Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Fuels and Stoves
2.2. Fire-Ignition Techniques for Electron Microscope Samples
2.3. Separation of Ignition Phases
2.4. Experimental Setup
2.5. Electron Microscopy and Sample Preparation
2.6. Quality Assurance
3. Results and Discussion
3.1. Identification of Spherical Organic Particles
3.2. Ageing of Condensed Matter Particles
3.2.1. During the Pyrolization Phases
3.2.2. During the Pyrolysis Phase in a High Ventilation Brazier
3.3. Identification of Diffusion Accretion Chains
3.4. Morphology of Spherical Organic Particles
3.5. Mixing States in Spherical Organic Particles
3.6. Chemical Composition of the Spherical Organic Particles
3.7. Electronically Dark and Bright Spherical Particles
3.8. Implications for Health Risk and Environmental Impacts
3.9. Limitations of Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buseck, P.R.; Pósfai, M. Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. USA 1999, 96, 3372–3379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtscher, H. Sampling, measurement, and characterization of combustion aerosols for chemistry, morphology, and size distribution. In Aerosols from Biomass Combustion; Nussbaumer, T., Ed.; Bioenergy Task 32: Biomass Combustion and Co-firing; International Energy Agency (IEA): Zurich, Switzerland, 2001. [Google Scholar]
- Li, H.; Xu, Q.; Zhang, D. Effects of mineral transformations on the reduction of PM2.5 during combustion of coal blends. Adv. Mater. Res. 2012, 356–360, 1306–1314. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Querol, X.; Da Boit, K.M.; de Vallejuelo, S.F.O.; Madariaga, J.M. Brazilian coal mining residues and sulphide oxidation by Fenton’s reaction: An accelerated weathering procedure to evaluate possible environmental impact. J. Hazard. Mater. 2011, 186, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.O.; Moreno, T.; Querol, X. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 2009, 407, 4972–4974. [Google Scholar] [CrossRef] [PubMed]
- Gwaze, P. Physical and Chemical Properties of Aerosol Particles in the Troposphere: An Approach from Microscopy Methods. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2007. [Google Scholar]
- Fletcher, R.A.; Small, J.A.; Scott, J.H.J. Analysis of individual collected particles. In Aerosol Measurement, Principles, Techniques, and Applications; Baron, P.A., Willeke, W., Eds.; Wiley-Interscience: New York, NY, USA, 2001; pp. 295–363. [Google Scholar]
- Silva, L.F.O.; Jasper, A.; Andrade, M.L.; Sampaio, C.H.; Dai, S.; Li, X.; Li, T.; Chen, W.; Wang, X.; Liu, H.; et al. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 2012, 419, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Mhlaba, J.S.; Kearsley, E.P.; Kruger, R.A. Physical, chemical and mineralogical characterisation of hydraulically disposed fine ash from SASOL Synfuels. Fuel 2011, 90, 2491–2500. [Google Scholar] [CrossRef]
- Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption. Energy Fuels 2007, 21, 2112–2120. [Google Scholar] [CrossRef]
- Wentzel, M.; Annegarn, H.; Helas, G.; Weinbruch, S.; Balogh, A.G.; Sithole, J. Giant dendritic carbonaceous particles in Soweto aerosols. S. Afr. J. Sci. 1999, 95, 141–146. [Google Scholar]
- Arora, P.; Jain, S. Morphological characteristics of particles emitted from combustion of different fuels in improved and traditional cookstoves. J. Aerosol Sci. 2015, 82, 13–23. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- McDonald, R.; Biswas, P. A methodology to establish the morphology of ambient aerosols. J. Air Waste Manag. Assoc. 2004, 54, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.K.; Beres, N.D.; Moosmüller, H.; China, S.; Mazzoleni, C.; Dubey, M.K.; Liu, L.; Mishchenko, M.I. Soot superaggregates from flaming wildfires and their direct radiative forcing. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- China, S.; Mazzoleni, C.; Gorkowski, K.; Aiken, A.C.; Dubey, M.K. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat. Commun. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.K.; Moosmüller, H.; Garro, M.A.; Arnott, W.P.; Walker, J.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Makonese, T.; Masekameni, D.M.; Annegarn, H.J.; Forbes, P.B. Influence of fire-ignition methods and stove ventilation rates on gaseous and particle emissions from residential coal braziers. J. Energy S. Afr. 2015, 26, 16–28. [Google Scholar] [CrossRef]
- Makonese, T.; Masekameni, D.M.; Annegarn, H.J.; Forbes, P.B. Emission factors of domestic coal-burning braziers. S. Afr. J. Sci. 2017, 113, 1–11. [Google Scholar] [CrossRef]
- Bond, T.C.; Covert, D.C.; Kramlich, J.C.; Larson, T.V.; Charlson, R.J. Primary particle emissions from residential coal burning: Optical properties and size distributions. J. Geophys. Res. 2002, 107, 8347. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Romig, A.D., Jr.; Lyman, C.E.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Material Scientists, and Geologists; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM-EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Pósfai, M.; Simonics, R.; Li, J.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa, 1, Compositions and size distributions of carbonaceous particles. J. Geophys. Res. Atmos. 2003, 108, 8483. [Google Scholar] [CrossRef]
- Shi, Z.; Shao, L.; Jones, T.P.; Whittaker, A.G.; Lu, S.; Berube, K.A.; He, T.; Richards, R.J. Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmos. Environ. 2003, 37, 4097–4108. [Google Scholar] [CrossRef]
- Hand, J.L.; Malm, W.C.; Laskin, A.; Day, D.; Lee, T.B.; Wang, C.; Carrico, C.; Carrillo, J.; Cowin, J.P.; Collett, J.; et al. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Pósfai, M.; Gelencsér, A.; Simonics, R.; Arató, K.; Li, J.; Hobbs, P.V.; Buseck, P.R. Atmospheric tar balls: Particles from biomass and biofuel burning. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Zhang, M.; Li, W.; Chen, J.; Wang, L.; Quan, X.; Wang, W. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. Atmos. Chem. Phys. 2012, 12, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Thajudeen, T.; Jeon, S.; Hogan, C.J. The mobilities of flame synthesized aggregates/agglomerates in the transition regime. J. Aerosol Sci. 2015, 80, 45–57. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Kadau, D.; Herrmann, H.J.; Pratsinis, S.E. Aggregate morphology evolution by sintering: Number and diameter of primary particles. J. Aerosol Sci. 2012, 46, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggersdorfer, M.L.; Pratsinis, S.E. Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder. Technol. 2014, 25, 71–90. [Google Scholar] [CrossRef]
- Martins, J.V.; Hobbs, P.V.; Weiss, R.E.; Artaxo, P. Sphericity and morphology of smoke particles from biomass burning in Brazil. J. Geophys. Res. 1998, 103, 32051–32057. [Google Scholar] [CrossRef]
- Wu, H.; Pedersen, A.G.; Glarborg, P.; Frandsen, F.J.; Dam-Johansen, K.; Sander, B. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station. Proc. Combust. Inst. 2011, 33, 2845–2852. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Atmospheric tar balls from biomass burning in Mexico. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Tóth, A.; Hoffer, A.; Nyir˝o-Kósa, I.; Pósfai, M.; Gelencsér, A. Atmospheric tar balls: Aged primary droplets from biomass burning? Atmos. Chem. Phys. 2014, 14, 6669–6675. [Google Scholar] [CrossRef]
- Tivanski, A.V.; Hopkins, R.J.; Tyliszczak, T.; Gilles, M.K. Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy. J. Phys. Chem. A 2007, 111, 5448–5458. [Google Scholar] [CrossRef]
- Ivey, D.G. Microscopy: Science, Technology, Applications and Education; Mendez-Vilas, A., Diaz, J., Eds.; Formatex Research Center: Badajoz, Spain, 2010. [Google Scholar]
- Andrea, M.O.; Galencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.T.L.; Crozier, P.A.; Anderson, J.R. Brown carbon spheres in East Asian outflow and their optical properties. Science 2008, 321, 833–835. [Google Scholar] [CrossRef]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef]
- Hoffer, A.; Gelencsér, A.; Guyon, P.; Kiss, G.; Schmid, O.; Frank, G.P.; Artaxo, P.; Andreae, M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 2006, 6, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geophys. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [Google Scholar] [CrossRef]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef]
- Shrestha, G.; Traina, S.; Swanston, C. Black carbon’s properties and role in the environment: A comprehensive review. Sustainability 2010, 2, 294–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Schauer, J.J.; Zhang, Y.; Zeng, L.; Wei, Y.; Liu, Y.; Shao, M. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 2008, 42, 5068–5073. [Google Scholar] [CrossRef]
- Kocbach, A.; Li, Y.; Yttri, K.E.; Cassee, F.R.; Schwarze, P.E.; Namork, E. Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke. Part. Fibre Toxicol. 2006, 3, 1. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makonese, T.; Meyer, J.; von Solms, S. Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion. Atmosphere 2019, 10, 441. https://doi.org/10.3390/atmos10080441
Makonese T, Meyer J, von Solms S. Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion. Atmosphere. 2019; 10(8):441. https://doi.org/10.3390/atmos10080441
Chicago/Turabian StyleMakonese, Tafadzwa, Johan Meyer, and Sune von Solms. 2019. "Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion" Atmosphere 10, no. 8: 441. https://doi.org/10.3390/atmos10080441