Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC)
Abstract
:1. Introduction
2. Methodology
3. Overview of the Simulated Storm
4. Life Cycle of the Simulated Tornado
4.1. DRC Formation (t0 − 19 min ≤ t < t0 min)
4.2. Tornadogenesis (t0 min ≤ t < t0 + 4 min)
4.3. Tornado Intensification and Maturity (t0 + 4 min ≤ t < t0 + 17 min)
4.4. Tornado’s Demise (t0 + 17 min ≤ t ≤ t0 + 24 min)
5. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pazmany, A.L.; Mead, J.B.; Bluestein, H.B.; Snyder, J.C.; Houser, J.B. A mobile rapid-scanning x-band polarimetric (RaXPol) Doppler radar system. J. Appl. Meteor. 2013, 30, 1398–1413. [Google Scholar] [CrossRef]
- Houser, J.L.; Bluestein, H.B.; Snyder, J.C. A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev. 2016, 144, 4101–4130. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y.; Marquis, J.; Wurman, J.; Kosiba, K.; Robinson, P.; Rasmussen, E.; Dowell, D. The Pretornadic Phase of the Goshen County, Wyoming, Supercell of 5 June 2009 Intercepted by VORTEX2. Part II: Intensification of Low-Level Rotation. Mon. Wea. Rev. 2012, 140, 2916–2938. [Google Scholar] [CrossRef]
- Marquis, J.; Richardson, Y.; Markowski, P.; Wurman, J.; Kosiba, K.; Robinson, P. An Investigation of the Goshen County, Wyoming, Tornadic Supercell of 5 June 2009 Using EnKF Assimilation of Mobile Mesonet and Radar Observations Collected during VORTEX2. Part II: Mesocyclone-Scale Processes Affecting Tornado Formation, Maintenance, and Decay. Mon. Wea. Rev. 2016, 144, 3441–3463. [Google Scholar]
- Clark, A.J.; Gao, J.; Marsh, P.T.; Smith, T.; Kain, J.S.; Correia, J., Jr.; Xue, M.; Kong, F. Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity. Wea. Forecasting. 2013, 28, 387–407. [Google Scholar] [CrossRef]
- Naylor, J.; Gilmore, M.S. Vorticity Evolution Leading to Tornadogenesis and Tornadogenesis Failure in Simulated Supercells. J. Atmos. Sci. 2014, 71, 1201–1217. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wicker, L.J.; Xue, M.; Dawson, D.T.; Yussouf, N.; Wheatley, D.M.; Thompson, T.E.; Snook, N.A.; Smith, T.M.; Schenkman, A.D.; et al. Progress and challenges with Warn-on-Forecast. Atmospheric Research. 2013, 123, 2–16. [Google Scholar] [Green Version]
- Xue, M.; Hu, M.; Schenkman, A.D. Numerical Prediction of the 8 May 2003 Oklahoma City Tornadic Supercell and Embedded Tornado Using ARPS with the Assimilation of WSR-88D Data. Wea. Forecasting. 2014, 29, 39–62. [Google Scholar] [CrossRef]
- Mashiko, W. A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part I: Vorticity Sources of Low-Level and Midlevel Mesocyclones. Mon. Wea. Rev. 2016, 144, 1069–1092. [Google Scholar] [CrossRef]
- Mashiko, W. A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part II: Mechanisms of Tornadogenesis. Mon. Wea. Rev. 2016, 144, 3077–3098. [Google Scholar] [CrossRef]
- Schenkman, A.D.; Xue, M.; Hu, M. Tornadogenesis in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Supercell. J. Atmos. Sci. 2014, 71, 130–154. [Google Scholar] [CrossRef]
- Markowski, P.M.; Richardson, Y.P. The Influence of Environmental Low-Level Shear and Cold Pools on Tornadogenesis: Insights from Idealized Simulations. J. Atmos. Sci. 2014, 71, 243–275. [Google Scholar] [CrossRef]
- Wicker, L.J.; Wilhelmson, R.B. Simulation and Analysis of Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm. J. Atmos. Sci. 1995, 52, 2675–2703. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmson, R.B.; Klemp, J.B. A Three-Dimensional Numerical Simulation of Splitting Severe Storms on 3 April 1964. J. Atmos. Sci. 1981, 38, 1581–1600. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.B.; Wilhelmson, R.B.; Ray, P.S. Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. J. Atmos. Sci. 1981, 38, 1558–1580. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.B.; Rotunno, R. A Study of the Tornadic Region within a Supercell Thunderstorm. J. Atmos. Sci. 1983, 40, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Orf, L.; Wilhelmson, R.; Lee, B.; Finley, C.; Houston, A. Evolution of a Long-Track Violent Tornado within a Simulated Supercell. Bull. Amer. Meteorol. Soc. 2017, 98, 45–68. [Google Scholar] [CrossRef]
- Meng, Z.; Yao, D. Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012. Wea. Forecasting. 2014, 29, 702–724. [Google Scholar] [CrossRef]
- Bryan, G.H.; Fritsch, J.M. A Benchmark Simulation for Moist Nonhydrostatic Numerical Models. Mon. Wea. Rev. 2002, 130, 2917–2928. [Google Scholar] [CrossRef]
- Byko, Z.; Markowski, P.; Richardson, Y.; Wurman, J.; Adlerman, E. Descending Reflectivity Cores in Supercell Thunderstorms Observed by Mobile Radars and in a High-Resolution Numerical Simulation. Wea. Forecasting. 2009, 24, 155–186. [Google Scholar] [CrossRef]
- Roberts, B.; Xue, M.; Schenkman, A.D.; Dawson, D.T. The role of surface friction in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 2016, 73, 3371–3395. [Google Scholar] [CrossRef]
- French, M.M.; Bluestein, H.B.; PopStefanija, I.; Baldi, C.A.; Bluth, R.T. Reexamining the Vertical Development of Tornadic Vortex Signatures in Supercells. Mon. Wea. Rev. 2013, 141, 4576–4601. [Google Scholar] [CrossRef]
- Yao, D.; Xue, H.; Yin, J.; Sun, J.; Liang, X.; Guo, J. Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation. J. Meteorol. Res. 2018, 32, 157–171. [Google Scholar] [CrossRef]
- Trapp, R.J.; Mitchell, E.D.; Tipton, G.A.; Effertz, D.W.; Watson, A.I.; Andra, D.L.; Magsig, M.A. Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds. Wea. Forecasting. 1999, 14, 625–639. [Google Scholar] [CrossRef]
- Adlerman, E.J.; Droegemeier, K.K.; Davies-Jones, R. A Numerical Simulation of Cyclic Mesocyclogenesis. J. Atmos. Sci. 1999, 56, 2045–2069. [Google Scholar] [CrossRef]
- Dowell, D.C.; Bluestein, H.B. The 8 June 1995 McLean, Texas, Storm. Part I: Observations of Cyclic Tornadogenesis. Mon. Wea. Rev. 2002, 130, 2626–2648. [Google Scholar] [CrossRef]
- Snook, N.; Xue, M. Effects of Microphysical Drop Size Distribution on Tornadogenesis in Supercell Thunderstorms. Geophys. Res. Lett. 2008, 35, 851–854. [Google Scholar] [CrossRef]
- Roberts, B.; Xue, M. The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 2017, 74, 3055–3077. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Meng, Z.; Xue, M. Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC). Atmosphere 2019, 10, 236. https://doi.org/10.3390/atmos10050236
Yao D, Meng Z, Xue M. Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC). Atmosphere. 2019; 10(5):236. https://doi.org/10.3390/atmos10050236
Chicago/Turabian StyleYao, Dan, Zhiyong Meng, and Ming Xue. 2019. "Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC)" Atmosphere 10, no. 5: 236. https://doi.org/10.3390/atmos10050236