, E.C.; Chhabra, P.S.; et al. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Zeng, L.; Shao, M.; Wu, Y.S.; et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. USA 2016, 113, 4266–4271. [Google Scholar] [CrossRef]
- Schnaiter, M.; Linke, C.; Möhler, O.; Naumann, K.H.; Saathoff, H.; Wagner, R.; Schurath, U.; Wehner, B. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. 2005, 110, D19204. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, R.J.; Cao, J.; Han, Y.; Wang, G.; Li, G.; Wang, Y.; Dai, W.; Zhang, R.; Zhou, Y. Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement. Aerosol Sci. Technol. 2014, 48, 689–697. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, W.; Qian, X.; Wang, S.; Fang, B.; Zhang, Q.; Zhang, W.; Venables, D.S.; Chen, W.; Huang, Y.; et al. The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo. Atmos. Chem. Phys. 2018, 18, 16829–16844. [Google Scholar] [CrossRef]
- Zanatta, M.; Laj, P.; Gysel, M.; Baltensperger, U.; Vratolis, S.; Eleftheriadis, K.; Kondo, Y.; Dubuisson, P.; Winiarek, V.; Kazadzis, S.; et al. Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. Atmos. Chem. Phys. 2018, 18, 14037–14057. [Google Scholar] [CrossRef]
- Zhang, Y.; Favez, O.; Canonaco, F.; Liu, D.; Močnik, G.; Amodeo, T.; Sciare, J.; Prévôt, A.S.H.; Gros, V.; Albinet, A. Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. NPJ Clim. Atmos. Sci. 2018, 1. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Chung, C.; Lee, K.; Müller, D. Effect of internal mixture on black carbon radiative forcing. Tellus B Chem. Phys. Meteorol. 2011, 64, 10925. [Google Scholar] [CrossRef]
- Fierce, L.; Bond, T.C.; Bauer, S.E.; Mena, F.; Riemer, N. Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Chýlek, P.; Lesins, G.B.; Videen, G.; Wong, J.G.D.; Pinnick, R.G.; Ngo, D.; Klett, J.D. Black carbon and absorption of solar radiation by clouds. J. Geophys. Res. Atmos. 1996, 101, 23365–23371. [Google Scholar] [CrossRef]
- Toon, O.B.; Ackerman, T.P. Algorithms for the calculation of scattering by stratified spheres. Appl. Opt. 1981, 20, 3657. [Google Scholar] [CrossRef]
- Yang, W. Improved recursive algorithm for light scattering by a multilayered sphere. Appl. Opt. 2003, 42, 1710. [Google Scholar] [CrossRef]
- Chýlek, P.; Srivastava, V.; Pinnick, R.G.; Wang, R.T. Scattering of electromagnetic waves by composite spherical particles: Experiment and effective medium approximations. Appl. Opt. 1988, 27, 2396. [Google Scholar] [CrossRef]
- Bond, T.C.; Habib, G.; Bergstrom, R.W. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 2006, 111, D20211. [Google Scholar] [CrossRef]
- Kim, D.; Wang, C.; Ekman, A.M.L.; Barth, M.C.; Rasch, P.J. Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; et al. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective. Atmos. Environ. 2015, 115, 541–552. [Google Scholar] [CrossRef]
- Curci, G.; Alyuz, U.; Barò, R.; Bianconi, R.; Bieser, J.; Christensen, J.H.; Colette, A.; Farrow, A.; Francis, X.; Jiménez-Guerrero, P.; et al. Modelling black carbon absorption of solar radiation: Combining external and internal mixing assumptions. Atmos. Chem. Phys. 2019, 19, 181–204. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. Atmos. 2001, 106, 1551–1568. [Google Scholar] [CrossRef]
- Liu, D.; Whitehead, J.; Alfarra, M.R.; Reyes-Villegas, E.; Spracklen, D.V.; Reddington, C.L.; Kong, S.; Williams, P.I.; Ting, Y.C.; Haslett, S.; et al. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat. Geosci. 2017, 10, 184–188. [Google Scholar] [CrossRef]
- Kecorius, S.; Ma, N.; Teich, M.; van Pinxteren, D.; Zhang, S.; Gröβ, J.; Spindler, G.; Müller, K.; Iinuma, Y.; Hu, M.; et al. Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain. Atmos. Environ. 2017, 164, 259–269. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 7; pp. 571–658. [Google Scholar]
- Haywood, J.M.; Shine, K.P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 1995, 22, 603–606. [Google Scholar] [CrossRef]
- Jacobson, M.Z. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 2000, 27, 217–220. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Ma, X.; Yu, F.; Luo, G. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties. Atmos. Chem. Phys. 2012, 12, 5563–5581. [Google Scholar] [CrossRef]
- Zhu, J.; Penner, J.E.; Lin, G.; Zhou, C.; Xu, L.; Zhuang, B. Mechanism of SOA formation determines magnitude of radiative effects. Proc. Natl. Acad. Sci. USA 2017, 114, 12685–12690. [Google Scholar] [CrossRef]
- Liao, H.; Seinfeld, J.H. Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J. Geophys. Res. 2005, 110, D18208. [Google Scholar] [CrossRef]
- Seland, Ø.; Iversen, T.; Kirkevåg, A.; Storelvmo, T. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus A 2008, 60, 459–491. [Google Scholar] [CrossRef]
- Zhuang, B.L.; Li, S.; Wang, T.J.; Deng, J.J.; Xie, M.; Yin, C.Q.; Zhu, J.L. Direct radiative forcing and climate effects of anthropogenic aerosols with different mixing states over China. Atmos. Environ. 2013, 79, 349–361. [Google Scholar] [CrossRef]
- Haywood, J.M.; Roberts, D.L.; Slingo, A.; Edwards, J.M.; Shine, K.P. General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol. J. Clim. 1997, 10, 1562–1577. [Google Scholar] [CrossRef]
- Chung, S.H.; Seinfeld, J.H. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. 2002, 107, 4407. [Google Scholar] [CrossRef]
- Chung, S.H.; Seinfeld, J.H. Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. 2005, 110, D11102. [Google Scholar] [CrossRef]
- Boucher, O.; Balkanski, Y.; Hodnebrog, Ø.; Myhre, C.L.; Myhre, G.; Quaas, J.; Samset, B.H.; Schutgens, N.; Stier, P.; Wang, R. Jury is still out on the radiative forcing by black carbon. Proc. Natl. Acad. Sci. USA 2016, 113, E5092–E5093. [Google Scholar] [CrossRef]
- Nordmann, S.; Cheng, Y.F.; Carmichael, G.R.; Yu, M.; Denier van der Gon, H.A.C.; Zhang, Q.; Saide, P.E.; Pöschl, U.; Su, H.; Birmili, W.; et al. Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe. Atmos. Chem. Phys. 2014, 14, 12683–12699. [Google Scholar] [CrossRef]
- Merikallio, S.; Lindqvist, H.; Nousiainen, T.; Kahnert, M. Modelling light scattering by mineral dust using spheroids: Assessment of applicability. Atmos. Chem. Phys. 2011, 11, 5347–5363. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, P.; Kattawar, G.W.; Bi, L.; Liou, K.N.; Laszlo, I. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci. 2010, 41, 501–512. [Google Scholar] [CrossRef]
- Ishimoto, H.; Zaizen, Y.; Uchiyama, A.; Masuda, K.; Mano, Y. Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2434–2443. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P.; Kattawar, G.W.; Kahn, R. Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. Appl. Opt. 2010, 49, 334–342. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. Discrete-Dipole Approximation For Scattering Calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Scarnato, B.V.; China, S.; Nielsen, K.; Mazzoleni, C. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: A numerical simulation study. Atmos. Chem. Phys. 2015, 15, 6913–6928. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Krämer, M. Overview of Ice Nucleating Particles. Meteorol. Monogr. 2017, 58. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Welti, A.; Chou, C.; Stetzer, O.; Lohmann, U. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys. 2013, 13, 9097–9118. [Google Scholar] [CrossRef]
- Möhler, O.; Benz, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.; Schneider, J.; Walter, S.; Ebert, V.; Wagner, S. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 2008, 3, 025007. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Petters, M.D.; DeMott, P.J.; Kreidenweis, S.M.; Wex, H.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Reitz, P.; et al. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys. 2010, 10, 11471–11487. [Google Scholar] [CrossRef]
- Paramonov, M.; David, R.O.; Kretzschmar, R.; Kanji, Z.A. A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust. Atmos. Chem. Phys. 2018, 18, 16515–16536. [Google Scholar] [CrossRef]
- Conen, F.; Bukowiecki, N.; Gysel, M.; Steinbacher, M.; Fischer, A.; Reimann, S. Low number concentration of ice nucleating particles in an aged smoke plume. Q. J. R. Meteorol. Soc. 2018, 144, 1991–1994. [Google Scholar] [CrossRef]
- Spichtinger, P.; Cziczo, D.J. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zheng, B.; Zhang, Q.; Zhang, Y.; He, K.B.; Wang, K.; Zheng, G.J.; Duan, F.K.; Ma, Y.L.; Kimoto, T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 2015, 15, 2031–2049. [Google Scholar] [CrossRef]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 124–152. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef]
- Dentener, F.J.; Crutzen, P.J. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx , O3 , and OH. J. Geophys. Res. Atmos. 1993, 98, 7149–7163. [Google Scholar] [CrossRef]
- Riemer, N.; Vogel, H.; Vogel, B.; Fiedler, F. Modeling aerosols on the mesoscale-γ: Treatment of soot aerosol and its radiative effects. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Dupart, Y.; King, S.M.; Nekat, B.; Nowak, A.; Wiedensohler, A.; Herrmann, H.; David, G.; Thomas, B.; Miffre, A.; Rairoux, P.; et al. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc. Natl. Acad. Sci. USA 2012, 109, 20842–20847. [Google Scholar] [CrossRef]
- Nie, W.; Ding, A.; Wang, T.; Kerminen, V.M.; George, C.; Xue, L.; Wang, W.; Zhang, Q.; Petäjä, T.; Qi, X.; et al. Polluted dust promotes new particle formation and growth. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef]
- Manktelow, P.T.; Carslaw, K.S.; Mann, G.W.; Spracklen, D.V. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmos. Chem. Phys. 2010, 10, 365–382. [Google Scholar] [CrossRef]
- Fairlie, T.D.; Jacob, D.J.; Dibb, J.E.; Alexander, B.; Avery, M.A.; van Donkelaar, A.; Zhang, L. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos. Chem. Phys. 2010, 10, 3999–4012. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Z.; Du, H.; Yang, W.; Sun, Y.; Hu, B.; Li, J.; Wang, W.; Wang, T.; et al. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Sci. Total Environ. 2018, 622–623, 1327–1342. [Google Scholar] [CrossRef]
- Riemer, N.; Vogel, H.; Vogel, B.; Anttila, T.; Kiendler-Scharr, A.; Mentel, T.F. Relative importance of organic coatings for the heterogeneous hydrolysis of N2O5 during summer in Europe. J. Geophys. Res. 2009, 114, D17307. [Google Scholar] [CrossRef]
- Gaston, C.J.; Thornton, J.A.; Ng, N.L. Reactive uptake of N2O5 to internally mixed inorganic and organic particles: The role of organic carbon oxidation state and inferred organic phase separations. Atmos. Chem. Phys. 2014, 14, 5693–5707. [Google Scholar] [CrossRef]
- Morgan, W.T.; Ouyang, B.; Allan, J.D.; Aruffo, E.; Di Carlo, P.; Kennedy, O.J.; Lowe, D.; Flynn, M.J.; Rosenberg, P.D.; Williams, P.I.; et al. Influence of aerosol chemical composition on N2O5; uptake: Airborne regional measurements in northwestern Europe. Atmos. Chem. Phys. 2015, 15, 973–990. [Google Scholar] [CrossRef]
- Chang, W.L.; Bhave, P.V.; Brown, S.S.; Riemer, N.; Stutz, J.; Dabdub, D. Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model Calculations of N2O5: A Review. Aerosol Sci. Technol. 2011, 45, 665–695. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res. 2002, 107, 4366. [Google Scholar] [CrossRef]
- Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirilä, P.; Leskinen, J.; Mäkelä, J.M.; Holopainen, J.K.; Pöschl, U.; Kulmala, M.; et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824–827. [Google Scholar] [CrossRef]
- Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238–19255. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Li, Y.; Tsimpidi, A.P.; Karydis, V.A.; Berkemeier, T.; Pandis, S.N.; Lelieveld, J.; Koop, T.; Pöschl, U. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 2017, 8, 15002. [Google Scholar] [CrossRef]
- You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hanna, S.J.; Hiranuma, N.; Kamal, S.; Smith, M.L.; Zhang, X.; Weber, R.J.; Shilling, J.E.; et al. Images reveal that atmospheric particles can undergo liquid-liquid phase separations. Proc. Natl. Acad. Sci. USA 2012, 109, 13188–13193. [Google Scholar] [CrossRef]
- Zhang, H.; DeNero, S.P.; Joe, D.K.; Lee, H.H.; Chen, S.H.; Michalakes, J.; Kleeman, M.J. Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10 PM2.5 air quality study. Atmos. Chem. Phys. 2014, 14, 485–503. [Google Scholar] [CrossRef]
- Shrivastava, M.; Lou, S.; Zelenyuk, A.; Easter, R.C.; Corley, R.A.; Thrall, B.D.; Rasch, P.J.; Fast, J.D.; Massey Simonich, S.L.; Shen, H.; et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. USA 2017, 114, 1246–1251. [Google Scholar] [CrossRef]
- Bertram, A.K.; Martin, S.T.; Hanna, S.J.; Smith, M.L.; Bodsworth, A.; Chen, Q.; Kuwata, M.; Liu, A.; You, Y.; Zorn, S.R. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 2011, 11, 10995–11006. [Google Scholar]
- Abbatt, J.; Broekhuizen, K.; Pradeepkumar, P. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmos. Environ. 2005, 39, 4767–4778. [Google Scholar] [CrossRef]
- Takahama, S.; Russell, L.M. A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Leck, C.; Svensson, E. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer. Atmos. Chem. Phys. 2015, 15, 2545–2568. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef]
- Chang, E.I.; Pankow, J.F. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model. Atmos. Environ. 2006, 40, 6422–6436. [Google Scholar] [CrossRef]
- Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J.H. Computation of liquid-liquid equilibria and phase stabilities: Implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmos. Chem. Phys. 2010, 10, 7795–7820. [Google Scholar] [CrossRef]
- Gao, C.Y.; Tsigaridis, K.; Bauer, S.E. MATRIX-VBS (v1.0): Implementing an evolving organic aerosol volatility in an aerosol microphysics model. Geosci. Model Dev. 2017, 10, 751–764. [Google Scholar] [CrossRef]
- Yu, F.; Luo, G. Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys. 2009, 9, 7691–7710. [Google Scholar] [CrossRef]
- Matsui, H. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design. J. Adv. Modeling Earth Syst. 2017, 9, 1921–1947. [Google Scholar] [CrossRef]
- Gong, S.L.; Barrie, L.A.; Lazare, M. Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Gong, W.; Dastoor, A.P.; Bouchet, V.S.; Gong, S.; Makar, P.A.; Moran, M.D.; Pabla, B.; Ménard, S.; Crevier, L.P.; Cousineau, S.; et al. Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos. Res. 2006, 82, 248–275. [Google Scholar] [CrossRef]
- Moran, M.D.; Makar, P.A.; Ménard, S.; Pavlovic, R.; Sassi, M.; Beaulieu, P.A.; Anselmo, D.; Mooney, C.J.; Gong, W.; Stroud, C.; et al. Improvements to Wintertime Particulate-Matter Forecasting with GEM-MACH15; Springer: Dordrecht, The Netherlands, 2012; Chapter 98; pp. 591–597. [Google Scholar]
- Gong, S.L.; Barrie, L.A.; Lazare, M. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res. 2003, 108, 4007. [Google Scholar] [CrossRef]
- Gong, W.; Makar, P.A.; Zhang, J.; Milbrandt, J.; Gravel, S.; Hayden, K.L.; Macdonald, A.M.; Leaitch, W.R. Modelling aerosol–cloud–meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH). Atmos. Environ. 2015, 115, 695–715. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef]
- Held, T.; Ying, Q.; Kaduwela, A.; Kleeman, M. Modeling particulate matter in the San Joaquin Valley with a source-oriented externally mixed three-dimensional photochemical grid model. Atmos. Environ. 2004, 38, 3689–3711. [Google Scholar] [CrossRef]
- Ying, Q.; Lu, J.; Kaduwela, A.; Kleeman, M. Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT Source Oriented Air Quality Model—Part II. Regional source apportionment of primary airborne particulate matter. Atmos. Environ. 2008, 42, 8967–8978. [Google Scholar] [CrossRef]
- Ying, Q.; Lu, J.; Kleeman, M. Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model—Part III. Regional source apportionment of secondary and total airborne particulate matter. Atmos. Environ. 2009, 43, 419–430. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. 2003, 108, 4183. [Google Scholar] [CrossRef]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci. Model Dev. 2013, 6, 883–899. [Google Scholar] [CrossRef]
- Elleman, R.A.; Covert, D.S. Aerosol size distribution modeling with the Community Multiscale Air Quality modeling system in the Pacific Northwest: 1. Model comparison to observations. J. Geophys. Res. 2009, 114, D11206. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Environmental Protection Agency (USEPA). CMAQv5.2 Operational Guidance Document; USEPA: Washington, DC, USA, 2017; pp. 1–224. [Google Scholar]
- Lu, J.; Bowman, F.M. A detailed aerosol mixing state model for investigating interactions between mixing state, semivolatile partitioning, and coagulation. Atmos. Chem. Phys. 2010, 10, 4033–4046. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J. Geophys. Res. 2010, 115, D14209. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- Wang, X.; Heald, C.L.; Liu, J.; Weber, R.J.; Campuzano-Jost, P.; Jimenez, J.L.; Schwarz, J.P.; Perring, A.E. Exploring the observational constraints on the simulation of brown carbon. Atmos. Chem. Phys. 2018, 18, 635–653. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Pringle, K.J.; Carslaw, K.S.; Chipperfield, M.P.; Mann, G.W. A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties. Atmos. Chem. Phys. 2005, 5, 3233–3250. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Carslaw, K.S.; Pöschl, U.; Rap, A.; Forster, P.M. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 2011, 11, 9067–9087. [Google Scholar] [CrossRef]
- Mann, G.W.; Carslaw, K.S.; Spracklen, D.V.; Ridley, D.A.; Manktelow, P.T.; Chipperfield, M.P.; Pickering, S.J.; Johnson, C.E. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 2010, 3, 519–551. [Google Scholar] [CrossRef]
- Bellouin, N.; Mann, G.W.; Woodhouse, M.T.; Johnson, C.; Carslaw, K.S.; Dalvi, M. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos. Chem. Phys. 2013, 13, 3027–3044. [Google Scholar] [CrossRef]
- Pringle, K.J.; Tost, H.; Message, S.; Steil, B.; Giannadaki, D.; Nenes, A.; Fountoukis, C.; Stier, P.; Vignati, E.; Lelieveld, J. Description and evaluation of GMXe: A new aerosol submodel for global simulations (v1). Geosci. Model Dev. 2010, 3, 391–412. [Google Scholar] [CrossRef]
- Liu, X.; Penner, J.E.; Herzog, M. Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Wang, M.; Penner, J.E.; Liu, X. Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Wilson, J.; Cuvelier, C.; Raes, F. A modeling study of global mixed aerosol fields. J. Geophys. Res. Atmos. 2001, 106, 34081–34108. [Google Scholar] [CrossRef]
- Stier, P.; Feichter, J.; Kinne, S.; Kloster, S.; Vignati, E.; Wilson, J.; Ganzeveld, L.; Tegen, I.; Werner, M.; Balkanski, Y.; et al. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 2005, 5, 1125–1156. [Google Scholar] [CrossRef]
- Vignati, E.; Wilson, J.; Stier, P. M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Zhang, K.; O’Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; et al. The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to improvements in process representations. Atmos. Chem. Phys. 2012, 12, 8911–8949. [Google Scholar] [CrossRef]
- Lauer, A.; Hendricks, J.; Ackermann, I.; Schell, B.; Hass, H.; Metzger, S. Simulating aerosol microphysics with the ECHAM/MADE GCM—Part I: Model description and comparison with observations. Atmos. Chem. Phys. 2005, 5, 3251–3276. [Google Scholar] [CrossRef]
- Aquila, V.; Hendricks, J.; Lauer, A.; Riemer, N.; Vogel, H.; Baumgardner, D.; Minikin, A.; Petzold, A.; Schwarz, J.P.; Spackman, J.R.; et al. MADE-in: A new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state. Geosci. Model Dev. 2011, 4, 325–355. [Google Scholar] [CrossRef]
- Kaiser, J.C.; Hendricks, J.; Righi, M.; Jöckel, P.; Tost, H.; Kandler, K.; Weinzierl, B.; Sauer, D.; Heimerl, K.; Schwarz, J.P.; et al. Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): Model description and evaluation. Geosci. Model Dev. 2019, 12, 541–579. [Google Scholar] [CrossRef]
- Kaiser, J.C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R.A.; Metzger, S.; Aquila, V. The MESSy aerosol submodel MADE3 (v2.0b): Description and a box model test. Geosci. Model Dev. 2014, 7, 1137–1157. [Google Scholar] [CrossRef]
- Vogel, B.; Vogel, H.; Bäumer, D.; Bangert, M.; Lundgren, K.; Rinke, R.; Stanelle, T. The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys. 2009, 9, 8661–8680. [Google Scholar] [CrossRef]
- Kajino, M.; Inomata, Y.; Sato, K.; Ueda, H.; Han, Z.; An, J.; Katata, G.; Deushi, M.; Maki, T.; Oshima, N.; et al. Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type. Atmos. Chem. Phys. 2012, 12, 11833–11856. [Google Scholar] [CrossRef]
- Kajino, M.; Kondo, Y. EMTACS: Development and regional-scale simulation of a size, chemical, mixing type, and soot shape resolved atmospheric particle model. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Kajino, M. MADMS: Modal Aerosol Dynamics model for multiple Modes and fractal Shapes in the free-molecular and near-continuum regimes. J. Aerosol Sci. 2011, 42, 224–248. [Google Scholar] [CrossRef]
- Oshima, N.; Koike, M.; Zhang, Y.; Kondo, Y.; Moteki, N.; Takegawa, N.; Miyazaki, Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R.C.; Ghan, S.J.; Rasch, P.J. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 2016, 9, 505–522. [Google Scholar] [CrossRef]
- Bauer, S.E.; Wright, D.L.; Koch, D.; Lewis, E.R.; McGraw, R.; Chang, L.S.; Schwartz, S.E.; Ruedy, R. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): An aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys. 2008, 8, 6003–6035. [Google Scholar] [CrossRef]
- Bauer, S.E.; Menon, S.; Koch, D.; Bond, T.C.; Tsigaridis, K. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos. Chem. Phys. 2010, 10, 7439–7456. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Kirkevåg, A.; Iversen, T. Global direct radiative forcing by process-parameterized aerosol optical properties. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Kirkevåg, A.; Iversen, T.; Seland, Ø.; Hoose, C.; Kristjánsson, J.E.; Struthers, H.; Ekman, A.M.L.; Ghan, S.; Griesfeller, J.; Nilsson, E.D.; et al. Aerosol–climate interactions in the Norwegian Earth System Model—NorESM1-M. Geosci. Model Dev. 2013, 6, 207–244. [Google Scholar] [CrossRef]
- Ma, X.; von Salzen, K.; Li, J. Modelling sea salt aerosol and its direct and indirect effects on climate. Atmos. Chem. Phys. 2008, 8, 1311–1327. [Google Scholar] [CrossRef]
- von Salzen, K. Piecewise log-normal approximation of size distributions for aerosol modelling. Atmos. Chem. Phys. 2006, 6, 1351–1372. [Google Scholar] [CrossRef]
- Peng, Y.; von Salzen, K.; Li, J. Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM. Atmos. Chem. Phys. 2012, 12, 6891–6914. [Google Scholar] [CrossRef]
- Riemer, N.; West, M.; Zaveri, R.A.; Easter, R.C. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Curtis, J.H.; Riemer, N.; West, M. A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0. Geosci. Model Dev. 2017, 10, 4057–4079. [Google Scholar] [CrossRef]
- Solmon, F.; Giorgi, F.; Liousse, C. Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain. Tellus B Chem. Phys. Meteorol. 2006, 58, 51–72. [Google Scholar] [CrossRef]
- Kokkola, H.; Korhonen, H.; Lehtinen, K.E.J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.I.; Kulmala, M.; Järvinen, H.; et al. SALSA—A Sectional Aerosol module for Large Scale Applications. Atmos. Chem. Phys. 2008, 8, 2469–2483. [Google Scholar] [CrossRef]
- Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K.E.J.; Kokkola, H. MATCH-SALSA—Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model—Part 1: Model description and evaluation. Geosci. Model Dev. 2015, 8, 171–189. [Google Scholar] [CrossRef]
- Tonttila, J.; Maalick, Z.; Raatikainen, T.; Kokkola, H.; Kühn, T.; Romakkaniemi, S. UCLALES–SALSA v1.0: A large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation. Geosci. Model Dev. 2017, 10, 169–188. [Google Scholar] [CrossRef]
- Bergman, T.; Kerminen, V.M.; Korhonen, H.; Lehtinen, K.J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model. Geosci. Model Dev. 2012, 5, 845–868. [Google Scholar] [CrossRef]
- Kokkola, H.; Kühn, T.; Laakso, A.; Bergman, T.; Lehtinen, K.E.J.; Mielonen, T.; Arola, A.; Stadtler, S.; Korhonen, H.; Ferrachat, S.; et al. SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geosci. Model Dev. 2018, 11, 3833–3863. [Google Scholar] [CrossRef]
- Zhu, S.; Sartelet, K.; Zhang, Y.; Nenes, A. Three-dimensional modeling of the mixing state of particles over Greater Paris. J. Geophys. Res. Atmos. 2016, 121, 5930–5947. [Google Scholar] [CrossRef]
- Zhu, S.; Sartelet, K.N.; Seigneur, C. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0). Geosci. Model Dev. 2015, 8, 1595–1612. [Google Scholar] [CrossRef]
- Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef]
- Dergaoui, H.; Sartelet, K.N.; Debry, E.; Seigneur, C. Modeling coagulation of externally mixed particles: Sectional approach for both size and chemical composition. J. Aerosol Sci. 2013, 58, 17–32. [Google Scholar] [CrossRef]
- Wang, X.; Heald, C.L.; Ridley, D.A.; Schwarz, J.P.; Spackman, J.R.; Perring, A.E.; Coe, H.; Liu, D.; Clarke, A.D. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos. Chem. Phys. 2014, 14, 10989–11010. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Su, H.; Rose, D.; Gunthe, S.S.; Berghof, M.; Wehner, B.; Achtert, P.; Nowak, A.; Takegawa, N.; Kondo, Y.; et al. Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. Atmos. Chem. Phys. 2012, 12, 4477–4491. [Google Scholar] [CrossRef]
- Lee, L.A.; Pringle, K.J.; Reddington, C.L.; Mann, G.W.; Stier, P.; Spracklen, D.V.; Pierce, J.R.; Carslaw, K.S. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys. 2013, 13, 8879–8914. [Google Scholar] [CrossRef]
- Regayre, L.A.; Johnson, J.S.; Yoshioka, M.; Pringle, K.J.; Sexton, D.M.H.; Booth, B.B.B.; Lee, L.A.; Bellouin, N.; Carslaw, K.S. Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF. Atmos. Chem. Phys. 2018, 18, 9975–10006. [Google Scholar] [CrossRef]
- Stier, P.; Seinfeld, J.H.; Kinne, S.; Feichter, J.; Boucher, O. Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Riemer, N.; West, M.; Zaveri, R.; Easter, R. Estimating black carbon aging time-scales with a particle-resolved aerosol model. J. Aerosol Sci. 2010, 41, 143–158. [Google Scholar] [CrossRef]
- Fierce, L.; Riemer, N.; Bond, T.C. Explaining variance in black carbon’s aging timescale. Atmos. Chem. Phys. 2015, 15, 3173–3191. [Google Scholar] [CrossRef]
- Oshima, N.; Koike, M. Development of a parameterization of black carbon aging for use in general circulation models. Geosci. Model Dev. 2013, 6, 263–282. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Tao, S.; Ban-Weiss, G.A. Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale. Atmos. Chem. Phys. 2015, 15, 11521–11535. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, J.; Horowitz, L.W.; Henze, D.K.; Fan, S.; Mauzerall, D.L.; Lin, J.T.; Tao, S. Analysis of transpacific transport of black carbon during HIPPO-3: Implications for black carbon aging. Atmos. Chem. Phys. 2014, 14, 6315–6327. [Google Scholar] [CrossRef]
- Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T.C.; Boucher, O.; et al. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 2009, 9, 9001–9026. [Google Scholar] [CrossRef]
- Cooke, W.F.; Ramaswamy, V.; Kasibhatla, P. A general circulation model study of the global carbonaceous aerosol distribution. J. Geophys. Res. 2002, 107, 4279. [Google Scholar] [CrossRef]
- Markovic, M.Z.; Perring, A.E.; Gao, R.S.; Liau, J.; Welti, A.; Wagner, N.L.; Pollack, I.B.; Middlebrook, A.M.; Ryerson, T.B.; Trainer, M.K.; et al. Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. Aims Environ. Sci. 2018, 5, 195–215. [Google Scholar] [CrossRef]
- Liu, J.; Fan, S.; Horowitz, L.W.; Levy, H. Evaluation of factors controlling long-range transport of black carbon to the Arctic. J. Geophys. Res. 2011, 116, D04307. [Google Scholar] [CrossRef]
- Fan, S.M.; Horowitz, L.W.; Levy, H.; Moxim, W.J. Impact of air pollution on wet deposition of mineral dust aerosols. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
Module Name | Total # of Aerosol Tracers | # of Aerosol Number Tracers | # of Aerosol Mass Tracers | Size Distribution | BC Mixing State | Other Mixing State | Transfer Between Mixing States | Other Notes | Implemented in What Models? | Sources |
---|---|---|---|---|---|---|---|---|---|---|
APM | 79 | 0 | 79 (SO, sea salt, BC, POC, dust, SOA , NO, NH) | hybrid: 40 bins for SO (1.2 nm to 12 m), 4 bins for dust (0.2 m to 12 m), 20 bins for sea salt (12 nm to 12 m), lognormal modes for BC and POC, all one-moment. | 4 modes: 2 fossil fuel (60 nm) and 2 biomass-burning (150 nm) split by hydrophobic and hydrophilic | “Secondary” particles (consisting only of SO, NH, and SOA) are predicted separately from coatings on other particles of these species. Dust has one population in 4 size sections, coating mass predicted as one bulk tracer for each species. POC same as BC. | BC and POC ages according to an e-folding lifetime of 1.2 days. | WRF-Chem regional NWP [152], GEOS-Chem global CTM [116,172], NAQPMS regional CTM [63] | [63,116,152,172] | |
ATRAS | 1280 | 128 | 1152 (SO, NO, NH, BC, OA, dust, Na, Cl, HO) | 20 two-moment bins (1nm to 10 m) | Up to 10 BC mass fraction bins for each size between 40 nm and 10 m. No BC at smaller sizes. | non-BC species assumed to be internally-mixed with each other. | condensation and coagulation | WRF-Chem regional NWP [59,62] | [59,62] | |
ATRAS2 | 145 | 47 | 98 (SO, BC, POA, NH, HNO, dust) | 12 two-moment bins (1 nm to 10 m) | 8 BC mass fraction bins for each size between 40 nm and 1.24 m. No BC at smaller sizes, assumed well-mixed at larger sizes. | non-BC species assumed to be internally-mixed with each other. | condensation and coagulation | Aerosol variables are coarse-grained across size (to nucleation, fine, and coarse modes) for advection. Number and mass tracers here do not include VBS scheme (total of 26 tracers). | CAM5 global GCM [173] | (Matsui 2017) [173] |
CanAM | 108 | 0 | 108 (SO, NO, NH, POA, SOA, BC, sea salt, dust, HO) | 12 one-moment bins (10 nm to 10 m) | assumed internally-mixed | all species assumed internally-mixed | No transfer between mixing states. | GCMIII global GCM [174]; AURAMS regional CTM [175]; GEM-MACH regional AQM [176] | [174,175,176,177,178] | |
CHIMERE | 120 | 0 | 120 (SO, primary particulate matter, OC, BC, dust, salt, NO, NH, HO, SOA) | 12 one-moment bins (10 nm to 40 m) | assumed internally-mixed. primary particulate matter implicitly includes some BC. | all species assumed internally-mixed | No transfer between mixing states. | CHIMERE regional CTM [179] | [179,180] | |
CIT/UCD | 1080 | 135 | 945 (NO, NH, OC, EC, SO, Na, Cl) | 15 two-moment bins (10 nm to 10 m) | Source-oriented mixing state categories; most BC is emitted in “diesel engines” source | 9 source-oriented categories: fugitive dust, road dust, diesel engines, catalyst-equipped gasoline engines, non-catalyst-equipped gasoline engines, wood smoke, meat cooking, combustion of high-sulfur fuel, and other sources | none; condensation adds mass to each category | coagulation not represented | CIT/UCD regional AQM [181] | [181,182,183] |
CMAQ | unclear | 3 | 18 species (OC, EC, SO, NO, HO, Na, Cl, NH, non-carbon organic matter, Al, Ca, Fe, Si, Ti, Mg, K, Mn, and Other) | 3 three-moment lognormal modes (Aitken, accumulation, coarse) | for radiation, fully externally-mixed. Otherwise, internally-mixed | assumed to be internally-mixed | No transfer between mixing states. | 6th generation aerosol module also known as AERO6 | CMAQ regional CTM; WRF regional forecast model | [184,185,186,187] |
DAMS | 310 | 0 | 310 (two primary particulate species, two semivolatile species, one inert species) | 10 one-moment bins (20 nm to 2.5 m) | no BC simulated | For most detailed configuration, unary, binary, and each higher-level mixture tracked separately, with mass fraction threshold for transfer between categories (multiple thresholds tested, 1%–20%, default 5%). Different groupings of categories also tested. | Processes include gas/aerosol partitioning with aerosol composition-dependent rates, and coagulation. | More detailed treatment of semi-volatile organic partitioning that any other module listed in this table | box model [188] | [188] |
GATOR 2002 | 32,400 | 1080 | 31,320 (HO, H, NH, Na, Mg, Ca, K, SO, NO, Cl, CO, combinations of the above, and BC, OA, and soil) | 60 two-moment bins (1 nm to 120 m) | 3 modes for BC mixed with HO-NH-SO-NO -CO (0–5% shell, 5–20% shell, and 20–100% shell). Also 4 modes for binary mixtures with each other component, and 1 mode for mixtures with all components. | Modes for each other components (sea-spray, soil, OA, SO) mixed with just HO-NH-SO- NO-CO, additional modes for binary mixtures, and a mode for mixtures of all components. | Deposition of non-BC material can move BC particles between the three BC-HO-NH- SO-NO-CO bins. Particles move into the “binary” and “well-mixed” bins only through coagulation. | Please note that individual ions are tracked for HO-NH-SO-NO-CO mixtures, so the actual list of species is 17, not 5. | GATORG global GCM [109] | [109,115,157] |
GATOR 2012 | 658 | 42 | 616 (BC, POA, SOA, HO(aq)-h, HSO(aq), HSO, SO, NO, Cl, H, NH, NHNO(s), (NH)SO(s), Na, tar balls, soil dust, pollen/spores/ bacteria, NaCl(s), HO(aq)-c, HO(s)) | 14 size bins (2 nm to 50 m) | 3 modes: emitted fossil-fuel soot (EFFS), emitted biofuel and biomass-burning soot (BFBB), and ultimate internally-mixed. EFFS contains all aerosol species except Na, NHNO(s), NHSO(s), tar balls, dust, pollen/spores/bacteria, and NaCl(s). BFBB contains all aerosol species except soil dust, pollen/spores/bacteria, and NaCl(s). | 3 additional modes for aerosol mass in liquid, ice, and graupel clouds and precipitation. | Only coagulation transfers particles from the EFFS and BFBB modes to the ultimate internally-mixed mode. Condensation adds aerosol mass within a mode. | Also tracks aerosol mass for each species in cloud liquid, cloud ice, and graupel. These tracers not included in numbers of aerosol tracers listed here. | GATOR-GCMOM global/regional GCM/NWP/AQM [189] | [97,189] |
GEOS-Chem | 15 | 0 | 15 (BC, OC, SO, dust, sea salt, NH, NO) | bulk | 4 categories: fossil fuel hydrophobic, fossil fuel hydrophilic, biomass burning hydrophobic, biomass burning hydrophilic. | OC has 2 categories: hydrophobic and hydrophilic. | Hydrophobic OC converts to hydrophilic OC with an e-folding lifetime of 1.15 days. Biofuel and biomass-burning BC converts to hydrophilic with an e-folding lifetime of 4 h. Fossil fuel BC ageing is parametrized based on SO and OH concentrations. | default aerosol scheme for GEOS-Chem global CTM | [93,190,191] | |
GLOMAP-bin | 160 | 40 | 120 (SO, sea salt, dust, BC, POA, SOA) | 20 two-moment bins (3 nm to 10 m) | 2 categories in each size bin: hydrophobic and hydrophilic. | Dust and POA also separated into hydrophilic and hydrophobic categories. | Condensation and/or coagulation of one monolayer of sulphate. | TOMCAT global CTM [192] | [150,192,193] | |
GLOMAP-mode | 26 | 7 | 19 (SO, sea salt, dust, BC, POA, SOA) | 7 two-moment lognormal modes (nucleation, Aitken, accumulation, coarse) | 4 modes: insoluble in Aitken mode, soluble in Aitken, accumulation and coarse modes. | Dust in 4 modes: insoluble and soluble for accumulation and coarse. POA treated the same as BC. | coagulation and/or condensation of 10 monolayers of sulphate | TOMCAT global CTM [194], MetUM global/regional GCM/NWP/AQM [195] | [194,195] | |
GMXe | 41 | 7 | 34 (HO, SO, NO, Cl, NH, Na, POA, BC, dust, sea salt) | 7 two-moment lognormal modes (nucleation, Aitken, accumulation, coarse) | 4 modes: hydrophobic in Aitken mode, hydrophilic in Aitken, accumulation and coarse modes | Dust in 4 modes: hydrophilic and hydrophobic for accumulation and coarse. POA treated the same as BC. | Coagulation with soluble mode moves mass to soluble mode, or condensation of 5 monolayers of sulphate | EMAC (ECHAM/MESSy) global GCM [196] | [196] | |
IMPACT | 28 | 3 | 25 (SO, BC, OC, dust, sea salt) | Hybrid. 3 two-moment lognormal SO modes, all other species one-moment bins with predefined size distributions. 4 dust bins, 4 sea-salt bins. 2 BC and 2 OC bins (fossil fuel and biomass-burning). | 2 BC bins: fossil fuel and biomass-burning. Amount of SO on each bin is tracked. | 2 OC bins: fossil fuel and biomass-burning. All particles in all bins or modes assumed to be externally-mixed, but amount of SO condensed on each bin is tracked. | SO added to particles through condensation, coagulation, and in-cloud oxidation (this does not move non-SO mass between modes). Soot and dust are assumed to be hygroscopic when coated with 10 monolayers of SO (mass fraction 14%). | IMPACT also refers to the IMPACT global CTM [197]; CAM3 global GCM [198] | [197,198] | |
M3+ | 13 | 8 | 5 (SO, BC, sea salt) | 8 lognormal modes, some one-moment and some two-moment (nucleation, Aitken, and accumulation SO; pure fossil-fuel BC, mixed fossil-fuel BC, pure biomass-burning BC, mixed biomass-burning BC, and sea-salt) | 4 modes: pure fossil-fuel and pure biomass-burning BC, and fossil-fuel and biomass-burning each mixed with OC and SO. | OC is always assumed to be internally-mixed with BC and SO, and to be in hydrophilic particles. Split into biomass-burning and fossil-fuel modes. | Condensation of 8 monolayers of SO onto fossil-fuel BC; 2.5% per hour of biomass-burning BC | OC mass is included diagnostically as either constant ratio with SO (mixed fossil-fuel BC) or BC (mixed biomass-burning BC) | TM2 global chemical transport mode [199] | [199] |
M7 | 45 (29 for advection) | 7 | 38 (Dust, BC, POA, SO, sea salt, 5 SOA types) | 7 two-moment lognormal modes (nucleation, Aitken, accumulation, coarse) | 4 modes: insoluble in Aitken mode, soluble in Aitken, accumulation and coarse modes | Dust in 4 modes: insoluble and soluble for accumulation and coarse. POA and SOA are treated the same way as BC: 4 modes: insoluble in Aitken mode, soluble in Aitken, accumulation and coarse modes. | Coagulation and/or condensation of one monolayer of sulphate. | 20 SOA species, but these are advected as only 4 tracers | ECHAM5-HAM global GCM [200], TM5 global CTM [64] | [64,200,201,202] |
MADE | 27 | 3 | 24 (SO, NH, NO, BC, OA, sea salt, dust, and HO) | 3 two-moment lognormal modes (Aitken, accumulation, coarse) | Assumed internally-mixed | No transfer between mixing states. | ECHAM4 global climate mode [203] | [203] | ||
MADE-in | 42 | 7 | 35 (SO, NH, NO, sea salt, POA, BC, dust, HO) | 7 two-moment lognormal modes (Aitken, accumulation, and coarse) | 4 modes: 2 sizes (Aitken and accumulation), 2 mixing states (external and core-shell mixture) | Dust in 3 modes: external accumulation, core-shell accumulation, and internally-mixed coarse. Please note that pure soluble modes (no BC or dust) are included for Aitken and accumulation modes. | Condensation of SO and organics, gas/aerosol partitioning of NO and NH, aggregation following in-cloud processing, and coagulation. Particles are transferred if processes cause soluble mass fraction (including HO) to exceed 10%. | EMAC (ECHAM/MESSy) global GCM [204] | [204] | |
MADE3 | 90 | 9 | 81 (SO, NH, NO, Na, Cl, POA, BC, dust, HO) | 9 two-moment lognormal modes (Aitken, accumulation, and coarse) | 6 modes: 3 sizes (Aitken, accumulation, and coarse), 2 mixing states (insoluble and mixed). Insoluble state includes only BC, POA, and dust. | Please note that pure soluble modes (no BC, POA, or dust) are also included for Aitken, accumulation and coarse modes. | Condensation of SO and organics, gas/aerosol partitioning of NO and NH, aggregation following in-cloud processing, and coagulation. Particles are transferred if processes cause soluble mass fraction (excluding HO and POA) to exceed 10%. | EMAC (ECHAM/MESSy) global GCM [205] | [205,206] | |
MADEsoot | 30 | 6 | 24 (SO, NH, NO, SOA, soot, HO). Dust and sea spray treated separately. | 6 two-moment lognormal modes (Aitken, accumulation, and coarse) | one mode for pure soot, and two modes for aged soot (Aitken and accumulation) | Dust treated separately, externally mixed. Please note that there are two modes for soot-free particles (Aitken and accumulation) | Condensation of SO or SOA, threshold is soluble mass fraction of 5%. coagulation with soluble particle. | KAMM/DRAIS regional NWP [147], COSMO-ART regional NWP [207] | [22,147,207] | |
MADMS | 39 | 5 | 30 (unidentified, BC, OA, dust, sea salt, SO, NH, NO, Cl, HO) | 5 three-moment lognormal modes (Aitken, accumulation, coarse) | A BC-free accumulation mode is tracked separately from a BC-containing accumulation-sized mode. The number of BC-containing accumulation-sized particles coagulated by the coarse mode is also tracked. | Coagulation will move BC-free particles into BC-containing category. Please note that condensation physically would not move particles between states in this scheme. | Please note that surface area is also a transported tracer, unlike most modules. MADMS can be used to account for differences in condensation and coagulation due to non-sphericity, and to track fractal particle morphology. However, particles were assumed to be spheres in Kajino et al. (2012) [208]. | RAQM2 regional CTM [208], EMTACS regional CTM [209] | [208,209,210] | |
MADRID-BC | 3600 | 400 | 3200 (SO, NH, NO, Na, Cl, HO, BC, and OA) | 40 bins (21.5 nm to 10 m) | 10 BC mass fraction bins. | Condensation of SO and SOA only. | Coagulation not simulated. | Box model only [211] | [57,211] | |
MAM3 | 15 | 3 | 12 (SO, SOA, POA, BC, dust, sea salt) | 3 two-moment lognormal modes (Aitken, accumulation, coarse) | Assumed to be internally-mixed | All species assumed internally mixed. | No transfer between mixing states. | CAM5 global GCM [65] | [65] | |
MAM4 | 18 | 4 | 14 (SO, SOA, POA, sea salt, BC, soil dust) | 4 two-moment lognormal modes (aitken, accumulation, coarse) | 2 modes: externally-mixed accumulation and internally-mixed accumulation. | POA treated the same as BC. | Coagulation or condensation of 8 monolayers of SO or equivalent amount of SOA. | CAM5 global GCM [212] | [212] | |
MAM7 | 31 | 7 | 24 (SO, NH, SOA, POA, BC, dust, sea salt) | 7 two-moment lognormal modes (Aitken, accumulation, fine, coarse) | 2 modes: primary carbon (only BC and POA) and mixed accumulation. | Sea salt and Dust in 2 modes each: fine and coarse. Both include tracers for masses of internally-mixed SO and NH, but the modes are assumed to be externally-mixed with respect to all other species. | Coagulation or condensation of 3 monolayers of SO, NH, or SOA moves primary carbon particles to mixed accumulation mode. | CAM5 global GCM [65] | [65] | |
MATRIX | 73 | 16 | 57 (SO, NO, HO, dust, sea salt, OC, BC) | 16 two-moment lognormal modes (Aitken, accumulation, coarse) | BC is present in 7 of the 16 modes: 3 modes for different mass fractions of binary BC-inorganic mixtures (cutoffs at 5% and 20%), 1 mode BC-OC-inorganics, 1 mode BC-inorganics (formed by coagulation), 1 mode BC-Dust-inorganics, and 1 mode for higher order mixtures. | Inorganics-only in Aitken and accumulation modes, sea-salt-inorganic mixtures in accumulation and coarse modes, 2 modes in each of accumulation and coarse size ranges for binary dust-inorganic mixtures (cutoff at 5% inorganic fraction), OC-inorganic mixtures. | Coagulation, condensation of inorganics. | Box model [213] and GISS global GCM [214] | [171,213,214] | |
MOSAIC-Mix | 1152 | 96 | 1056 (SO, NO, Cl, CO, NH, Na, Ca, OIN (other insoluble inorganics), BC, POA, SOA) | 24 two-moment bins | Particles binned by black carbon mass fraction, up to 32 bins tested, 2 recommended. | Particles are binned by hygroscopicity, up to 30 bins tested, 2 recommended. | Condensation and coagulation. | Recommended configuration has 2 black carbon mass bins and 2 hygroscopicity bins, resulting in 96 number tracers. | Box model. [58] | [58] |
MOZART | 9 | 0 | (SO, BC, POA, SOA, NHNO, sea salt) | Bulk, except sea-salt: 4 bins (0.1 m to 10 m) | Hydrophilic and hydrophobic categories. | POA also in hydrophilic and hydrophobic categories. | Fixed Ageing timescale of 1.6 days. | Dust not prognostic; taken from CAM climatology. | MOZART global CTM [215] | [215] |
OsloAero | 23 | 0 | 23 (SO, BC, OA, dust and sea salt) | Calculated based on one-moment tagged sources; includes growth by condensation and coagulation of SO; similar to lognormal odes (nucleation, Aitken, accumulation, coarse) | Some BC is emitted as pure BC, and some is internally-mixed with OA. Condensation of SO renders BC within the mode internally-mixed with SO; the same is true of coagulation with other species. | All emissions externally mixed; SO condenses onto all emitted species; nucleation- and Aitken-mode particles can coagulate with accumulation- and coarse-mode particles to form internally-mixed particles. The mass of SO condensed or coagulated onto each mode is tracked, but how that SO is distributed across the size spectrum of each mode is re-calculated each time step. So it is possible for only some of the particles within a given mode to be internally-mixed, depending on what properties are considered. | Condensation of SO, coagulation. Particles are considered coated for cloud droplet activation if a 2 nm thick coating of SO or OA is present. Mixing state does not affect wet deposition. | When aerosol mass is added, it is tagged by source (nucleation, condensation, coagulation, emissions, etc.) and size range. The size distributions are calculated a posteriori by adding the other tagged masses to the emission mass, and modifying the emitted size distribution appropriately. | CCM3 global GCM [216], CAM-Oslo global GCM [119], CAM4-Oslo global GCM [217] | [119,216,217] |
PAM | 20 | 7 | 13 (SO, BC, OC, dust, sea-spray) | 7 two-moment piece-wise lognormal bins (20 nm to 20 m) | Assumed internally-mixed with OC and SO for microphysics, but assumed externally-mixed for radiation calculations. | Sea-spray assumed externally-mixed. OC and SO internally-mixed w/ BC for microphysics, but all components treated as externally-mixed for radiation calculations. | No transfer between mixing states. | CCCma AGCM global GCM [218] | [218,219,220] | |
PartMC- MOSAIC | 19 per particle; of order 1e5 | Not applicable | 19 per particle; of order 1e5 (SO, NO, Cl, CO, MSA, NH, Na, Ca, other inorganic mass, BC, POA; 8 SOA species) | Size of each particle tracked independently. | Composition of each particle is resolved explicitly. | Composition of each particle is resolved explicitly. | Composition of each particle is resolved explicitly, so no transfer between states is necessary or possible. Processes that alter particle composition, including condensation and coagulation, are resolved. | box model [221] and WRF single column model [222]. | [221,222] | |
RegCM | 5 | 0 | 5 (SO, hydrophilic and hydrophobic BC, hydrophilic and hydrophobic OC) | Bulk | Hydrophilic and hydrophobic BC considered separately, assumed externally-mixed. | Hydrophilic and hydrophobic OC considered separately. All species assumed externally-mixed. | Fixed ageing timescale of 1.15 days. | RegCM regional climate model [223] | [223] | |
SALSA | 65 | 20 | 45 (SO, OC, sea salt, BC, dust). SO and OC lumped together as “water soluble” for D > 700 nm. Otherwise, mass concentration not tracked for particles larger than 700 nm. | 7 two-moment bins (3 nm to 700 nm); and 3 one-moment bins (700 nm to 10 m) | Split into soluble and insoluble bins. Insoluble bins contain no sea salt. Otherwise, all species present in soluble and insoluble bins. | Internally mixed for D < 50 nm; soluble and insoluble categories for 50 nm < D < 700 nm, soluble, fresh insoluble and aged insoluble categories for D > 700 nm. | Coagulation or condensation of a pre-defined mass fraction of soluble material, calculated using Kohler theory with a supersaturation of 0.5%. | ECHAM-HAM global GCM [224]; MATCH regional CTM [225]. A version of SALSA without separate mixing-state categories has also been implemented in UCLA-LES [226] | [224,225,227] | |
SALSA2.0 | 86 | 17 | 69 (SO, OA, sea salt, BC, and dust) | 10 two-moment bins (3 nm to 10 m) | No BC for D < 50 nm; two sets of externally-mixed bins (soluble and insoluble) for D > 50 nm. Sea salt only in soluble bins, but SO, OC, BC, and dust in both sets of bins. | Internally-mixed for D < 50 nm; two sets of externally-mixed bins (soluble and insoluble) for D > 50 nm. Sea salt only in soluble bins, but SO, OC, BC, and dust in both sets of bins. | Not stated. | ECHAM-HAM global GCM [228]. | [228] | |
SCRAM | 4340 | 140 | 4200 (HLI (Na, SO, NO, NH, Cl), HLO (BiA2D, BiA1D, BiA0D, GLY-OXAL, MGLY, BiMT, BiPER, BiDER and BiMGA), HBO (AnBlP, AnBmP, BiBlP, BiBmP, BiNGA, NIT3, BiNIT, AnCLP, SOAlP, SOAmP, SOAhP, POAlP, POAmP and POAhP), BC, and dust.) | 7 bins (1 nm to 10 m) | 20 composition bins, including 1 for >80% BC, 8 for 20-80% BC and 11 for <20% BC | 20 composition bins for five categories(inorganics (HLI), hydrophilic organics (HLO), hydrophobic organics (HBO), BC, dust), covering unary, binary, and higher-order mixtures. Generally, there is an unmixed (>80% mass faction) bin for each species, and bin limits for a given species are otherwise set at 0–20% or 20–80%. | Condensation and coagulation | 30 detailed mass species: HLI (sodium, sulphate, nitrate, ammonium and chloride), HLO (BiA2D, BiA1D, BiA0D, GLY-OXAL, MGLY, BiMT, BiPER, BiDER and BiMGA), HBO (AnBlP, AnBmP, BiBlP, BiBmP, BiNGA, NIT3, BiNIT, AnCLP, SOAlP, SOAmP, SOAhP, POAlP, POAmP and POAhP), BC, and dust. | POLYPHEMUS regional AQM [229] | [229,230] |
SOWC | 880 | 40 | 840 (EC, OC, Na, Cl, NH, SO, NO, other, metals, unknown, Cu1, Cu2, Mn2, Mn3, Fe2, Fe3, SO3, air (in hollow particles), NO, H, HO) | 8 two-moment bins (<78 nm to >5 m) | Source-oriented mixing state bins. Most BC is emitted in “Diesel Engines” source. | 5 source-oriented mixing state bins: Diesel Engines, Wood Smoke, High Sulfur Fuel, Food Cooking, and Other. | Condensation, coagulation adds masses of the smaller particle to the source bin of the larger particle. | WRF-Chem regional NWP [162] | [162] | |
TM5 | 6 | 0 | 6 (SO, NO, NH, OC, sea salt, dust) | Bulk | Assumed externally-mixed. | SO, NO3, and NH4 assumed internally-mixed with each other, all other species externally-mixed. | No transfer between mixing states. | TM5 global CTM [231] | [64,231] | |
unnamed | 90 | 30 | 60 (2 arbitrary species) | 10 two-moment bins (1 nm to 10 m) | No BC simulated. | Each species binned in 3 or 10 mass fraction sections. | Coagulation only. | Theoretical calculations of coagulation between arbitrary species with no chemical properties. | Box model only [232] | [232] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, R.; Dastoor, A. A Review of the Representation of Aerosol Mixing State in Atmospheric Models. Atmosphere 2019, 10, 168. https://doi.org/10.3390/atmos10040168
Stevens R, Dastoor A. A Review of the Representation of Aerosol Mixing State in Atmospheric Models. Atmosphere. 2019; 10(4):168. https://doi.org/10.3390/atmos10040168
Chicago/Turabian StyleStevens, Robin, and Ashu Dastoor. 2019. "A Review of the Representation of Aerosol Mixing State in Atmospheric Models" Atmosphere 10, no. 4: 168. https://doi.org/10.3390/atmos10040168
APA StyleStevens, R., & Dastoor, A. (2019). A Review of the Representation of Aerosol Mixing State in Atmospheric Models. Atmosphere, 10(4), 168. https://doi.org/10.3390/atmos10040168