Surface Heat Budget over the North Sea in Climate Change Simulations
Abstract
:1. Introduction
2. Model Description
3. Experimental Design
3.1. Downscaling Strategy
3.2. Choice of GCMs
3.3. Ensemble Statistics
4. Model Validation
4.1. SST in the ERA40 Hindcast
4.2. SST in the Historical Period of the Scenarios
4.3. Validation of Air–Sea Fluxes
5. Results
5.1. Climate Change Signal
5.2. Surface Heat Budget
6. Discussion
6.1. Covariation with the NAO Index
6.2. Increase in Lateral Heat Transports
6.3. Changes in the Structure of the Stratification
6.4. Strengthening of the Ekman Transport
6.5. Changes in Atmosphere–Ocean Interaction
7. Summary and Conclusions
- We presented the first ensemble with a coupled RCM that covers the full range of RCP scenarios for the North Sea.
- The RCA4-NEMO North Sea SSTs are within observational estimates. Datasets agree within 1 C and the bias is of the same order of magnitude.
- The ensemble mean SST has a smaller bias than any individual model run. This points to the need of ensemble modeling in the future.
- The North Sea warms up by 1 to 5 C in agreement with other studies.
- Global warming in the North Sea leads to a shift in the balance of the surface heat fluxes. The changes in the heat fluxes show the same pattern as the changes in atmosphere–ocean temperature difference.
- A plausible explanation is an increase in the efficiency how latent heat is exchanged. That can be explained with a relatively drier atmosphere in the future which is advected from the British Isles over the North Sea.
- Our study provides an example of how changing land–sea contrast affects regional circulation patterns and feedbacks that point to the importance of regional coupled atmosphere–ocean modeling.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, H.; Giorgetta, M.A.; Zängl, G.; Restelli, M.; Majewski, D.; Bonaventura, L.; Fröhlich, K.; Reinert, D.; Rípodas, P.; Kornblueh, L.; et al. The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—Part 1: Formulation and performance of the baseline version. Geosci. Model Dev. 2013, 6, 735–763. [Google Scholar] [CrossRef]
- Feser, F.; Rockel, B.; von Storch, H.; Winterfeldt, J.; Zahn, M. Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Meier, H.E.M.; Höglund, A.; Döscher, R.; Andersson, H.; Löptien, U.; Kjellström, E. Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 2011, 53, 193–227. [Google Scholar] [CrossRef]
- Rummukainen, M. State-of-the-art with regional climate models. WIREs Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Gustafsson, N.; Nyberg, L.; Omstedt, A. Coupling of a High-Resolution Atmospheric Model and an Ocean Model for the Baltic Sea. Mon. Weather Rev. 1998, 126, 2822–2846. [Google Scholar] [CrossRef]
- Hagedorn, R.; Lehmann, A.; Jacob, D. A coupled high resolution atmosphere–ocean model for the BALTEX region. Meteorol. Z. 2000, 9, 7–20. [Google Scholar] [CrossRef]
- Döscher, R.; Willén, U.; Jones, C.; Rutgersson, A.; Meier, H.E.M.; Hansson, U.; Graham, L.P. The development of regional coupled ocean–atmosphere model RCAO. Boreal Environ. Res. 2002, 7, 183–192. [Google Scholar]
- Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R. A coupled atmosphere/ice/ocean model for the North Sea and Baltic Sea. Clim. Dyn. 2003, 21, 131–151. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Döscher, R. Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere–ice–ocean model. Boreal Environ. Res. 2002, 7, 327–334. [Google Scholar]
- Lehmann, A.; Lorenz, P.; Jacob, D. Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Tian, T.; Boberg, F.; Christensen, O.B.; Christensen, J.H.; She, J.; Vihma, T. Simulations of the last two decades Baltic Sea climate using a high-resolution regional climate model: A comparison using prescribed and modelled SSTs. Tellus A 2013, 65, 19951. [Google Scholar] [CrossRef]
- Van Pham, T.; Brauch, J.; Dieterich, C.; Frueh, B.; Ahrens, B. New coupled atmosphere–ocean–ice system COSMO-CLM/NEMO: Assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia 2014, 56, 167–189. [Google Scholar] [CrossRef]
- Gröger, M.; Dieterich, C.; Meier, H.E.M.; Schimanke, S. Thermal air–sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus A 2015, 67, 26911. [Google Scholar] [CrossRef] [Green Version]
- Ho-Hagemann, H.T.M.; Gröger, M.; Rockel, B.; Zahn, M.; Geyer, B.; Meier, H.E.M. Effects of air–sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Jeworrek, J.; Wu, L.; Dieterich, C.; Rutgersson, A. Characteristics of convective snow bands along the Swedish east coast. Earth Syst. Dyn. 2017, 8, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Van Pham, T.; Brauch, J.; Früh, B.; Ahrens, B. Simulation of snowbands in the Baltic Sea area with the coupled atmosphere–ocean–ice model COSMO-CLM/NEMO. Meteorol. Z. 2017, 26, 71–82. [Google Scholar] [CrossRef]
- Sein, D.V.; Mikolajewicz, U.; Gröger, M.; Fast, I.; Cabos, W.; Pinto, J.G.; Hagemann, S.; Semmler, T.; Jacob, D. Regionally coupled atmosphere–ocean–sea ice–marine biogeochemistry model ROM. Part I: Description and validation. J. Adv. Model. Earth Syst. 2015, 7, 268–304. [Google Scholar] [CrossRef]
- Mathis, M.; Elizalde, A.; Mikolajewicz, U. Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf? Clim. Dyn. 2018, 50, 2637–2659. [Google Scholar] [CrossRef]
- Holt, J.; Butenschön, M.; Wakelin, S.L.; Artioli, Y.; Allen, J.I. Oceanic controls on the primary production of the northwest European continental shelf: Model experiments under recent past conditions and a potential future scenario. Biogeosciences 2012, 9, 97–117. [Google Scholar] [CrossRef]
- Mathis, M.; Mayer, B.; Pohlmann, T. An uncoupled dynamical downscaling for the North Sea: Method and evaluation. Ocean Model. 2013, 72, 153–166. [Google Scholar] [CrossRef]
- Holt, J.; Schrum, C.; Cannaby, H.; Daewel, U.; Allen, I.; Artioli, Y.; Bopp, L.; Butenschon, M.; Fach, B.A.; Harle, J.; et al. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Prog. Oceanogr. 2016, 140, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Meier, H.E.M.; Müller-Karulis, B.; Andersson, H.C.; Dieterich, C.; Eilola, K.; Gustafsson, B.G.; Höglund, A.; Hordoir, R.; Kuznetsov, I.; Neumann, T.; et al. Impact of Climate Change on Ecological Quality Indicators and Biogeochemical Fluxes in the Baltic Sea: A Multi-Model Ensemble Study. Ambio 2012, 41, 558–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eilola, K.; Almroth-Rosell, E.; Dieterich, C.; Fransner, F.; Höglund, A.; Meier, H.E.M. Modeling Nutrient Transports and Exchanges of Nutrients Between Shallow Regions and the Open Baltic Sea in Present and Future Climate. Ambio 2012, 41, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Meier, H.E.M.; Hordoir, R.; Andersson, H.C.; Dieterich, C.; Eilola, K.; Gustafsson, B.G.; Höglund, A.; Schimanke, S. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 2012, 39, 2421–2441. [Google Scholar] [CrossRef] [Green Version]
- Neumann, T.; Eilola, K.; Gustafsson, B.; Müller-Karulis, B.; Kuznetsov, I.; Meier, H.E.M.; Savchuk, O.P. Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a Changing Climate. Ambio 2012, 41, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Somot, S.; Sevault, F.; Déqué, M.; Crépon, M. 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob. Planet Chang. 2008, 63, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Dubois, C.; Somot, S.; Calmanti, S.; Carillo, A.; Déqué, M.; Dell’Aquilla, A.; Elizalde, A.; Gualdi, S.; Jacob, D.; L’Hévéder, B.; et al. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Clim. Dyn. 2012, 39, 1859–1884. [Google Scholar] [CrossRef]
- Su, J.; Sein, D.V.; Mathis, M.; Mayer, B.; O’Driscoll, K.; Chen, X.; Mikolajewicz, U.; Pohlmann, T. Assessment of a zoomed global model for the North Sea by comparison with a conventional nested regional model. Tellus A 2014, 66, 23927. [Google Scholar] [CrossRef]
- Dieterich, C.; Schimanke, S.; Wang, S.; Väli, G.; Liu, Y.; Hordoir, R.; Axell, L.; Höglund, A.; Meier, H.E.M. Evaluation of the SMHI Coupled Atmosphere–Ice–Ocean Model RCA4-NEMO; Report Oceanography 47; SMHI: Norrköping, Sweden, 2013. [Google Scholar]
- Wang, S.; Dieterich, C.; Döscher, R.; Höglund, A.; Hordoir, R.; Meier, H.E.M.; Samuelsson, P.; Schimanke, S. Development and evaluation of a new regional coupled atmosphere–ocean model in the North Sea and Baltic Sea. Tellus A 2015, 67, 24284. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Cambridge, UK, 2000. [Google Scholar]
- Bülow, K.; Dieterich, C.; Elizalde, A.; Gröger, M.; Heinrich, H.; Hüttl-Kabus, S.; Klein, B.; Mayer, B.; Meier, H.E.M.; Mikolajewicz, U.; et al. Comparison of Three Regional Coupled Ocean Atmosphere Models for The North Sea Under Today’s and Future Climate Conditions; KLIWAS Schriftenreihe 27/2014; KLIWAS: Koblenz, Germany, 2014. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, P.; Jones, C.G.; Willén, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 2011, 63, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Hordoir, R.; Dieterich, C.; Basu, C.; Dietze, H.; Meier, H.E.M. Freshwater outflow of the Baltic Sea and transport in the Norwegian current: A statistical correlation analysis based on a numerical experiment. Cont. Shelf Res. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Hordoir, R.; Axell, L.; Löptien, U.; Dietze, H.; Kuznetsov, I. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea. J. Geophys. Res.-Oceans 2015, 120, 6653–6668. [Google Scholar] [CrossRef] [Green Version]
- Madec, G. NEMO Ocean Engine, 3.3 ed.; IPSL: Paris, France, 2011. [Google Scholar]
- Vancoppenolle, M.; Fichefet, T.; Goosse, H.; Bouillon, S.; Madec, G.; Maqueda, M.A.M. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 2009, 27, 33–53. [Google Scholar] [CrossRef]
- Jones, C.; Willen, U.; Ullerstig, A.; Hansson, U. The Rossby Centre Regional Atmospheric Climate Model part 1: Model climatology and performance for the present climate over Europe. Ambio 2004, 33, 199–210. [Google Scholar] [CrossRef]
- Davies, H.C. A lateral boundary formulation for multi-level prediction models. Q. J. R. Meteorol. Soc. 1976, 102, 405–418. [Google Scholar] [CrossRef]
- Flather, R.A. A Storm-Surge Prediction Model for the Northern Bay of Bengal with Application to the Cyclone Disaster in April 1991. J. Phys. Oceanogr. 1994, 24, 172–190. [Google Scholar] [CrossRef]
- Donnelly, C.; Andersson, J.C.M.; Arheimer, B. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Donnelly, C.; Yang, W.; Dahné, J. River discharge to the Baltic Sea in a future climate. Clim. Chang. 2014, 122, 157–170. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Wilcke, R.A.I.; Bärring, L. Selecting regional climate scenarios for impact modelling studies. Environ. Model. Softw. 2016, 78, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Bersch, M.; Gouretski, V.; Sadikni, R. KLIWAS North Sea Climatology of Hydrographic Data (Version 1.0); Centre for Earth System Research and Sustainability (CEN), University of Hamburg: Hamburg, Germany, 2013. [Google Scholar] [CrossRef]
- Berx, B.; Hughes, S.L. Climatology of Surface and Near-bed Temperature and Salinity on the North-West European Continental Shelf for 1971-2000. Cont. Shelf Res. 2009, 29, 2286–2292. [Google Scholar] [CrossRef]
- Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Grassl, H.; Schulz, J. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS-3. Earth Syst. Sci. Data 2010, 2, 215–234. [Google Scholar] [CrossRef]
- Andersson, A.; Bakan, S.; Fennig, K.; Grassl, H.; Klepp, C.; Schulz, J. Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3—Monthly Mean; Electronic Publication; World Data Center for Climate: Hamburg, Germany, 2007. [Google Scholar] [CrossRef]
- Da Silva, A.; Young-Molling, C.; Levitus, S. Revised surface marine fluxes over the global oceans: the UWM/COADS data set. In WCRP Workshop on Air–Sea Flux Fields for Forcing Ocean Models and Validating GCMs; White, G., Ed.; Number 762 in WCRP No. 95; WMO: Reading, UK, 1996; pp. 13–18. [Google Scholar]
- Loewe, P. Surface temperatures of the North Sea in 1996. Dtsch. Hydrogr. Z. 1996, 48, 175–184. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Lenhart, H.J.; Pohlmann, T. The ICES-boxes approach in relation to results of a North Sea circulation model. Tellus A 1997, 49, 139–160. [Google Scholar] [CrossRef]
- Prandle, D.; Lane, A. The annual temperature cycle in shelf seas. Cont. Shelf Res. 1995, 15, 681–704. [Google Scholar] [CrossRef]
- Becker, G.A.; Pauly, M. Sea surface temperature changes in the North Sea and their causes. ICES J. Mar. Sci. 1996, 53, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Pohlmann, T. Predicting the thermocline in a circulation model of the North Sea - Part 1: model description, calibration and verification. Cont. Shelf Res. 1996, 16, 131–146. [Google Scholar] [CrossRef]
- Becker, G.A. Beiträge zur Hydrographie und Wärmebilanz der Nordsee. Dtsch. Hydrogr. Z. 1981, 34, 167–262. [Google Scholar] [CrossRef]
- Moll, A.; Radach, G. Advective contributions to the heat balance of the german bight (LV Elbe 1) and the central north sea (OWS Famita). Dtsch. Hydrogr. Z. 1998, 50, 9–31. [Google Scholar] [CrossRef]
- Kwadijk, J.; Arnell, N.W.; Mudersbach, C.; de Weerd, M.; Kroon, A.; Quante, M. Recent Change—River Flow. In North Sea Region Climate Change Assessment; Quante, M., Colijn, F., Eds.; Springer: Cham, Switzerland, 2016; Chapter 4; pp. 137–146. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Wakelin, S.; Huthnance, J. Down-welling circulation of the northwest European continental shelf: A driving mechanism for the continental shelf carbon pump. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- de Winter, R.C.; Sterl, A.; Ruessink, B.G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res.-Atmos. 2013, 118, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Hazeleger, W.; Wang, X.; Severijns, C.; Stefanescu, S.; Bintanja, R.; Sterl, A.; Wyser, K.; Semmler, T.; Yang, S.; Hurk, B.; et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 2012, 39, 2611–2629. [Google Scholar] [CrossRef]
- Gröger, M.; Maier-Reimer, E.; Mikolajewicz, U.; Moll, A.; Sein, D. NW European shelf under climate warming: Implications for open ocean—Shelf exchange, primary production, and carbon absorption. Biogeosciences 2013, 10, 3767–3792. [Google Scholar] [CrossRef]
- Kjellström, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus A 2011, 63, 24–40. [Google Scholar] [CrossRef]
- Bodin, S. A Predictive Numerical Model of the Atmospheric Boundary Layer Based on the Turbulent Energy Equation; Report Meteorology and Climatology 13; SMHI: Norrköping, Sweden, 1979. [Google Scholar]
- Hurrell, J. The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (Station-Based); National Center for Atmospheric Research Staff: Boulder, CO, USA, 2013; Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed on 11 February 2014).
- Gillett, N.P.; Stott, P.A. Attribution of anthropogenic influence on seasonal sea level pressure. Geophys. Res. Lett. 2009, 36, L23709. [Google Scholar] [CrossRef]
- Pinto, J.G.; Zacharias, S.; Fink, A.H.; Leckebusch, G.C.; Ulbrich, U. Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim. Dyn. 2009, 32, 711–737. [Google Scholar] [CrossRef]
- Bacer, S.; Christoudias, T.; Pozzer, A. Projection of North Atlantic Oscillation and its effect on tracer transport. Atmos. Chem. Phys. 2016, 16, 15581–15592. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Wakelin, S.; Lowe, J.; Tinker, J. The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog. Oceanogr. 2010, 86, 361–379. [Google Scholar] [CrossRef]
- Edinger, J.E.; Brady, D.K.; Geyer, J.C. Heat Exchange and Transport in the Environment; Technical Report 74-049-00-3; Electric Power Research Institute: Palo Alto, CA, USA, 1974. [Google Scholar]
Experiment | Historical | SRES A1B | RCP2.6 | RCP4.5 | RCP8.5 |
---|---|---|---|---|---|
ERA40 | 1961–2009 | ||||
ECHAM5 | 1961–2000 | 2001–2099 | |||
MPI-ESM-LR | 1961–2005 | 2006–2099 | 2006–2099 | 2006–2099 | |
EC-EARTH | 1961–2005 | 2006–2099 | 2006–2099 | 2006–2099 | |
GFDL-ESM2M | 1961–2005 | 2006–2099 | 2006–2099 | 2006–2099 | |
HadGEM2-ES | 1961–2005 | 2006–2099 | 2006–2099 | 2006–2099 | |
IPSL-CM5A-MR | 1961–2005 | 2006–2099 | 2006–2099 |
Period | Description | |
---|---|---|
P0 | 1970–1999 | recent past |
P1 | 2020–2049 | near future |
P2 | 2070–2099 | far future |
Q | Q | Q | Q | Q | Q | |
---|---|---|---|---|---|---|
ERA40 | 114 | −54 | −10 | −57 | −121 | −7 |
Ensemble mean | 118 | −59 | −11 | −58 | −128 | −10 |
MPI-ESM-LR | 117 | −57 | −9 | −58 | −124 | −7 |
EC-EARTH | 121 | −61 | −11 | −59 | −131 | −10 |
GFDL-ESM2M | 120 | −61 | −14 | −57 | −132 | −12 |
HadGEM2-ES | 118 | −59 | −10 | −63 | −132 | −14 |
IPSL-CM5A-MR | 116 | −56 | −10 | −54 | −120 | −4 |
ECHAM5 | 109 | −62 | −9 | −51 | −122 | −13 |
atmos only | 114 | −53 | −10 | −54 | −117 | −3 |
LVE1 | 113 | −62 | −15 | −51 | −128 | −15 |
OWSF | 105 | −60 | −12 | −49 | −121 | −16 |
Q | Q | Q | Q | Q | Q | |
---|---|---|---|---|---|---|
RCP2.6 P2 | 118 | −59 | −10 | −59 | −128 | −10 |
RCP2.6 P1 | 117 | −59 | −10 | −59 | −128 | −11 |
RCP2.6 P0 | 118 | −59 | −11 | −58 | −128 | −10 |
RCP2.6 P2−P0 | 0 | 0 | 1 | −1 | 0 | 0 |
RCP4.5 P2 | 115 | −55 | −9 | −60 | −124 | −9 |
RCP4.5 P1 | 117 | −57 | −9 | −59 | −125 | −8 |
RCP4.5 P0 | 118 | −59 | −11 | −58 | −128 | −10 |
RCP4.5 P2−P0 | −3 | 4 | 2 | −2 | 4 | 1 |
RCP8.5 P2 | 111 | −50 | −8 | −60 | −118 | −7 |
RCP8.5 P1 | 116 | −56 | −9 | −59 | −124 | −8 |
RCP8.5 P0 | 118 | −59 | −11 | −58 | −128 | −10 |
RCP8.5 P2−P0 | −7 | 9 | 3 | −2 | 10 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieterich, C.; Wang, S.; Schimanke, S.; Gröger, M.; Klein, B.; Hordoir, R.; Samuelsson, P.; Liu, Y.; Axell, L.; Höglund, A.; et al. Surface Heat Budget over the North Sea in Climate Change Simulations. Atmosphere 2019, 10, 272. https://doi.org/10.3390/atmos10050272
Dieterich C, Wang S, Schimanke S, Gröger M, Klein B, Hordoir R, Samuelsson P, Liu Y, Axell L, Höglund A, et al. Surface Heat Budget over the North Sea in Climate Change Simulations. Atmosphere. 2019; 10(5):272. https://doi.org/10.3390/atmos10050272
Chicago/Turabian StyleDieterich, Christian, Shiyu Wang, Semjon Schimanke, Matthias Gröger, Birgit Klein, Robinson Hordoir, Patrick Samuelsson, Ye Liu, Lars Axell, Anders Höglund, and et al. 2019. "Surface Heat Budget over the North Sea in Climate Change Simulations" Atmosphere 10, no. 5: 272. https://doi.org/10.3390/atmos10050272
APA StyleDieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B., Hordoir, R., Samuelsson, P., Liu, Y., Axell, L., Höglund, A., & Meier, H. E. M. (2019). Surface Heat Budget over the North Sea in Climate Change Simulations. Atmosphere, 10(5), 272. https://doi.org/10.3390/atmos10050272