Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore
Abstract
:1. Introduction
2. Mexico City Metropolitan Area
2.1. Basic Information about the Mexico City Metropolitan Area
2.1.1. Governance
2.1.2. Population and Urban Development of the MCMA
2.1.3. Topography and Meteorology of the MCMA
2.2. Infrastructure and Air Quality Management Tools
2.3. Air Quality Trends
2.4. Emissions Inventory
2.5. Air Quality Management Programs in the MCMA
- (1)
- Vehicle technology and fuel improvement and substitution:
- Development and enforcement of the Program for Atmospheric Environmental Contingencies, which includes restrictions on vehicle circulation and reductions in industrial activities during high pollution days (starting in 1986 and updated subsequently).
- Introduction of the obligatory vehicle verification program (Programa de Verificación Vehicular Obligatorio, or PVVO) in 1988; subsequent enhancement of the program through a centralized system and advanced measurement technology.
- Introduction of oxygenated gasoline in 1989.
- Implementation of mandatory “No Driving Day” (Hoy No Circula, HNC) Program in 1989 and subsequent revisions.
- Introduction of unleaded gasoline in 1990 and complete phase out of leaded gasoline in 1997.
- Introduction of two-way catalytic converters in new gasoline vehicles in 1991, and mandatory use of three-way catalytic converters in 1993 for new gasoline vehicles.
- Introduction of alternative fuels, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for vehicles starting in 1992.
- Reduction of Reid Vapor Pressure and limits on olefins, aromatics, and benzene content in gasoline in 1996.
- Gradual reduction of sulfur in diesel starting in 1998.
- Introduction a diesel vehicles self-regulation program.
- Introduction and enhancement of Comprehensive Pollutant Emission Reduction Program (PIREC) in 1999.
- Introduction of a school transportation program in 2009.
- Introduction of roadside monitoring in 2016.
- (2)
- Emissions reduction actions for industrial and commercial sectors:
- Substitution of heavy fuel oil for natural gas in power plants and major industrial facilities starting in 1986.
- Closing down of a large refinery located within the city in 1990.
- Gradual relocation of major industries to areas outside of the MCMA starting in 1990.
- Installation of emission controls in fuel storage tanks and vapor recovery in the gasoline distribution system starting in 1996.
- Requirement of environmental permits (“licencia ambiental”) for new stationary sources and annual operations reporting.
- Establishment of Inspection and Environmental Audit Programs.
- Promotion of cleaner technologies by providing fiscal incentives and tax exemptions.
- (3)
- Actions on transport planning:
- Expansion of the Metro, light train, and trolley buses.
- Introduction a program for replacement of old taxis.
- Establishment of model age limits for taxis and microbuses.
- Introduction of new buses with cleaner technology.
- Scrapping of old buses, taxis, and freight transport.
- Introduction of bus rapid transit system (BRT, locally called Metrobus) in 2005.
- Promotion of non-motorized transportation (cycling and walking).
- (4)
- Actions on ecological restoration:
- Programs for rural and urban reforestation.
- Programs for restoration of eroded areas.
- Programs for controlling human settlements in rural areas.
- Programs for fire prevention.
- (5)
- Environmental education and research programs:
- Integration of environmental issues into regular education curricula.
- Establishment of an epidemiological surveillance system.
- Promotion of air quality research activities and collaboration with national and international research communities.
2.6. Assessment of Air Quality Programs in the MCMA
2.6.1. Vehicle Technology and Fuel Quality
2.6.2. Obligatory Vehicle Verification Program
2.6.3. No Driving Day (Hoy No Circula)
2.6.4. Alternative Fuels: Compressed Natural Gas and Liquefied Petroleum Gas
2.6.5. Diesel Vehicles Self-Regulation Program
2.6.6. Program for Atmospheric Environmental Contingencies
2.6.7. Reduction of Emissions in Industries and Services
2.6.8. Improvement of the Public Transportation System
2.6.9. Integration of Metropolitan Policies
2.6.10. Climate Mitigation Plans
2.6.11. Health Impacts of Air Pollution
2.7. Scientific Research in the MCMA
2.7.1. Meteorology
2.7.2. Emissions of Gaseous and Particulate Pollutants
2.7.3. Volatile Organic Compounds (VOCs)
2.7.4. Urban and Regional Photochemistry
2.7.5. Ambient Particulate Matter
2.7.6. Aerosol Radiative Properties
2.7.7. Health Benefits of Air Quality Improvement
3. Singapore
3.1. Basic Information of Singapore
3.1.1. Governance
3.1.2. Population and Urban Development
3.1.3. Topography and Meteorology
3.2. Infrastructure and Air Quality Management Tools:
3.2.1. Air Quality Monitoring
3.2.2. Emissions Inventory
3.2.3. Air Quality Modeling
3.3. Air Quality and Emissions Trends
3.3.1. Air Quality Trends
3.3.2. Emissions Trends
3.4. Air Quality Control Management in Singapore
3.4.1. Air Pollution from Industries
3.4.2. Air pollution from Vehicles
3.4.3. Air Pollution from Shipping
3.4.4. Air Pollution from Fireworks
3.4.5. Recent Air Quality Management Programs
- Impose SO2 caps on key industrial emitters, and simultaneously reduce the emission of other pollutants including PM2.5.
- Introduce stricter emission standards.
- Administer an incentive scheme to encourage adoption of highly efficient pollution control equipment.
- Work with major emitters (e.g., power stations) to reduce SO2 emissions.
- Conduct real-time emissions monitoring of major emitters.
- Mandate the supply of near sulfur-free diesel and gasoline with a sulfur content of 10 ppm to pave the way for Euro VI emission standards for diesel and gasoline vehicles and further reduce SO2 emissions from vehicular traffic.
- Tighten emission standards for new vehicles and motorcycles.
- Enforce fuel quality regulations.
- Encourage the turnover of old diesel commercial vehicles through the early turnover scheme.
- Conduct enforcement on smoky and idling vehicles.
- Encourage the purchase of new cleaner vehicles through the vehicle emission scheme.
3.4.6. Climate Change Mitigation Plans
- Industry will adopt cleaner fuels and will work to reduce the emission of non-CO2 GHG.
- More efficient power generation technologies, such as co- and tri-generation will be adopted.
- The share of non-fossil fuels to produce electricity is expected to increase, mainly through the deployment of solar photovoltaic systems. By 2020, solar power should cover 5% of peak electricity demand.
- Public transport will become the preferred mode of transportation, while active mobility, such as walking and cycling, will be promoted for shorter commutes and complement public transport.
- Pilot programs to evaluate the introduction of electric vehicles under a sharing system will be tested.
- The efficiency in domestic logistics will be improved by developing an integrated delivery system that reduces the number of trucks on the roads by 25%.
- Registration rebates and surcharges will be imposed to new cars according to their carbon emission rate per kilometer.
- The energy efficiency in buildings and households will be progressively raised with the aim of reducing electricity consumption.
- New technologies such as electrochemical desalting will be introduced for halving the energy used in seawater desalination.
- Programs to enhance recycling and reduce incineration will be implemented to reach an overall recycling rate of 70%, from a current rate of 60% (22% domestic and 74% non-domestic).
- New waste-to-energy processes in incineration plants will be developed to optimize energy recovery.
3.5. Scientific Research in Singapore
Impacts of Air Pollution on Public Health
4. Challenges and Lessons Learned
4.1. Air Quality Standards
4.2. Air Quality Monitoring
4.3. Health-Based Indicators
4.4. Emissions Inventory
4.5. Air Quality Modeling and Forecasting
4.6. Regional Coordination
4.7. Air Pollution Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. The World’s Cities in 2018: Data Booklet; Statistical Papers—United Nations (Ser. A), Population and Vital Statistics Report; UN: New York, NY, USA, 2018; ISBN 978-92-1-047610-2. [Google Scholar]
- WHO (World Health Organization). 9 out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action. Available online: https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 9 July 2019).
- WHO (World Health Organization). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016; p. 121. Available online: http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua=1 (accessed on 17 April 2017).
- HEI (Health Effects Institute). State of Global Air 2019. Available online: http://stateofglobalair.org/ (accessed on 9 April 2019).
- World Bank GDP per Capita (Current US$). Data—World Bank Open Data. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (accessed on 9 July 2019).
- United Nations. 2018 Revision of World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 9 July 2019).
- CDMX (Ciudad de México). Constitución Política de la Ciudad de México. Gaceta Oficial de la Ciudad de México, 1. 5 February 2017. Available online: https://data.consejeria.cdmx.gob.mx/index.php/gaceta (accessed on 17 August 2019).
- DOF (Diario Oficial de la Federación). Convenio de coordinación por el que se crea la Comisión Ambiental Metropolitana 1996. Available online: http://www.dof.gob.mx/ (accessed on 16 April 2019).
- DOF (Diario Oficial de la Federación). Convenio de coordinación por el que se crea la Comisión Ambiental de la Megalópolis, que celebran la Secretaría de Medio Ambiente y Recursos Naturales, el Gobierno del Distrito Federal y los estados de Hidalgo, México, Morelos, Puebla y Tlaxcala 2013. Available online: http://www.dof.gob.mx/ (accessed on 16 April 2019).
- Lezama, J.; Favela, R.; Galindo, L.; Ibarraran, M.; Sanchez, S.; Molina, L.T. Forces driving pollutant emissions in the MCMA. In Air Quality in the Mexico Megacity: An Integrated Assessment; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 61–104. [Google Scholar]
- SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). Available online: https://www.sedema.cdmx.gob.mx (accessed on 10 July 2019).
- Whiteman, C.D.; Zhong, S.; Bian, X.; Fast, J.D.; Doran, J.C. Boundary layer evolution and regional-scale diurnal circulations over the Mexican plateau. J. Geophys. Res. 2000, 105, 10081–10102. [Google Scholar] [CrossRef]
- De Foy, B.; Varela, J.R.; Molina, L.T.; Molina, M.J. Rapid ventilation of the Mexico City basin and regional fate of the urban plume. Atmos. Chem. Phys. 2006, 6, 2321–2335. [Google Scholar] [CrossRef] [Green Version]
- Molina, L.T.; Molina, M.J. Air Quality in the Mexico Megacity: An Integrated Assessment. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; ISBN 978-1-4020-0507-7. [Google Scholar]
- DOF (Diario Oficial de la Federación). Criterio para evaluar la calidad del aire ambiente con respecto al bióxido de nitrógeno (NO2). Valor normado para la concentración de bióxido de nitrógeno (NO2) en el aire ambiente como medida de protección a la salud de la población. Norma Oficial Mexicana NOM-023-SSA1-1993. 1994. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-023-SSA1-1993.pdf (accessed on 2 May 2019).
- DOF (Diario Oficial de la Federación). Criterio para evaluar la calidad del aire ambiente con respecto al monóxido de carbono (CO). Valor permisible para la concentración de monóxido de carbono (CO) en el aire ambiente como medida de protección a la salud de la población. Norma Oficial Mexicana NOM-021-SSA1-1993. 1994. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-021-SSA1-1993.pdf (accessed on 2 May 2019).
- DOF (Diario Oficial de la Federación). Criterio para evaluar la calidad del aire ambiente, con respecto al plomo (Pb). Valor normado para la concentración de plomo (Pb) en el aire ambiente, como medida de protección a la salud de la población. Norma Oficial Mexicana NOM-026-SSA1-1993. 1994. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-026-SSA1-1993.pdf (accessed on 2 May 2019).
- DOF (Diario Oficial de la Federación). Criterio para evaluar la calidad del aire ambiente, con respecto al dióxido de azufre (SO2). Valor normado para la concentración de dióxido de azufre (SO2) en el aire ambiente, como medida de protección a la salud de la población. Norma Oficial Mexicana NOM-022-SSA1-2010. 2010. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-022-SSA1-2010.pdf (accessed on 2 May 2019).
- DOF (Diario Oficial de la Federación). Valor límite permisible para la concentración de ozono (O3) en el aire ambiente y criterios para su evaluación. Norma Oficial Mexicana NOM-020-SSA1-2014. 2014. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-020-SSA1-2014.pdf (accessed on 2 May 2019).
- DOF (Diario Oficial de la Federación). Valores límites permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. Norma Oficial Mexicana NOM-025-SSA1-2014. 2014. Available online: http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-025-SSA1-2014.pdf (accessed on 2 May 2019).
- WHO (World Health Organization). Air Quality Guidelines, Global Update 2005; World Health Organization: Geneva, Switzerland, 2006; p. 22. Available online: https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/ (accessed on 20 April 2019).
- SIMAT (Sistema de Monitoreo Atmosférico). Available online: http://www.aire.cdmx.gob.mx/ (accessed on 10 July 2019).
- Bravo, A.H. Variation of different pollutants in the atmosphere of Mexico City. J. Air Pollut. Control Assoc. 1960, 10, 447–449. [Google Scholar] [CrossRef]
- Velasco, E.; Retama, A. Ozone’s threat hits back Mexico City. Sustain. Cities Soc. 2017, 31, 260–263. [Google Scholar] [CrossRef]
- Inventario de Emisiones de la CDMX, 2016; SEDEMA (Secretaría del Medio Ambiente del Gobierno de la Ciudad de México): Ciudad de México, Mexico, 2018; Available online: http://www.aire.cdmx.gob.mx/default.php?opc=Z6BhnmI=&dc=Zg== (accessed on 7 July 2019).
- US-EPA (US Environmental Protection Agency). Available online: https://www.epa.gov/moves (accessed on 10 July 2019).
- DOF (Diario Oficial de la Federación). Ley Federal para Prevenir y Controlar la Contaminación Ambiental 1971. Available online: http://saludpublica.mx/index.php/spm/article/view/2188/2078 (accessed on 8 July 2019).
- CAA (Clean Air Act). Clean Air Act Extension of 1970. 1970. Available online: https://www.govinfo.gov/content/pkg/STATUTE-84/pdf/STATUTE-84-Pg1676.pdf (accessed on 16 April 2019).
- UNEP and WHO (United Nations Environment Program and World Health Organization). Urban Air Pollution in Megacities of the World: Earthwatch: Global Environment Monitoring System; World Health Organization, United Nations Environment Programme, Eds.; Published on behalf of World Health Organization and United Nations Environment Programme by Blackwell Reference: Oxford, UK, 1992; ISBN 978-0-631-18404-1. [Google Scholar]
- DOF (Diario Oficial de la Federación). Ley General del Equilibrio Ecológico y la Protección al Ambiente 1988. Available online: http://www.diputados.gob.mx/LeyesBiblio/pdf/148_050618.pdf (accessed on 16 April 2019).
- Haagen-Smit, A.J. Chemistry and Physiology of Los Angeles Smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- CARB (California Air Resources Board). Available online: https://ww2.arb.ca.gov/ (accessed on 10 July 2019).
- DDF (Departamento del Distrito Federal). Programa Integral Contra la Contaminación Atmosférica: Un Compromiso Común (PICCA); Departamento del Distrito Federal: Mexico City, Mexico, 1990; pp. 1–77. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/gestion-ambiental-aire-memoria-documental-2001-2006/descargas/programa_integral_contra_la_contaminacion_atmosferica.pdf (accessed on 8 July 2019).
- DDF (Departamento del Distrito Federal). Programa para Mejorar la Calidad del Aire en el Valle de México, 1995–2000 (PROAIRE); Mexico City, Gobierno del Estado de México, Secretaría de Medio Ambiente, Recursos Naturales y Pesca, Secretaría de Salud: CDMX. 1996. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/gestion-ambiental-aire-memoria-documental-2001-2006/descargas/proaire_2002-2010.pdf (accessed on 8 July 2019).
- CAM (Comisión Ambiental Metropolitana). Programa para Mejorar la Calidad del Aire de la Zona Metropolitana del Valle de México 2002–2010; DF, GEMEX, SEMARNAT, SS: CDMX. 2002. Available online: http://www.aire.cdmx.gob.mx/ (accessed on 27 June 2019).
- CAM (Comisión Ambiental Metropolitana). Programa para mejorar la calidad del aire de la Zona Metropolitana del Valle de México 2011–2020. CDMX. 2011. Available online: http://www.aire.cdmx.gob.mx/ (accessed on 27 June 2019).
- SEDEMA (Secretaría del Medio Ambiente del Gobierno de la Ciudad de México). Taller para la Evaluación del PROARIE 2011–2020, Identificación de Estrategias para Mejorar la Calidad del Aire de la CDMX. Ciudad de México. 2018. Available online: http://www.aire.cdmx.gob.mx/ (accessed on 28 June 2019).
- SCAQMD (South Coast Air Quality Management District). Available online: http://www.aqmd.gov (accessed on 10 July 2019).
- DSS (Department of Statistics Singapore). Available online: https://www.singstat.gov.sg/ (accessed on 10 July 2019).
- DOF (Diario Oficial de la Federación) Especificaciones de Calidad de Los petrolíferos. Norma Oficial Mexicana NOM-016-CRE-2016. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5450011&fecha=29/08/2016 (accessed on 12 July 2019).
- Gakenheimer, R.; Molina, L.T.; Sussman, J.; Zegras, C.; Howitt, A.; Makler, J.; Lacy, R.; Slott, R.; Villegas, A.; Molina, M.J.; et al. The MCMA transportation system: Mobility and air pollution. In Air Quality in the Mexico Megacity: An Integrated Assessment. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; ISBN 978-1-4020-0507-7. [Google Scholar]
- CDMX (Ciudad de México) Aviso por el que se da a Conocer el Programa de Verificación Vehicular Obligatoria para el Segundo Semestre del año 2019. Available online: https://www.sedema.cdmx.gob.mx/storage/app/media/comunicacion-social/PVVO%202%20SEM%2019.pdf (accessed on 7 July 2019).
- CAMe (Comisión Ambiental de la Megalópolis). Medidas Inmediatas para Mejorar la Calidad del Aire en la Zona Metropolitana del Valle de México. CDMX. 2019. Available online: http://dsiappsdev.semarnat.gob.mx/datos/portal/publicaciones/2019/Medidas_prioritarias_ZMVM.pdf (accessed on 7 July 2019).
- Blake, D.R.; Rowland, F.S. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science 1995, 269, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Lamb, B.; Westberg, H.; Allwine, E.; Sosa, G.; Arriaga-Colina, J.L.; Jobson, B.T.; Alexander, M.L.; Prazeller, P.; Knighton, W.B.; et al. Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns. Atmos. Chem. Phys. 2007, 7, 329–353. [Google Scholar] [Green Version]
- Jaimes-Palomera, M.; Retama, A.; Elias-Castro, G.; Neria-Hernández, A.; Rivera-Hernández, O.; Velasco, E. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign. Atmos. Environ. 2016, 132, 258–275. [Google Scholar] [CrossRef] [Green Version]
- Diagnóstico de Equipos a Gas L.P. y Actualización de Factores de Emisión de Fugas y Combustión de Gas L.P; en Viviendas de la ZMVM. Secretaría del Medio Ambiente; SEDEMA (Secretaría del Medio Ambiente del Gobierno de la Ciudad de México): Ciudad de México, Mexico, 2016.
- CDMX (Ciudad de México). Aviso por el que se da a Conocer el Programa para Prevenir y Responder a Contingencias Ambientales Atmosféricas en la Ciudad de México 2019. Available online: http://www.aire.cdmx.gob.mx/descargas/ultima-hora/calidad-aire/pcaa/Gaceta_Oficial_CDMX.pdf (accessed on 16 June 2019).
- SEDEMA (Secretaría del Medio Ambiente del Gobierno de la Ciudad de México). Calidad del Aire en la Ciudad de México, Informe 2016. Dirección General de Gestión de la Calidad del Aire, Dirección de Monitoreo Atmosférico. Ciudad de México. November 2017, pp. 152–164. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/informe-2016-calidad-del-aire-en-la-ciudad-de-mexico/ (accessed on 7 July 2019).
- SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). Pronóstico de Calidad del Aire y Meteorológico para la CDMX. Available online: http://www.aire.cdmx.gob.mx/pronostico-aire/ (accessed on 10 July 2019).
- De Foy, B.; Krotkov, N.A.; Bei, N.; Herndon, S.C.; Huey, L.G.; Martínez, A.-P.; Ruiz-Suárez, L.G.; Wood, E.C.; Zavala, M.; Molina, L.T. Hit from both sides: Tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign. Atmos. Chem. Phys. 2009, 9, 9599–9617. [Google Scholar] [CrossRef]
- Salcedo, D.; Alvarez-Ospina, H.; Peralta, O.; Castro, T. PM1 Chemical Characterization during the ACU15 Campaign, South of Mexico City. Atmosphere 2018, 9, 232. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística Geografía). Encuesta Origen-Destino en Hogares de la Zona Metropolitana del Valle de México (EOD 2017). Available online: http://www.beta.inegi.org.mx/proyectos/enchogares/especiales/eod/2017/ (accessed on 8 July 2019).
- El Poder del Consumidor Cae Velocidad en Principales Rutas del Valle de México. Available online: https://elpoderdelconsumidor.org/2012/11/cae-velocidad-rutas-valle-de-mexico/ (accessed on 4 July 2019).
- Barth, M.; Boriboonsomsin, K. Access. 2009, pp. 2–10. Available online: http://www.accessmagazine.org/fall-2009/traffic-congestion-greenhouse-gases/ (accessed on 8 July 2019).
- Velasco, E.; Retama, A.; Segovia, E.; Ramos, R. Particle exposure and inhaled dose while commuting in Mexico City by public transport. Submitt. Atmos. Environ. 2019. [Google Scholar]
- Molina, L.T.; de Foy, B.; Vazquez-Martinez, O.; Paramo-Figueroa, V.H. Air quality, weather and climate in Mexico City. WMO Bull. 2009, 58, 48–53. [Google Scholar]
- SPH-Harvard (School of Public Health Harvard). Análisis Histórico de Los Beneficios para la Salud Asociados a Una Mejor Calidad del Aire en la Ciudad de México (CDMX) Entre 1990 y 2015. Secretaría del Medio Ambiente del Gobierno del Distrito Federal: CDMX, 2016. Available online: http://www.data.sedema.cdmx.gob.mx/beneficios-en-salud-por-la-mejora-de-la-calidad-del-aire/descargas/analisis-espanol.pdf (accessed on 7 July 2019).
- Evans, J.; Hammitt, J.; Rojas-Bracho, L.; Dockery, D. Historical Analysis of Air Quality-Related Health Benefits in the Population in Mexico City from 1990 to 2012. Phases IV and IIIa. Phase IV. Public Policy and Economic Valuation of the Health Benefits of Air Quality Improvements; Secretaría del Medio Ambiente: Mexico City, Mexico, 2017; ACCSG/016A/2017. [Google Scholar]
- Streit, G.E.; Guzmán, F. Mexico City Air quality: Progress of an international collaborative project to define air quality management options. Atmos. Environ. 1996, 30, 723–733. [Google Scholar] [CrossRef]
- Doran, J.C.; Abbott, S.; Archuleta, J.; Bian, X.; Chow, J.; Coulter, R.L.; de Wekker, S.F.J.; Edgerton, S.; Elliott, S.; Fernandez, A.; et al. The IMADA-AVER Boundary Layer Experiment in the Mexico City Area. Bull. Am. Meteor. Soc. 1998, 79, 2497–2508. [Google Scholar] [CrossRef]
- Edgerton, S.A.; Bian, X.; Doran, J.C.; Fast, J.D.; Hubbe, J.M.; Malone, E.L.; Shaw, W.J.; Whiteman, C.D.; Zhong, S.; Arriaga, J.L.; et al. Particulate Air Pollution in Mexico City: A Collaborative Research Project. J. Air Waste Manag. Assoc. 1999, 49, 1221–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, L.T.; Kolb, C.E.; de Foy, B.; Lamb, B.K.; Brune, W.H.; Jimenez, J.L.; Ramos-Villegas, R.; Sarmiento, J.; Paramo-Figueroa, V.H.; Cardenas, B.; et al. Air quality in North America’s most populous city; overview of the MCMA-2003 campaign. Atmos. Chem. Phys. 2007, 7, 2447–2473. [Google Scholar] [CrossRef]
- Molina, L.T.; Madronich, S.; Gaffney, J.S.; Apel, E.; de Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B.; et al. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.B.; Brune, W.H.; Crawford, J.H.; Flocke, F.; Jacob, D.J. Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B campaign overview and first results. Atmos. Chem. Phys. 2009, 9, 2301–2318. [Google Scholar] [CrossRef]
- De Foy, B.; Caetano, E.; Magaña, V.; Zitácuaro, A.; Cárdenas, B.; Retama, A.; Ramos, R.; Molina, L.T.; Molina, M.J. Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmos. Chem. Phys. 2005, 5, 2267–2288. [Google Scholar] [CrossRef] [Green Version]
- De Foy, B.; Fast, J.D.; Paech, S.J.; Phillips, D.; Walters, J.T.; Coulter, R.L.; Martin, T.J.; Pekour, M.S.; Shaw, W.J.; Kastendeuch, P.P.; et al. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys. 2008, 8, 1209–1224. [Google Scholar] [CrossRef] [Green Version]
- García-Franco, J.L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M. Variability of the mixed-layer height over Mexico City. Bound. Layer Meteorol. 2018, 167, 493–507. [Google Scholar] [CrossRef]
- Barrett, B.S.; Raga, G.B. Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale. Atmos. Chem. Phys. 2016, 16, 15359–15370. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.S.; Raga, G.B.; Retama, A.; Leonard, C. A Multiscale Analysis of the Tropospheric and Stratospheric Mechanisms Leading to the March 2016 Extreme Surface Ozone Event in Mexico City. J. Geophys. Res. Atmos. 2019, 124, 4782–4799. [Google Scholar] [CrossRef]
- Zavala, M.; Herndon, S.C.; Wood, E.C.; Onasch, T.B.; Knighton, W.B.; Marr, L.C.; Kolb, C.E.; Molina, L.T. Evaluation of mobile emissions contributions to Mexico City’s emissions inventory using on-road and cross-road emission measurements and ambient data. Atmos. Chem. Phys. 2009, 9, 6305–6317. [Google Scholar] [CrossRef]
- Zavala, M.; Herndon, S.C.; Slott, R.S.; Dunlea, E.J.; Marr, L.C.; Shorter, J.H.; Zahniser, M.; Knighton, W.B.; Rogers, T.M.; Kolb, C.E.; et al. Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign. Atmos. Chem. Phys. 2006, 6, 5129–5142. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.; Tena, C.; Soret, A.; Serradell, K.; Guzmán, D.; Retama, A.; Camacho, P.; Jaimes-Palomera, M.; Mediavilla, A. An emission processing system for air quality modelling in the Mexico City Metropolitan Area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions. Sci. Total Environ. 2017, 584, 882–900. [Google Scholar] [CrossRef]
- Velasco, E.; Lamb, B.; Pressley, S.; Allwine, E.; Westberg, H.; Jobson, B.T.; Alexander, M.; Prazeller, P.; Molina, L.T.; Molina, M.J. Flux measurements of volatile organic compounds from an urban landscape. Geophys. Res. Lett. 2005, 32, L20802. [Google Scholar] [CrossRef]
- Velasco, E.; Pressley, S.; Grivicke, R.; Allwine, E.; Coons, T.; Foster, W.; Jobson, B.T.; Westberg, H.; Ramos, R.; Hernández, F.; et al. Eddy covariance flux measurements of pollutant gases in urban Mexico City. Atmos. Chem. Phys. 2009, 9, 7325–7342. [Google Scholar] [CrossRef] [Green Version]
- Zalakeviciute, R.; Alexander, M.L.; Allwine, E.; Jimenez, J.L.; Jobson, B.T.; Molina, L.T.; Nemitz, E.; Pressley, S.N.; Van Reken, T.M.; Ulbrich, I.M.; et al. Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006. Atmos. Chem. Phys. 2012, 12, 7809–7823. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.; Apel, E.; Hodzic, A.; Riemer, D.D.; Blake, D.R.; Wiedinmyer, C. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmos. Chem. Phys. 2009, 9, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Velasco, E.; Perrusquia, R.; Jiménez, E.; Hernández, F.; Camacho, P.; Rodríguez, S.; Retama, A.; Molina, L.T. Sources and sinks of carbon dioxide in a neighborhood of Mexico City. Atmos. Environ. 2014, 97, 226–238. [Google Scholar] [CrossRef]
- Jobson, B.T.; Volkamer, R.A.; Velasco, E.; Allwine, G.; Westberg, H.; Lamb, B.K.; Alexander, M.L.; Berkowitz, C.M.; Molina, L.T. Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment. Atmos. Chem. Phys. 2010, 10, 1989–2005. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, R.; Molina, L.T.; Molina, M.J.; Shirley, T.; Brune, W.H. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophys. Res. Lett. 2005, 32, L08806. [Google Scholar] [CrossRef]
- Garcia, A.R.; Volkamer, R.; Molina, L.T.; Molina, M.J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S.C.; Kolb, C.E. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers. Atmos. Chem. Phys. 2006, 6, 4545–4557. [Google Scholar] [CrossRef] [Green Version]
- De Gouw, J.A.; Welsh-Bon, D.; Warneke, C.; Kuster, W.C.; Alexander, L.; Baker, A.K.; Beyersdorf, A.J.; Blake, D.R.; Canagaratna, M.; Celada, A.T.; et al. Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmos. Chem. Phys. 2009, 9, 3425–3442. [Google Scholar] [CrossRef] [Green Version]
- Fortner, E.C.; Zheng, J.; Zhang, R.; Berk Knighton, W.; Volkamer, R.M.; Sheehy, P.; Molina, L.; André, M. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction—Mass Spectrometry during the MILAGRO 2006 Campaign. Atmos. Chem. Phys. 2009, 9, 467–481. [Google Scholar] [CrossRef]
- Apel, E.C.; Emmons, L.K.; Karl, T.; Flocke, F.; Hills, A.J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; et al. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmos. Chem. Phys. 2010, 10, 2353–2375. [Google Scholar] [CrossRef] [Green Version]
- Bon, D.M.; Ulbrich, I.M.; de Gouw, J.A.; Warneke, C.; Kuster, W.C.; Alexander, M.L.; Baker, A.; Beyersdorf, A.J.; Blake, D.; Fall, R.; et al. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmos. Chem. Phys. 2011, 11, 2399–2421. [Google Scholar] [CrossRef]
- Garzón, J.P.; Huertas, J.I.; Magaña, M.; Huertas, M.E.; Cárdenas, B.; Watanabe, T.; Maeda, T.; Wakamatsu, S.; Blanco, S. Volatile organic compounds in the atmosphere of Mexico City. Atmos. Environ. 2015, 119, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Shirley, T.R.; Brune, W.H.; Ren, X.; Mao, J.; Lesher, R.; Cardenas, B.; Volkamer, R.; Molina, L.T.; Molina, M.J.; Lamb, B.; et al. Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos. Chem. Phys. 2006, 6, 2753–2765. [Google Scholar] [CrossRef] [Green Version]
- Dusanter, S.; Vimal, D.; Stevens, P.S.; Volkamer, R.; Molina, L.T.; Baker, A.; Meinardi, S.; Blake, D.; Sheehy, P.; Merten, A.; et al. Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign—Part 2: Model comparison and radical budget. Atmos. Chem. Phys. 2009, 9, 6655–6675. [Google Scholar] [CrossRef]
- Volkamer, R.; Sheehy, P.; Molina, L.T.; Molina, M.J. Oxidative capacity of the Mexico City atmosphere—Part 1: A radical source perspective. Atmos. Chem. Phys. 2010, 10, 6969–6991. [Google Scholar] [CrossRef]
- Lei, W.; de Foy, B.; Zavala, M.; Volkamer, R.; Molina, L.T. Characterizing ozone production in the Mexico City Metropolitan Area: A case study using a chemical transport model. Atmos. Chem. Phys. 2007, 7, 1347–1366. [Google Scholar] [CrossRef]
- Lei, W.; Zavala, M.; de Foy, B.; Volkamer, R.; Molina, L.T. Characterizing ozone production and response under different meteorological conditions in Mexico City. Atmos. Chem. Phys. 2008, 8, 7571–7581. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Lei, W.; Bei, N.; Zavala, M.; de Foy, B.; Volkamer, R.; Cardenas, B.; Zheng, J.; Zhang, R.; Molina, L.T. Ozone response to emission changes: A modeling study during the MCMA-2006/MILAGRO Campaign. Atmos. Chem. Phys. 2010, 10, 3827–3846. [Google Scholar] [CrossRef]
- Mena-Carrasco, M.; Carmichael, G.R.; Campbell, J.E.; Zimmerman, D.; Tang, Y.; Adhikary, B.; D’allura, A.; Molina, L.T.; Zavala, M.; García, A.; et al. Assessing the regional impacts of Mexico City emissions on air quality and chemistry. Atmos. Chem. Phys. 2009, 9, 3731–3743. [Google Scholar] [CrossRef] [Green Version]
- García-Yee, J.S.; Torres-Jardón, R.; Barrera-Huertas, H.; Castro, T.; Peralta, O.; García, M.; Gutiérrez, W.; Robles, M.; Torres-Jaramillo, J.A.; Ortínez-Álvarez, A.; et al. Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis. Atmos. Environ. 2018, 177, 100–110. [Google Scholar] [CrossRef]
- Aiken, A.C.; de Foy, B.; Wiedinmyer, C.; DeCarlo, P.F.; Ulbrich, I.M.; Wehrli, M.N.; Szidat, S.; Prevot, A.S.H.; Noda, J.; Wacker, L.; et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)—Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmos. Chem. Phys. 2010, 10, 5315–5341. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Minguillón, M.C.; Pérez, N.; Alastuey, A.; Viana, M.; Moreno, T.; Bernabé, R.M.; Blanco, S.; Cárdenas, B.; et al. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos. Chem. Phys. 2008, 8, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, R.; Jimenez, J.L.; San Martini, F.; Dzepina, K.; Zhang, Q.; Salcedo, D.; Molina, L.T.; Worsnop, D.R.; Molina, M.J. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 2006, 33, L17811. [Google Scholar] [CrossRef]
- Tsimpidi, A.P.; Karydis, V.A.; Zavala, M.; Lei, W.; Molina, L.; Ulbrich, I.M.; Jimenez, J.L.; Pandis, S.N. Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City Metropolitan Area. Atmos. Chem. Phys. 2010, 10, 525–546. [Google Scholar] [CrossRef]
- Li, G.; Zavala, M.; Lei, W.; Tsimpidi, A.P.; Karydis, V.A.; Pandis, S.N.; Canagaratna, M.R.; Molina, L.T. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign. Atmos. Chem. Phys. 2011, 11, 3789–3809. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, F.; Alvarez-Ospina, H.; Armando, R.; López-Medina, A.; Telma, C.; Salcedo, D. Seasonal changes in the PM1 chemical composition north of Mexico City. Atmósfera 2017, 30, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Cady-Pereira, K.E.; Payne, V.H.; Neu, J.L.; Bowman, K.W.; Miyazaki, K.; Marais, E.A.; Kulawik, S.; Tzompa-Sosa, Z.A.; Hegarty, J.D. Seasonal and spatial changes in trace gases over megacities from Aura TES observations: Two case studies. Atmos. Chem. Phys. 2017, 17, 9379–9398. [Google Scholar] [CrossRef]
- SEDEMA (Secretaría del Medio Ambiente del Gobierno de la Ciudad de México). Calidad del Aire en la Ciudad de México, Informe 2017. Dirección General de Gestión de la Calidad del Aire, Dirección de Monitoreo Atmosférico. Ciudad de México: Octubre. 2018, pp. 99–104. Available online: http://www.aire.cdmx.gob.mx/default.php?opc=Z6BhnmI= (accessed on 28 June 2019).
- Retama, A.; Neria-Hernández, A.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Sánchez-Rodríguez, M.; López-Medina, A.; Velasco, E. Fireworks: A major source of inorganic and organic aerosols during Christmas and New Year in Mexico City. Atmos. Environ. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Marley, N.A.; Gaffney, J.S.; Castro, T.; Salcido, A.; Frederick, J. Measurements of aerosol absorption and scattering in the Mexico City Metropolitan Area during the MILAGRO field campaign: A comparison of results from the T0 and T1 sites. Atmos. Chem. Phys. 2009, 9, 189–206. [Google Scholar] [CrossRef]
- Paredes-Miranda, G.; Arnott, W.P.; Jimenez, J.L.; Aiken, A.C.; Gaffney, J.S.; Marley, N.A. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmos. Chem. Phys. 2009, 9, 3721–3730. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Miranda, G.; Arnott, W.P.; Moosmüller, H.; Green, M.C.; Gyawali, M. Black Carbon Aerosol Concentration in Five Cities and Its Scaling with City Population. Bull. Am. Meteor. Soc. 2013, 94, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Retama, A.; Baumgardner, D.; Raga, G.B.; McMeeking, G.R.; Walker, J.W. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City. Atmos. Chem. Phys. 2015, 15, 9693–9709. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Castanho, A.D.; Prinn, R.; Martins, V.; Herold, M.; Ichoku, C.; Molina, L.T. Analysis of Visible/SWIR surface reflectance ratios for aerosol retrievals from satellite in Mexico City urban area. Atmos. Chem. Phys. 2007, 7, 5467–5477. [Google Scholar] [CrossRef] [Green Version]
- Quintana, R.; Serrano, J.; Gómez, V.; de Foy, B.; Miranda, J.; Garcia-Cuellar, C.; Vega, E.; Vázquez-López, I.; Molina, L.T.; Manzano-León, N.; et al. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign. Environ. Pollut. 2011, 159, 3446–3454. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Kulesza, R.J.; Mukherjee, P.S.; Torres-Jardón, R.; Rönkkö, T.; Doty, R.L. Alzheimer’s disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ. Res. 2018, 166, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-Synuclein in Children and Young Adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef] [PubMed]
- O´Neill, M.S.; Osornio-Vargas, A.; Buxton, M.A.; Sánchez, B.N.; Rojas-Bracho, L.; Castillo-Castrejon, M.; Mordhukovich, I.B.; Brown, D.G.; Vadillo-Ortega, F. Air pollution, inflammation and preterm birth in Mexico City: Study design and methods. Sci. Total Environ. 2013, 448, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Cromar, K. Development of an Indicator to Identify the Association between Air Pollution and Health Effects in Mexico City; Marron Institute of Urban Management: Mexico City, Mexico, 2018; Available online: http://www.aire.cdmx.gob.mx/conoce-tu-numero-iner/ (accessed on 9 July 2019).
- Lim, W.D.; Tan, G.H. A Resilient Singapore; Centre for Liveable Cities Singapore: Singapore, 2018; ISBN 978-981-11-7810-8. [Google Scholar]
- Craig, L.; Brook, J.R.; Chiotti, Q.; Croes, B.; Gower, S.; Hedley, A.; Krewski, D.; Krupnick, A.; Krzyzanowski, M.; Moran, M.D.; et al. Air Pollution and Public Health: A guidance document for risk managers. J. Toxicol. Environ. Health Part A 2008, 71, 588–698. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Roth, M. Review of Singapore’s air quality and greenhouse gas emissions: Current situation and opportunities. J. Air Waste Manag. Assoc. 2012, 62, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Rastan, S. Air quality in Singapore during the 2013 smoke-haze episode over the Strait of Malacca: Lessons learned. Sustain. Cities Soc. 2015, 17, 122–131. [Google Scholar] [CrossRef]
- SAGC (Singapore Attorney General’s Chambers). Environmental Protection and Management Act (Chapter 94A); The Statutes of the Republic of Singapore; 31 December 2002. Available online: https://sso.agc.gov.sg/Act/EPMA1999 (accessed on 10 July 2019).
- ASEAN (Association of Southeast Asian Nations). ASEAN Agreement on Transboundary Haze Pollution; The ASEAN Secretariat: Jakarta, Indonesia, 2016; Available online: http://haze.asean.org/2016/09/asean-agreement-on-transboundary-haze-pollution-2/ (accessed on 10 July 2019).
- SAGC (Singapore Attorney General’s Chambers). Transboundary Haze Pollution Act 2014. Government of Singapore; 26 September 2014. Available online: https://sso.agc.gov.sg/Act/THPA2014 (accessed on 10 July 2019).
- SURA (Singapore Urban Redevelopment Authority) Draft Master Plan 2019. 2019. Available online: https://www.ura.gov.sg/Corporate/ (accessed on 10 July 2019).
- MEWR and MND (Ministry of the Environment and Water Resources and Ministry of National Development). Sustainable Singapore Blueprint 2015. Available online: https://www.mewr.gov.sg/ssb/home (accessed on 9 July 2019).
- Yee, A.T.K.; Corlett, R.T.; Liew, S.C.; Tan, H.T.W. The vegetation of Singapore—An updated map. Gard. Bull. Singap. 2011, 63, 205–212. [Google Scholar]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- NEA (National Environmental Agency). Computation of the Pollutant Standard Index (PSI). 2014. Available online: https://www.haze.gov.sg/docs/default-source/faq/computation-of-the-pollutant-standards-index-(psi).pdf (accessed on 11 March 2019).
- SNEA (Singapore National Environmental Agency). Air Quality. 2019. Available online: https://www.haze.gov.sg/ (accessed on 11 March 2019).
- Hidy, G.M.; Pennell, W.T. Multipollutant Air Quality Management. J. Air Waste Manag. Assoc. 2010, 60, 645–674. [Google Scholar] [CrossRef]
- MEWR (Ministry of the Environment & Water Resources). News. 2019. Available online: https://www.mewr.gov.sg/news (accessed on 10 July 2019).
- NEA (National Environmental Agency). Environmental Protection Division Annual Report 2017. Available online: https://www.nea.gov.sg/corporate-functions/resources/publications/annual-reports (accessed on 12 March 2019).
- SMPA (Singapore Maritime Port Authority). Available online: https://www.mpa.gov.sg/web/portal/home/ (accessed on 10 July 2019).
- SCA (Singapore Changi Airport). Available online: http://www.changiairport.com (accessed on 10 July 2019).
- NCCS and PMO (National Climate Change Secretariat and Prime Minister’s Office). Singapore’s Climate Action Plan 2016. Available online: https://www.mewr.gov.sg/resources-climate-action-sg (accessed on 12 March 2019).
- NEA (National Environmental Agency). Singapore’s Fourth National Communication and Third Biennial Update Report on Climate Change. National Environmental Agency; 2018. Available online: https://www.nccs.gov.sg/docs/default-source/default-document-library/singapore’s-fourth-national-communication-and-third-biennial-update-repo.pdf (accessed on 10 July 2019).
- NEA (National Environmental Agency). Environmental Protection Division Report 2012. Available online: https://www.nea.gov.sg/corporate-functions/resources/publications/annual-reports (accessed on 12 March 2019).
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.; Peters, J.A.H.W.; et al. EDGAR v4.3.2 Global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef]
- EDGAR Database. Available online: http://edgar.jrc.ec.europa.eu/overview.php?v=4320 (accessed on 10 July 2019).
- Hertwig, D.; Burgin, L.; Gan, C.; Hort, M.; Jones, A.; Shaw, F.; Witham, C.; Zhang, K. Development and demonstration of a Lagrangian dispersion modeling system for real-time prediction of smoke haze pollution from biomass burning in Southeast Asia: Smoke haze dispersion in southeast Asia. J. Geophys. Res. Atmos. 2015, 120, 12605–12630. [Google Scholar] [CrossRef]
- EMA (Energy Market Authority). Singapore Energy Statistics 2018. Available online: https://www.ema.gov.sg/singapore_energy_statistics.aspx (accessed on 4 July 2019).
- NEA (National Environmental Agency). 1-hr PM2.5 (µg/m3) Readings. Available online: https://www.haze.gov.sg/resources/1-hr-pm2.5-readings (accessed on 10 July 2019).
- IEA (International Energy Agency). Key World Energy Statistics 2018. Available online: https://webstore.iea.org/key-world-energy-statistics-2018 (accessed on 9 July 2019).
- Singapore Clean Air Act of 1971. Available online: http://eresources.nlb.gov.sg/infopedia/articles/SIP_2014-04-07_110024.html (accessed on 10 July 2019).
- Lee, K.Y.; Chua, S.C. Clean Air Act of 1971; Singapore Infopedia. National Library of Singapore; 2014. Available online: http://eresources.nlb.gov.sg/infopedia/articles/SIP_2014-04-07_110024.html (accessed on 7 July 2019).
- Cleary, G.J. Air Pollution Control: Preliminary Assessment of Air Pollution in Singapore; National Library Board Singapore: Singapore, 1970. [Google Scholar]
- Campbell, W. Getting “on top of old smokey” . The Straits Times; 1970. Available online: http://eresources.nlb.gov.sg/newspapers/Digitised/Article/straitstimes19700423-1.2.90 (accessed on 7 July 2019).
- Wai, R. Air in Jurong just as clean. The Straits Times; p. 12. 14 April 1983. Available online: http://eresources.nlb.gov.sg/newspapers/Digitised/Article/straitstimes19830414-1.2.55 (accessed on 10 July 2019).
- Goh, J. Pollution under control here. The Straits Times; 1986; p. 16. Available online: http://eresources.nlb.gov.sg/newspapers/Digitised/Page/straitstimes19890716-1.1.16 (accessed on 8 July 2019).
- SAGC (Singapore Attorney General’s Chambers). Environmental Protection Control Act 1999; The Statutes of the Republic of Singapore: Singapore, 1999. Available online: https://sso.agc.gov.sg/Acts-Supp/9-1999/Published/20001230?DocDate=19990302 (accessed on 10 July 2019).
- LTA (Land Transport Authority). Land Transport Master Plan 2040. Available online: https://www.lta.gov.sg/content/ltaweb/en/about-lta/what-we-do/ltmp2040.html (accessed on 9 July 2019).
- Seng, L.T. Area Licensing Scheme. Available online: http://eresources.nlb.gov.sg/infopedia/articles/SIP_777_2004-12-13.html?s=Environmentarea%20licensing%20schemeal%20Protection%20and%20Management%20(Vehicular %20Emissions)%20Regulations (accessed on 9 July 2019).
- Watson, P.; Holland, E. Relieving Traffic Congestion: The Singapore Area License Scheme; The World Bank: Washington, DC, USA, 1978; Available online: http://agris.fao.org/agris-search/search.do?recordID=US2012426853 (accessed on 7 July 2019).
- Chia, N.-C.; Phang, S.-Y. Motor vehicle taxes as an environmental management instrument: The case of Singapore. Environ. Econ. Policy Stud. 2001, 4, 67–93. [Google Scholar] [CrossRef]
- Agarwal, S.; Koo, K.M. Impact of Electronic Road Pricing (ERP) changes on transport modal choice. Reg. Sci. Urban Econ. 2016, 60, 1–11. [Google Scholar] [CrossRef]
- Quirapas, M.A.J.R.; Aboagye-Gyan, R.; Gul, M.F. Sources, drivers and barriers of innovation in Singapore’s Electronic Road Pricing. Asian J. Public Aff. 2018, 11, e3. [Google Scholar] [CrossRef]
- LTA (Land Transport Authority). Overview of Vehicle Quota System. Available online: https://www.lta.gov.sg/content/ltaweb/en.html (accessed on 9 July 2019).
- UNEP and OECD (United Nations Environment Programme and Organisation for Economic Co-Operation and Development). Older Gasoline Vehicles: In Developing Countries and Economies in Transition: Their Importance and the Policy Options for Addressing Them; UNEP, OECD: Paris, France, 1999; ISBN 978-92-807-1796-9. [Google Scholar]
- SAGC (Singapore Attorney General’s Chambers). Road Traffic (Motor Vehicles, Construction and Use) Rules. 9 April 2019. Available online: https://sso.agc.gov.sg/SL/RTA1961-R9 (accessed on 10 July 2019).
- Kurohi, R. Singapore to Introduce Limits on Additives in Petrol and Diesel from 1 July 2019. The Straits Times. 2018. Available online: https://www.straitstimes.com/singapore/environment/singapore-to-introduce-limits-on-additives-in-petrol-and-diesel-from-july-1 (accessed on 9 July 2019).
- Tan, C. U-turn for Singapore car fleet after a decade of ageing. The Straits Times. 2019. Available online: https://www.straitstimes.com/singapore/transport/u-turn-for-spore-car-fleet-after-a-decade-of-ageing (accessed on 7 July 2019).
- MPA (Maritime Port Authority). Maritime Singapore Green Initiative. Singapore Government; 2016. Available online: https://www.mpa.gov.sg/web/portal/home/maritime-singapore/green-efforts/maritime-singapore-green-initiative (accessed on 10 July 2019).
- Chiam, S.T.; Wong, L.K.; Lim, K.S. Regulating the Use of Fireworks. Available online: http://eresources.nlb.gov.sg/infopedia/articles/SIP_2013-10-04_181113.html (accessed on 8 July 2019).
- SAGC (Singapore Attorney General’s Chambers). Dangerous Fireworks Act. Revised edition 2014. Government of Singapore. 28 February 2014. Available online: https://sso.agc.gov.sg/Act/DFA1972 (accessed on 10 July 2019).
- MEWR (Ministry of the Environment and Water Resources). The Singapore Green Plan: Action Programmes; Published for the Ministry of the Environment by Times Editions Pty Ltd.: Singapore, 1993; ISBN 978-981-204-490-7. [Google Scholar]
- MEWR (Ministry of the Environment and Water Resources). The Singapore Green Plan 2012; Ministry of the Environment and Water Resources: Singapore, 2002. Available online: https://www.mewr.gov.sg/grab-our-research/singapore-green-plan-2012 (accessed on 10 July 2019).
- MEWR (Ministry of the Environment and Water Resources). The Singapore Green Plan 2012, 2006 ed.; Ministry of the Environment and Water Resources: Singapore, 2006. Available online: https://www.mewr.gov.sg/grab-our-research/singapore-green-plan-2012 (accessed on 28 August 2019).
- MEWR and MND (Ministry of the Environment and Water Resources and Ministry of National Development). Sustainable Singapore Blueprint. A Lively and Livable Singapore: Strategies for Sustainable Growth, Singapore Government 2009. Available online: https://www.mewr.gov.sg/ssb/home (accessed on 10 July 2019).
- Hidy, G.M.; Brook, J.R.; Demerjian, K.L.; Molina, L.T.; Pennell, W.T.; Scheffe, R.D. Technical Challenges of Multipollutant Air Quality Management; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-0304-9. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Budisulistiorini, S.H.; Riva, M.; Williams, M.; Miyakawa, T.; Chen, J.; Itoh, M.; Surratt, J.D.; Kuwata, M. Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015. Atmos. Chem. Phys. 2018, 18, 16481–16498. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Budisulistiorini, S.H.; Miyakawa, T.; Komazaki, Y.; Kuwata, M. Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia. Atmos. Chem. Phys. 2018, 18, 7781–7798. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.N.; Cheng, J.; Balasubramanian, R. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia. Environ. Geochem. Health 2015, 37, 843–859. [Google Scholar] [CrossRef]
- Yang, L.; Nguyen, D.M.; Jia, S.; Reid, J.S.; Yu, L.E. Impacts of biomass burning smoke on the distributions and concentrations of C2–C5 dicarboxylic acids and dicarboxylates in a tropical urban environment. Atmos. Environ. 2013, 78, 211–218. [Google Scholar] [CrossRef]
- Salinas, S.V.; Chew, B.N.; Miettinen, J.; Campbell, J.R.; Welton, E.J.; Reid, J.S.; Yu, L.E.; Liew, S.C. Physical and optical characteristics of the October 2010 haze event over Singapore: A photometric and lidar analysis. Atmos. Res. 2013, 122, 555–570. [Google Scholar] [CrossRef]
- Sharma, R.; Balasubramanian, R. Size-fractionated particulate matter in indoor and outdoor environments during the 2015 haze in Singapore: Potential human health risk assessment. Aerosol Air Qual. Res. 2018, 18, 904–917. [Google Scholar] [CrossRef]
- Tham, K.W.; Parshetti, G.K.; Balasubramanian, R.; Sekhar, C.; Cheong, D.K.W. Mitigating particulate matter exposure in naturally ventilated buildings during haze episodes. Build. Environ. 2018, 128, 96–106. [Google Scholar] [CrossRef]
- Betha, R.; Behera, S.N.; Balasubramanian, R. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 2014, 48, 4327–4335. [Google Scholar] [CrossRef]
- Hansen, A.B.; Witham, C.S.; Chong, W.M.; Kendall, E.; Chew, B.N.; Gan, C.; Hort, M.C.; Lee, S.-Y. Haze in Singapore—Source attribution of biomass burning PM10 from Southeast Asia. Atmos. Chem. Phys. 2019, 19, 5363–5385. [Google Scholar] [CrossRef]
- Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Engling, G.; He, J.; Betha, R.; Balasubramanian, R. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling. Atmos. Chem. Phys. 2014, 14, 8043–8054. [Google Scholar] [CrossRef]
- Reddington, C.L.; Yoshioka, M.; Balasubramanian, R.; Ridley, D.; Toh, Y.Y.; Arnold, S.R.; Spracklen, D.V. Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environ. Res. Lett. 2014, 9, 094006. [Google Scholar] [CrossRef] [Green Version]
- Chew, F.T.; Goh, D.Y.; Ooi, B.C.; Saharom, R.; Hui, J.K.; Lee, B.W. Association of ambient air-pollution levels with acute asthma exacerbation among children in Singapore. Allergy 1999, 54, 320–329. [Google Scholar] [CrossRef]
- Health Hub Asthma: Triggers and Symptoms. Available online: https://www.healthhub.sg/a-z/diseases-and-conditions/11/asthma (accessed on 9 July 2019).
- Lai, C.K.W.; Beasley, R.; Crane, J.; Foliaki, S.; Shah, J.; Weiland, S. The ISAAC Phase Three Study Group. Global variation in the prevalence and severity of asthma symptoms: Phase Three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009, 64, 476–483. [Google Scholar] [CrossRef] [PubMed]
- NRDO (National Registry of Diseases Office). Singapore Cancer Registry: Annual Registry Report 2015. Health Promotion Board. Singapore. Available online: https://www.nrdo.gov.sg/publications/ (accessed on 10 July 2019).
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Couraud, S.; Zalcman, G.; Milleron, B.; Morin, F.; Souquet, P.-J. Lung cancer in never smokers—A review. Eur. J. Cancer 2012, 48, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.F.W.; Zheng, H.; Earnest, A.; Cheong, K.H.; Pek, P.P.; Seok, J.Y.; Liu, N.; Kwan, Y.H.; Tan, J.W.C.; Wong, T.H.; et al. Time-stratified case crossover ctudy of the association of outdoor ambient air aollution with the risk of acute myocardial infarction in the context of seasonal exposure to the Southeast Asian haze problem. JAHA 2019, 8, e011272. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.F.W.; Wah, W.; Earnest, A.; Ng, Y.Y.; Xie, Z.; Shahidah, N.; Yap, S.; Pek, P.P.; Liu, N.; Lam, S.S.W.; et al. Health impacts of the Southeast Asian haze problem—A time-stratified case crossover study of the relationship between ambient air pollution and sudden cardiac deaths in Singapore. Int. J. Cardiol. 2018, 271, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, S.C. Impact to lung health of haze from forest fires: The Singapore experience. Respirology 2000, 5, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Quah, E.; Boon, T.L. The economic cost of particulate air pollution on health in Singapore. J. Asian Econ. 2003, 14, 73–90. [Google Scholar] [CrossRef]
- Koplitz, S.N.; Mickley, L.J.; Marlier, M.E.; Buonocore, J.J.; Kim, P.S.; Liu, T.; Sulprizio, M.P.; DeFries, R.S.; Jacob, D.J.; Schwartz, J.; et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 2016, 11, 094023. [Google Scholar] [CrossRef]
- Quah, E.; Chia, W.M. Economic costs of air pollution in Singapore. In The Globalization of Cost-Benefits Analysis in Environmental Policy; Livermore, M.A., Revesz, R.L., Eds.; Oxford Scholarship Online; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- Othman, L. Singapore not meeting its air quality targets: Masagos. Channel News Asia. 26 January 2017. Available online: https://www.channelnewsasia.com/news/singapore/singapore-not-meeting-its-air-quality-targets-masagos-7543240 (accessed on 10 July 2019).
- Bordt, M.; Rastan, S. The Role of National Agencies as Honest Brokers between Science and Policy: Case Studies on Environmental Sustainability Indicators. In Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- MEWR (Ministry of the Environment and Water Resources). Key Environmental Statistics 2018. Available online: https://www.mewr.gov.sg/grab-our-research (accessed on 9 July 2019).
- NASA (National Aeronautics and Space Administration). Air Quality Observations from Space. Available online: https://airquality.gsfc.nasa.gov/ (accessed on 10 July 2019).
- Ahangar, F.; Freedman, F.; Venkatram, A. Using Low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-resolution air pollution mapping with Google Street View Cars: Exploiting big data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- GOHK (Government of Hong Kong). Air Quality Health Index. Available online: https://www.gov.hk/en/residents/environment/air/aqhi.htm) (accessed on 10 July 2019).
- Stieb, D.M.; Burnett, R.T.; Smith-Doiron, M.; Brion, O.; Shin, H.H.; Economou, V. A new multipollutant, no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J. Air Waste Manag. Assoc. 2008, 58, 435–450. [Google Scholar] [CrossRef] [PubMed]
- GOC (Government of Canada). About the Air Quality Health Index. Available online: https://www.canada.ca/en/environment-climate-change/services/air-quality-health-index/about.html (accessed on 8 July 2019).
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengkun, F. Study to suss out air pollutants here. The Straits Times. 2015. Available online: https://www.asiaone.com/singapore/study-suss-out-air-pollutants-here (accessed on 7 July 2019).
- Lee, H.-H.; Bar-Or, R.Z.; Wang, C. Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmos. Chem. Phys. 2017, 17, 965–980. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-H.; Iraqui, O.; Wang, C. The Impact of Future Fuel Consumption on Regional Air Quality in Southeast Asia. Sci. Rep. 2019, 9, 2648. [Google Scholar] [CrossRef] [PubMed]
- Boh, S. Chemical smell across Singapore traced to Johor. The Straits Times. 2017. Available online: https://www.straitstimes.com/singapore/environment/chemical-smell-across-spore-traced-to-johor (accessed on 28 August 2019).
- CUGE (Centre for Urban Greenery and Ecology). Available online: https://www.nparks.gov.sg/cuge (accessed on 10 July 2019).
- CCRS (Centre for Climate Research Singapore). Available online: http://ccrs.weather.gov.sg/ (accessed on 10 July 2019).
- Armitage, C. The search for solutions. Nature 2018, 558, S1. [Google Scholar] [CrossRef] [PubMed]
Mexico * | Singapore ** | WHO *** | |
---|---|---|---|
Pollutant | Max. Limit (µg m−3) | Targets by 2020 (µg m−3) | Guidelines (µg m−3) |
O3 | 186 (1-h mean) 137 (8-h mean) | 100 (8-h mean) | 100 (8-h mean) |
PM10 | 75 (24-h mean) | 50 (24-h mean) 20 (ann mean) | 50 (24-h mean) 20 (ann mean) |
PM2.5 | 45 (24-h mean) 12 (ann mean) | 37.5 (24-h mean) 12 (ann mean) | 25 (24-h mean) 10 (ann mean) |
SO2 | 290 (24-h) 520 (8-h mean) 65 (ann mean) | 50 (24-h mean) 15 (ann mean) | 20 (24-h mean) 500 (10-min mean) |
CO | 12.5 mg m−3 (8-h mean) | 10 mg m−3 (8-h mean) 30 mg m−3 (1-h mean) | -- |
Pb | 1.5 (3 month mean) | -- | -- |
NO2 | 400 (1-h mean) | 200 (1-h mean) 40 (ann mean) | 200 (1-h mean) 40 (ann mean) |
Sources | PM10 | PM2.5 | SO2 | CO | NOx | NMVOC | NH3 | BC | Toxics | CO2eq |
---|---|---|---|---|---|---|---|---|---|---|
Point | 3055 | 2256 | 878 | 9850 | 12,603 | 26,130 | 126 | 413 | 12,882 | 9,547,220 |
Area | 21,859 | 7255 | 1216 | 72,278 | 12,224 | 267,996 | 45,568 | 391 | 84,010 | 18,196,532 |
Mobile | 11,123 | 5497 | 568 | 646,434 | 115,275 | 77,051 | 2023 | 1897 | 22,474 | 34,571,330 |
Natural | 1930 | 425 | N/A | N/A | 505 | 44,912 | N/A | 0.4 | 4018 | N/A |
Total | 37,967 | 15,433 | 2662 | 728,561 | 140,607 | 416,089 | 47,717 | 2701 | 123,384 | 62,315,082 |
Category | MCMA | Singapore |
---|---|---|
A. General Information | ||
Population | 21.4 million in 2016 | 5.6 million in 2018 |
Total area (km2) | 7585 | 742 |
Population density (inhabitants per km2) | 14,000 (central area); 2100 (periphery) | 7800 |
GDP per capita (2017) in US dollars | 8910 (Mexico City) | 57,700 |
Topography |
|
|
Climate zone | Sub-tropical highland climate | Tropical climate |
Annual energy consumption | 543 PJ (13.0 Mtoe) in 2014 | 770 PJ (18.4 Mtoe) in 2016 |
Gasoline consumption | 30,600 m3 per day in 2016 | 3050 m3 per day in 2016 |
Diesel consumption | 6100 m3 per day in 2016 | 5370 m3 per day in 2016 |
Regulated industries | 2150 in 2016 | 8988 in 2016 |
Regulated commerce and services | 3000 in 2016 | 194,043 in 2016 |
Vehicle fleet | 5.7 million in 2016 | 961,000 in 2016 |
Air quality monitoring network (2019) |
|
|
Emissions inventory |
|
|
Air quality standards | O3, PM2.5, PM10, SO2, CO, Pb, NO2 (reviewed and updated periodically) | Targets by 2020 for O3, PM2.5, PM10, SO2, CO, NO2 |
Public alert systems and indicators |
|
|
Peak O3 concentration (ppbV) in 2018 | 179 (1-h), 119 (8-h) | No records available |
Peak PM2.5 concentration (µg m−3) in 2018 | 70 (24-h) | No records available |
NOx emissions (tonnes per year) | 141,000 in 2016; 82% from transport | 119,000 in 2012; 28% from transport (from EDGAR database [135]) |
VOC emissions (tonnes per year) | 416,000 in 2016; 19% from transport | 128,000 in 2012; 14% from transport. (from EDGAR database [135]) |
B. Governance Structure | ||
Legal framework for air pollution management |
|
|
Institutional structures for air pollution management |
|
|
C. Air Quality Management Programs | ||
Air quality and environmental management programs |
|
|
Emission reduction programs for vehicle fleet * |
|
|
|
| |
Emissions reduction actions for industries * |
|
|
|
| |
Emissions reduction actions for shipping | Not applicable. |
|
Emissions reduction actions for residential and commercial sectors |
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, L.T.; Velasco, E.; Retama, A.; Zavala, M. Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore. Atmosphere 2019, 10, 512. https://doi.org/10.3390/atmos10090512
Molina LT, Velasco E, Retama A, Zavala M. Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore. Atmosphere. 2019; 10(9):512. https://doi.org/10.3390/atmos10090512
Chicago/Turabian StyleMolina, Luisa T., Erik Velasco, Armando Retama, and Miguel Zavala. 2019. "Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore" Atmosphere 10, no. 9: 512. https://doi.org/10.3390/atmos10090512
APA StyleMolina, L. T., Velasco, E., Retama, A., & Zavala, M. (2019). Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore. Atmosphere, 10(9), 512. https://doi.org/10.3390/atmos10090512