Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks
Abstract
:1. Introduction
2. Related Work
2.1. Deep Learning for Radar Echo Extrapolation Based Precipitation Nowcasting
2.1.1. CNN-Based Models
2.1.2. Convolutional RNN-Based Models
2.1.3. Loss Functions for Training Neural Networks
2.2. Image Quality Assessment Metrics in Neural Networks
3. Materials and Methods
3.1. Dataset: Shenzhen Radar Data
3.2. Sequence-To-Sequence Models for Radar Echo Extrapolation
3.3. Image Quality Assessment Metrics as Training Loss Functions
4. Experimental Results
4.1. Evaluation of the Previous Work with IQA Metrics
4.2. Evaluation of the dec-seq2seq Network Structure
4.3. Evaluation of IQA-Based Loss Functions
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Network Sizes and Training Costs
Appendix B. Evaluation of TrajGRU and dec-TrajGRU models on MovingMNIST++
Variables | Training Set | Test Set 1 | Test Set 2 | Test Set 3 | Test Set 4 |
---|---|---|---|---|---|
max_velocity_scale | 3.6 | 4.6 | 5.6 | 5.6 | 4.6 |
initial_velocity_range | [0.0, 3.6] | [0.0, 4.6] | [2.0, 5.6] | [0.0, 5.6] | [2.0, 4.6] |
scale_variation_range | [0.9, 1.1] | [0.8, 1.2] | [0.7, 1.3] | [0.6, 1.4] | [0.5, 1.5] |
rotation_angle_range | [−30, 30] | [−45, 45] | [−45, 45] | [−45, 45] | [−40, 40] |
global_rotation_angle_range | [−20, 20] | [−45, 45] | [−30, 30] | [−45, 45] | [−30, 30] |
illumination_factor_range | [0.6, 1.0] | [0.8, 1.2] | [0.7, 1.3] | [0.8, 1.2] | [0.8, 1.2] |
max_range | [100, 200] | [80, 220] | [80, 220] | [80, 220] | [80, 220] |
Validating | Test Set 1 | Test Set 2 | Test Set 3 | Test Set 4 | |
---|---|---|---|---|---|
TrajGRU [6] | 0.6833 | 0.9135 | 0.8342 | 1.1543 | 1.2179 |
dec-TrajGRU (ours) | 0.7296 | 0.9114 | 0.8246 | 1.1420 | 1.1825 |
References
- Wang, C.; Hong, Y. Application of Spatiotemporal Predictive Learning in Precipitation Nowcasting. In Proceedings of the American Geophysical Union, Fall Meeting 2018, Washingtong, DC, USA, 10–14 December 2018. [Google Scholar]
- Heye, A.; Venkatesan, K.; Cain, J. Precipitation Nowcasting: Leveraging Deep Recurrent Convolutional Neural Networks. In Proceedings of the Cray User Group (CUG) 2017–Caffeinated Computing, Redmond, WA, USA, 8–11 May 2017. [Google Scholar]
- Yu, W.; Nakakita, E.; Kim, S.; Yamaguchi, K. Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall. J. Hydrol. 2015, 531, 494–507. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Chen, S.; Mai, X.; Zhang, A.; Hu, B.; Li, Z.; Tong, X. Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas–Kanade Optical Flow Technique. Atmosphere 2018, 9, 260. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep Learning for Precipitation Nowcasting: A Benchmark and a New Model. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 5617–5627. [Google Scholar]
- Shi, E.; Li, Q.; Gu, D.; Zhao, Z. A Method of Weather Radar Echo Extrapolation Based on Convolutional Neural Networks. In Proceedings of the International Conference on Multimedia Modeling (MMM 2018), Bangkok, Thailand, 5–7 February 2018; Springer: Cham, Switzerland, 2018; Volume 10704, pp. 16–28. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Z. CIKM AnalytiCup 2017: Short-Term Precipitation Forecasting Based on Radar Reflectivity Images. In Proceedings of the Conference on Information and Knowledge Management, Short-Term Quantitative Precipitation Forecasting Challenge, Singapore, 6–10 November 2017. [Google Scholar]
- Asanjan, A.A.; Yang, T.; Hsu, K.; Sorooshian, S.; Lin, J.; Peng, Q. Short-term Precipitation Forecast based on the PERSIANN system and the Long ShortTerm Memory (LSTM) Deep Learning Algorithm. J. Geophys. Res. Atmos. 2018, 123, 12543–12563. [Google Scholar] [CrossRef]
- Ballas, N.; Yao, L.; Pal, C.; Courville, A. Delving deeper into convolutional networks for learning video representations. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Germann, U.; Zawadzki, I. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Weather Rev. 2002, 130, 2859–2873. [Google Scholar] [CrossRef]
- Germann, U.; Zawadzki, I. Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteorol. 2004, 43, 74–89. [Google Scholar] [CrossRef]
- Turner, B.; Zawadzki, I.; Germann, U. Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteorol. 2004, 43, 231–248. [Google Scholar] [CrossRef]
- Lee, H.C.; Lee, Y.H.; Ha, J.C.; Chang, D.E.; Bellon, A.; Zawadzki, I.; Lee, G. McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) applied to the South Korean radar network. Part II: Real-time verification for the summer season. Asia-Pac. J. Atmos. Sci. 2010, 46, 383–391. [Google Scholar] [CrossRef]
- Tang, J.; Matyas, C. A Nowcasting Model for Tropical Cyclone Precipitation Regions Based on the TREC Motion Vector Retrieval with a Semi-Lagrangian Scheme for Doppler Weather Radar. Atmosphere 2018, 9, 200. [Google Scholar] [CrossRef]
- Sato, R.; Kashima, H.; Yamamoto, T. Short-Term Precipitation Prediction with Skip-Connected PredNet. In Proceedings of the ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2018; Volume 11141, pp. 373–382. [Google Scholar] [CrossRef]
- Klein, B.; Wolf, L.; Afek, Y. A dynamic convolutional layer for short range weather prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4840–4848. [Google Scholar]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 7–13 December 2015; pp. 4489–4497. [Google Scholar]
- Woo, W.C.; Wong, W.K. Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Kalchbrenner, N.; Oord, A.v.d.; Simonyan, K.; Danihelka, I.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Video pixel networks. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Villegas, R.; Yang, J.; Zou, Y.; Sohn, S.; Lin, X.; Lee, H. Learning to generate long-term future via hierarchical prediction. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Luo, W.; Liu, W.; Gao, S. Remembering history with convolutional lstm for anomaly detection. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 439–444. [Google Scholar]
- Singh, S.; Sarkar, S.; Mitra, P. A deep learning based approach with adversarial regularization for Doppler weather radar ECHO prediction. In Proceedings of the 2017 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5205–5208. [Google Scholar]
- Kim, S.; Kim, H.; Lee, J.; Yoon, S.; Kahou, S.E.; Kashinath, K.; Prabhat, M. Deep-Hurricane-Tracker: Tracking and Forecasting Extreme Climate Events; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2018. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Mathieu, M.; Couprie, C.; LeCun, Y. Deep multi-scale video prediction beyond mean square error. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Palubinskas, G. Image similarity/distance measures: What is really behind MSE and SSIM? Int. J. Image Data Fusion 2017, 8, 32–53. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, Z. Quality assessment for remote sensing images: Approaches and applications. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Kowloon, China, 9–12 October 2015; pp. 1029–1034. [Google Scholar]
- Yang, J.; Zhao, Y.; Yi, C.; Chan, J.C.W. No-reference hyperspectral image quality assessment via quality-sensitive features learning. Remote Sens. 2017, 9, 305. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Brox, T. Generating images with perceptual similarity metrics based on deep networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016; pp. 658–666. [Google Scholar]
- Lu, C.; Hirsch, M.; Schölkopf, B. Flexible spatio-temporal networks for video prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6523–6531. [Google Scholar]
- Lee, A.X.; Zhang, R.; Ebert, F.; Abbeel, P.; Finn, C.; Levine, S. Stochastic Adversarial Video Prediction. arXiv 2018, arXiv:1804.01523. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- CIKM AnalytiCup 2017 Dataset. Available online: https://tianchi.aliyun.com/dataset/dataDetail?dataId=1085 (accessed on 30 April 2019).
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Inamdar, D.; Leblanc, G.; Soffer, R.J.; Kalacska, M. The Correlation Coefficient as a Simple Tool for the Localization of Errors in Spectroscopic Imaging Data. Remote Sens. 2018, 10, 231. [Google Scholar] [CrossRef]
- Finn, C.; Goodfellow, I.; Levine, S. Unsupervised learning for physical interaction through video prediction. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016; pp. 64–72. [Google Scholar]
Validating | Testing | |||||
---|---|---|---|---|---|---|
Best MSE | MSE | MAE | SSIM | MS-SSIM | PCC | |
Last input | - | 1.6804 | 0.8120 | 0.4552 | 0.4207 | 0.6234 |
TrajGRU ([6]) | 0.4455 | 0.9950 | 0.6599 | 0.4920 | 0.5564 | 0.7450 |
ConvGRU ([6]) | 0.3143 | 0.9998 | 0.6408 | 0.5380 | 0.5621 | 0.7507 |
ConvLSTM ([6]) | 0.3165 | 0.9962 | 0.6463 | 0.5280 | 0.5629 | 0.7501 |
Validating | Testing | |||||
---|---|---|---|---|---|---|
Best MSE | MSE | MAE | SSIM | MS-SSIM | PCC | |
dec-TrajGRU | 0.7003 | 0.8892 | 0.6401 | 0.4981 | 0.5742 | 0.7718 |
dec-ConvGRU | 0.5793 | 0.8992 | 0.6444 | 0.4830 | 0.5789 | 0.7699 |
dec-ConvLSTM | 0.4887 | 0.9524 | 0.6476 | 0.4987 | 0.5783 | 0.7593 |
Testing | Overall Improvement | |||||
---|---|---|---|---|---|---|
MSE | MAE | SSIM | MS-SSIM | PCC | ||
MAE | 0.9536 | 0.6031 | 0.5673 | 0.5773 | 0.7671 | 2.30% |
SSIM | 0.9651 | 0.5880 | 0.5934 | 0.5927 | 0.7692 | 4.16% |
MS-SSIM | 0.9632 | 0.6384 | 0.5325 | 0.5865 | 0.7668 | -0.10% |
MSE + MAE | 0.8865 | 0.6132 | 0.5346 | 0.5907 | 0.7776 | 2.93% |
MSE + SSIM | 0.8870 | 0.5994 | 0.5762 | 0.5927 | 0.7768 | 5.07% |
MSE + MS-SSIM | 0.8991 | 0.6348 | 0.4997 | 0.5849 | 0.7719 | 0.23% |
MAE + SSIM | 0.9255 | 0.5787 | 0.5924 | 0.5957 | 0.7770 | 5.61% |
MAE + MS-SSIM | 0.9322 | 0.6001 | 0.5689 | 0.5931 | 0.7738 | 3.67% |
MSE + MAE + SSIM | 0.8743 | 0.5836 | 0.5829 | 0.5994 | 0.7845 | 6.56% |
MSE + MAE + MS-SSIM | 0.8941 | 0.6177 | 0.5424 | 0.5846 | 0.7720 | 2.58% |
CSI | FAR | POD | |||||||
---|---|---|---|---|---|---|---|---|---|
dBZ Threshold | 5 | 20 | 40 | 5 | 20 | 40 | 5 | 20 | 40 |
TrajGRU [6] | 0.6729 | 0.2994 | 0.0436 | 0.1812 | 0.4815 | 0.7900 | 0.7646 | 0.3949 | 0.0593 |
MSE + SSIM | 0.7013 | 0.3059 | 0.0411 | 0.1726 | 0.4443 | 0.7539 | 0.8027 | 0.3991 | 0.0568 |
MAE + SSIM | 0.6996 | 0.3208 | 0.0524 | 0.1579 | 0.4490 | 0.7788 | 0.7879 | 0.4264 | 0.0734 |
MSE + MAE + SSIM | 0.7069 | 0.3192 | 0.0549 | 0.1683 | 0.4513 | 0.7797 | 0.8053 | 0.4296 | 0.0859 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, Q.-K.; Song, S.-k. Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks. Atmosphere 2019, 10, 244. https://doi.org/10.3390/atmos10050244
Tran Q-K, Song S-k. Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks. Atmosphere. 2019; 10(5):244. https://doi.org/10.3390/atmos10050244
Chicago/Turabian StyleTran, Quang-Khai, and Sa-kwang Song. 2019. "Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks" Atmosphere 10, no. 5: 244. https://doi.org/10.3390/atmos10050244
APA StyleTran, Q. -K., & Song, S. -k. (2019). Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks. Atmosphere, 10(5), 244. https://doi.org/10.3390/atmos10050244