Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition
Abstract
:1. Introduction
- The proposed model EEMD-ConvLSTM achieves great reliability for NAO index prediction.
- The effectiveness of different time series prediction models is compared and analyzed. Six methods are selected as the benchmark, in which not only traditional models, but also machine learning algorithms and other neural networks are included.
- The forecast performance of the deep neural network and numerical models is also discussed by a comparative experiment.
- The visualization method is used to show these comparison results, and a clear comparison of the prediction effect is given.
2. Proposed Method
2.1. Problem Formulation
2.2. Ensemble Empirical Mode Decomposition Component
2.3. Convolutional LSTM Component
2.4. Rolling Forecast
3. Experiments and Evaluations
3.1. Dataset and Preprocessing
3.2. Experiments’ Evaluation
3.3. Parameters Details
3.4. Experiments’ Design
4. Experiments Result and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Walker, G. World weather. Mon. Weather Rev. 1928, 56, 79–87. [Google Scholar] [CrossRef]
- Woollings, T.J.; Hoskins, B.J.; Blackburn, M.; Berrisford, P. A New Rossby Wave-breaking Interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, J.; Jin, F. An Empirical Seasonal Prediction Model of the East Asian Summer Monsoon Using ENSO and NAO. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef]
- Sillmann, J.; Crocimaspoli, M. Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys. Res. Lett. 2009, 36, 92–103. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Lee, S. The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett. 2010, 11, 161–168. [Google Scholar]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Scaife, A.A.; Arribas, A.; Blockley, E.; Brookshaw, A.; Clark, R.T.; Dunstone, N.; Eade, R.; Fereday, D.; Folland, C.K.; Gordon, M. Skilful Long Range Prediction of European and North American Winters. Geophys. Res. Lett. 2014, 41, 2514–2519. [Google Scholar] [CrossRef]
- Fereday, D.R.; Maidens, A.; Arribas, A.; Scaife, A.A.; Knight, J.R. Seasonal forecasts of northern hemisphere winter 2009/10. Environ. Res. Lett. 2012, 7, 34031–34037. [Google Scholar] [CrossRef]
- Lin, H.; Brunet, G. Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophys. Res. Lett. 2011, 37, 96–104. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.; Pavan, V.; Stephenson, D. The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Clim. Dyn. 2003, 21, 501–514. [Google Scholar] [CrossRef]
- Hansen, F.; Greatbatch, R.J.; Gollan, G.; Jung, T.; Weisheimer, A. Remote control of North Atlantic Oscillation predictability via the stratosphere. Q. J. R. Meteorol. Soc. 2017, 143, 706–719. [Google Scholar] [CrossRef]
- Baker, L.H.; Shaffrey, L.C.; Sutton, R.T.; Weisheimer, A.; Scaife, A.A. An Intercomparison of Skill and Overconfidence/Underconfidence of the Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts. Geophys. Res. Lett. 2018, 45, 7808–7817. [Google Scholar] [CrossRef]
- Li, C.; Yun, B.; Bo, Z. Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting. Water Resour. Manag. 2016, 30, 1–17. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Mcdermott, P.L.; Wikle, C.K. Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data. Entropy 2019, 21, 184. [Google Scholar] [CrossRef]
- Mcdermott, P.L.; Wikle, C.K. An Ensemble Quadratic Echo State Network for Nonlinear Spatio-Temporal Forecasting. Stat 2017, 6, 315–330. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.; Joh, M.; Song, S.K. DeepRain: ConvLSTM Network for Precipitation Prediction using Multichannel Radar Data. arXiv 2017, arXiv:1711.02316. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Dibike, Y.B.; Coulibaly, P. Temporal neural networks for downscaling climate variability and extremes. Neural Netw. 2006, 19, 135–144. [Google Scholar] [CrossRef]
- Dariouchy, A.; Aassif, E.; Lekouch, K.; Bouirden, L.; Maze, G. Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks. Measurement 2009, 42, 456–463. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Mao, T. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J. Hydrol. 2015, 529, 1211–1220. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Convers. Manag. 2018, 166, 120–131. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Luo, H.; Yue, C.; Cheng, S. Day-Ahead PM2.5 Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution. Int. J. Environ. Res. Public Health 2017, 14, 764. [Google Scholar] [CrossRef]
- Sun, W.; Liu, M. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers. Manag. 2016, 114, 197–208. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- PSD. NOAA Earth System Research Laboratory’s Physical Sciences Division (PSD). Available online: https://www.esrl.noaa.gov/psd/ (accessed on 11 March 2019).
- Facebook. An Open Source Deep Learning Platform that Provides a Seamless Path from Research Prototyping to Production Deployment. 2017. Available online: https://lornatang.github.io/PyTorch/ (accessed on 11 March 2019).
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Mach. Learn. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Bao, Y.; Xiong, T.; Hu, Z. Multi-Step-Ahead Time Series Prediction using Multiple-Output Support Vector Regression. Neurocomputing 2014, 129, 482–493. [Google Scholar] [CrossRef]
Data | Num | Min | Max | Mean |
---|---|---|---|---|
training | 23,741 | −3.254 | 2.52 | 0.0158 |
testing | 1338 | −2.322 | 2.751 | 0.2169 |
RMSE | MAE | EV | TIC | |
---|---|---|---|---|
0.02 | 0.3139 | 0.2498 | 0.8643 | 0.1869 |
0.03 | 0.2532 | 0.2007 | 0.9124 | 0.1482 |
0.04 | 0.2832 | 0.2240 | 0.8896 | 0.1696 |
0.08 | 0.3048 | 0.2426 | 0.8720 | 0.1864 |
0.09 | 0.3667 | 0.2982 | 0.8148 | 0.2345 |
0.20 | 0.7303 | 0.5847 | 0.2662 | 0.5727 |
RMSE | MAE | EV | TIC | VAR | |
---|---|---|---|---|---|
Second-ES | 0.2825 | 0.2225 | 0.8900 | 0.1533 | - |
Holt–Winters | 0.3350 | 0.2596 | 0.8454 | 0.1793 | - |
GRNN | 0.3248 | 0.2577 | 0.8638 | 0.2039 | - |
Xgboost | 0.2796 | 0.2193 | 0.8934 | 0.1652 | - |
LSTM | 0.3755 | 0.3039 | 0.8853 | 0.2107 | |
ConvLSTM | 0.2755 | 0.2170 | 0.8961 | 0.1620 | |
EEMD-ConvLSTM | 0.2532 | 0.2007 | 0.9124 | 0.1482 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Luo, X.; Mu, B.; Li, J.; Dai, G. Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition. Atmosphere 2019, 10, 252. https://doi.org/10.3390/atmos10050252
Yuan S, Luo X, Mu B, Li J, Dai G. Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition. Atmosphere. 2019; 10(5):252. https://doi.org/10.3390/atmos10050252
Chicago/Turabian StyleYuan, Shijin, Xiaodan Luo, Bin Mu, Jing Li, and Guokun Dai. 2019. "Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition" Atmosphere 10, no. 5: 252. https://doi.org/10.3390/atmos10050252
APA StyleYuan, S., Luo, X., Mu, B., Li, J., & Dai, G. (2019). Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition. Atmosphere, 10(5), 252. https://doi.org/10.3390/atmos10050252