Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
3. Results
3.1. Long-Term Soil Moisture–Temperature Coupling
3.2. Coupling Anomalies in Heatwaves
3.2.1. Case 1: Heatwave of Southeast China in Summer 2013
3.2.2. Case 2: Heatwave of North China in Summer 2009
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.C.; Wang, H.; Yin, H.; Ren, G.Y. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Zhu, Z. An Analysis of Drought Event and Its Causation in Jianghuai Region During Summer 2013. J. North China Inst. Aerosp. Eng. 2016, 26, 37–40. [Google Scholar]
- Gong, Z.Q.; Wang, Y.J.; Wang, Z.Y.; Ma, L.J.; Sun, C.H.; Zhang, S.Q. Briefly Analysis on Climate Anomalies and Causations in Summer 2013. Meteorol. Mon. 2014, 40, 119–125. [Google Scholar]
- Xia, Y.; Xu, H.M. Circulation characteristics and causes of the summer extreme high temperature event in the middle and lower reaches of the Yangtze River of 2013. J. Meteorol. Sci. 2017, 37, 60–69. [Google Scholar]
- Jaeger, E.B.; Seneviratne, S.I. Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim. Dyn. 2011, 36, 1919–1939. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.Z.; Crow, W.T. The Added Value of Assimilating Remotely Sensed Soil Moisture for Estimating Summertime Soil Moisture-Air Temperature Coupling Strength. Water Resour. Res. 2018, 54, 6072–6084. [Google Scholar] [CrossRef]
- Gevaert, A.I.; Miralles, D.G.; Jeu, R.A.M.; Schellekens, J.; Dolmon, A.J. Soil Moisture-Temperature Coupling in a Set of Land Surface Models. J. Geophys. Res. Atmos. 2017, 123, 1481–1498. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Seneviratne, S.I.; Luthi, D.; Schar, C. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 2007, 34, L06707. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Teuling, A.J.; Heerwaarden, C.C.; Arellano, J.V. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Schwingshackl, C.; Hirschi, M.; Seneviratne, S.I. Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J. Clim. 2017, 30, 7105–7124. [Google Scholar] [CrossRef]
- Koster, R.D.; Schubert, S.D.; Suarez, M.J. Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Clim. 2009, 22, 3331–3341. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Luthi, D.; Litschi, M.; Schar, C. Land-atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef]
- Vidale, P.L.; Luthi, D.; Wegmann, R.; Schar, C. European summer climate variability in a heterogeneous multi-model ensemble. Clim. Chang. 2007, 81, 209–232. [Google Scholar] [CrossRef]
- Koster, R.D.; Guo, Z.C.; Dirmeyer, P.A.; Bonan, G.; Chan, E.; Cox, P.; Davies, H.; Gordom, C.T.; Kowalczyk, E.; Lawrence, D.; et al. GLACE: The Global Land—Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 611–625. [Google Scholar] [CrossRef]
- Miralles, D.G.; Berg, M.J.; Teuling, A.J.; Jeu, R.A.M. Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett. 2012, 39, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Wilhelm, M.; Stanelle, T.; Hurk, B.; Hagemann, S.; Berg, A.; Cheruy, F.; Higgins, M.E.; Meier, A.; Brovkin, V.; et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 2013, 40, 5212–5217. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.L.; Pitman, A.J.; Seneviratne, S.I.; Evans, J.P.; Haverd, V. Summertime maximum and minimum temperature coupling asymmetry over Australia determined using WRF. Geophys. Res. Lett. 2014, 41, 1546–1552. [Google Scholar] [CrossRef]
- Whan, K.; Zscheischler, J.; Orth, R.; Shongwe, M.; Rahimi, M.; Asare, E.O.; Seneviratne, S.I. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extrem. 2015, 9, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, G.L.; Mei, R.; Yu, Z.B.; Gu, H.H. Diagnosing the Strength of Land–Atmosphere Coupling at Subseasonal to Seasonal Time Scales in Asia. J. Hydrometeorol. 2013, 15, 320–339. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wu, L.Y.; Dong, W.J. Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res. Atmos. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Z.B.; Zhang, J.Y. Diagnosing the strength of soil temperature in the land atmosphere interactions over Asia based on RegCM4 model. Glob. Planet. Chang. 2015, 130, 7–21. [Google Scholar] [CrossRef]
- Gallego-Elvira, B.; Taylor, C.M.; Harris, P.P.; Ghent, D.; Veal, K.L.; Folwell, S.S. Global observational diagnosis of soil moisture control on the land surface energy balance. Geophys. Res. Lett. 2016, 43, 2623–2631. [Google Scholar] [CrossRef] [Green Version]
- Dirmeyer, P.A. The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett. 2011, 38, l16702. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Stockli, R.; Reichstein, M.; Moors, E.; Ciais, P.; Luyssaert, S.; Hurk, B.; Ammann, C.; Bernhofer, C.; et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 2010, 3, 722–727. [Google Scholar] [CrossRef]
- Balsamo, G.; Agusti-Parareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A.; et al. Satellite and in situ observations for advancing global Earth surface modelling: A Review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef] [Green Version]
- Levine, P.A.; Randerson, J.T.; Swenson, S.C.; Lawrence, D.M. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 2016, 20, 4837–4856. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X.J. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Liang, Y.L.; Han, M.C.; Bai, L.; Li, M.H. Spatial-temporal distribution and variation characteristics of the agricultural climate resources over recent 30 years in China. Agric. Res. Arid Areas 2015, 33, 259–267. [Google Scholar]
- Mao, F.; Tang, S.H.; Sun, H.; Zhang, J.H. A Study of Dynamic Change of Dry and Wet Climate Regions in the Tibetan Plateau over the Last 46 Years. Chin. J. Atmos. Sci. 2008, 32, 499–507. [Google Scholar]
- Fan, K.K.; Zhang, Q.; Sun, P.; Song, C.Q.; Yu, H.Q.; Zhu, X.D.; Shen, Z.X. Effect of soil moisture variation on land surface air temperature over Tibetan Plateau. Acta. Geogr. Sin. 2019, 74, 1–16. [Google Scholar]
- Cheng, G.D.; Jin, H.J. Groundwater in the permafrost regions on the qinghai-tibet plateau and it changes. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; Jeu, R.A.M.D.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2010, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare and grass. Proc. R. Soc. A 1948, 193, 120–145. [Google Scholar]
- Zhang, Q.; Xiao, M.Z.; Singh, V.P.; Liu, L.; Xu, C.Y. Observational evidence of summer precipitation deficit-temperature coupling in China. J. Geophys. Res. Atmos. 2015, 120, 10040–10049. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.; Seneviratne, S.I. Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef] [Green Version]
- Li, M.M.; Ma, Z.; Gu, H.; Yang, Q.; Zhang, Z. Production of a combined land surface data set and its use to assess land-atmosphere coupling in China. J. Geophys. Res. Atmos. 2017, 122, 948–965. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Xu, X.; Shi, X.; Wang, Y.; Xu, X. Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: A regional model study. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, S.; Duan, A.; Hua, W.; Ullah, K.; Liu, S. Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. Clim. Dyn. 2018, 52, 6121–6130. [Google Scholar] [CrossRef] [Green Version]
- Vogel, M.M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B.J.J.M.; Seneviratne, S.I. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 2017, 44, 1511–1519. [Google Scholar] [CrossRef]
- LeComte, D. International Weather Highlights 2013: Super Typhoon Haiyan, Super Heat in Australia and China, a Long Winter in Europe. Weatherwise 2014, 67, 20–27. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Gu, S.H.; Huang, C.R.; Bai, L.; Chu, C.; Liu, Q.Y. Heat-related illness in China, summer of 2013. Int. J. Biometeorol. 2016, 60, 131–137. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Yuan, W. Decadal Variability of the Extreme Hot Event in China and Its Association with Atmospheric Circulations. Clim. Environ. Res. 2011, 2, 199–208. [Google Scholar]
- Qian, W.H.; Ding, T. Atmospheric anomaly structures and stability associated with heat wave events in China. Chin. J. Geophys. 2012, 55, 1487–1500. [Google Scholar]
- Zhang, Y.X.; Zhang, S.J. Causation Analysis on a Large –Scale Continuous High Temperature Process Occurring in North China Plain. Meteorol. Mon. 2010, 36, 8–13. [Google Scholar]
- Li, Y.; Ma, B.S.; Yang, X.; Zhang, J.Y. Characteristics of summer heat waves in China Mainland and the relationship between Eastern-/Central-Pacific EI Nino and heat wave events. J. Lanzhou Univ. Nat. Sci. 2018, 54, 711–721. [Google Scholar]
- Wang, L.W.; Zhang, J. Relationship Between summer heat waves and soil moisture in North-East China. J. Meteorol. Sci. 2015, 35, 558–564. [Google Scholar]
- Zhang, W.L.; Zhang, J.Y.; Fan, G.Z. Dominant modes of dry- and wet-season precipitation in southwestern China. Chin. J. Atmos. Sci. 2014, 38, 590–602. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Wang, G.; Zhu, C.; Lou, D.; Hagan, D.F.T.; Ma, X.; Zhan, M. Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China. Atmosphere 2020, 11, 25. https://doi.org/10.3390/atmos11010025
Yuan Q, Wang G, Zhu C, Lou D, Hagan DFT, Ma X, Zhan M. Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China. Atmosphere. 2020; 11(1):25. https://doi.org/10.3390/atmos11010025
Chicago/Turabian StyleYuan, Qing, Guojie Wang, Chenxia Zhu, Dan Lou, Daniel Fiifi Tawia Hagan, Xiaowen Ma, and Mingyue Zhan. 2020. "Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China" Atmosphere 11, no. 1: 25. https://doi.org/10.3390/atmos11010025
APA StyleYuan, Q., Wang, G., Zhu, C., Lou, D., Hagan, D. F. T., Ma, X., & Zhan, M. (2020). Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China. Atmosphere, 11(1), 25. https://doi.org/10.3390/atmos11010025