Evaluating Snow in EURO-CORDEX Regional Climate Models with Observations for the European Alps: Biases and Their Relationship to Orography, Temperature, and Precipitation Mismatches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Climate Models (RCMs) Snow and Temperature
2.1.2. E-OBS Temperature and Precipitation
2.1.3. Remote Sensing (MODIS) Snow Cover Fraction
2.1.4. Reference Orography
2.1.5. Station Snow Depth and Temperature
2.2. Methods
2.2.1. Preprocessing and Spatial Alignment
2.2.2. Comparison of Gridded Data
2.2.3. Comparison of Gridded with Point Data
2.2.4. Statistics, Software, and Data
3. Results and Discussion
3.1. Snow Variables in RCMs
3.2. Large Scale Comparison of Snow Cover in RCMs to MODIS
3.3. Small-Scale Snow Cover Variability
3.3.1. Isolated Effects of Altitude, Temperature, and Precipitation Differences
3.3.2. Combined Effects of Altitude, Temperature, and Precipitation Differences
3.3.3. Topography and Scale Considerations and the Added Value of Higher Resolutions
3.4. Comparison of Snow Depth in RCMs to Stations
3.5. Synthesis of the Evaluations for Snow Cover and Snow Depth
4. Conclusions
- RCMs were able to reproduce snow cover seasonality and amplitude at the scale of the European Alps fairly well, despite some over- and under-estimations depending on month and RCM.
- Reanalysis driven RCMs had lower biases than GCM driven RCMs for both snow cover and snow depth, implying that the forcing plays an important role.
- The orography mismatch, partly also the temperature and less the precipitation biases, exerted a strong influence on biases in snow variables. In regions with low altitude, temperature, and precipitation differences, RCMs showed minimal biases in snow cover and snow depth, implying that the snow schemes in the RCMs produce reasonable estimates with respect to their resolution.
- The parameterization of grid-scale snow cover fraction varies substantially amongst the RCMs. Because of this, RCMs that performed well for snow cover did not necessarily perform well for snow depth, and vice versa. Consequently, it is not possible to rank the RCMs in general terms for their capability to reproduce snow, as each variable (cover and depth) has to be considered separately.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanzer, F.; Förster, K.; Nemec, J.; Strasser, U. Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. Hydrol. Earth Syst. Sci. 2018, 22, 1593–1614. [Google Scholar] [CrossRef] [Green Version]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Lüthi, S.; Ban, N.; Kotlarski, S.; Steger, C.R.; Jonas, T.; Schär, C. Projections of Alpine Snow-Cover in a High-Resolution Climate Simulation. Atmosphere 2019, 10, 463. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, N.; Mearns, L.O. Assessing the Performance of Multiple Regional Climate Model Simulations for Seasonal Mountain Snow in the Upper Colorado River Basin. J. Hydrometeorol. 2011, 13, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Steger, C.; Kotlarski, S.; Jonas, T.; Schär, C. Alpine snow cover in a changing climate: A regional climate model perspective. Clim. Dyn. 2013, 41, 735–754. [Google Scholar] [CrossRef] [Green Version]
- Ronco, P.D.; Michele, C.D.; Montesarchio, M.; Mercogliano, P. Comparing COSMO-CLM simulations and MODIS data of snow cover extent and distribution over Italian Alps. Clim. Dyn. 2016, 47, 3955–3977. [Google Scholar] [CrossRef]
- Terzago, S.; Hardenberg, J.; Palazzi, E.; Provenzale, A. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. Cryosphere 2017, 11, 1625–1645. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Smiatek, G.; Kunstmann, H.; Senatore, A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016, 121, 7710–7728. [Google Scholar] [CrossRef] [Green Version]
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Quéré, C.L.; Marland, G.; Raupach, M.R.; Wilson, C. The challenge to keep global warming below 2 °C. Nat. Clim. Chang. 2013, 3, 4–6. [Google Scholar] [CrossRef]
- EURO-CORDEX Errata. Available online: https://docs.google.com/spreadsheets/d/1Vcob7VlE4H98g0IdMzdy5Ae4Y-WU0lRktI1mPneibXM/edit?usp=embed_facebook (accessed on 19 December 2019).
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Matiu, M.; Jacob, A.; Notarnicola, C. Daily MODIS snow cover maps for the European Alps from 2002 onwards at 250m horizontal resolution along with a nearly cloud-free version. Dataset Zenodo 2019. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.F.; van der Schrier, G.; Melsen, L.A.; Tank, A.M.G.K.; Teuling, A.J. Widespread and Accelerated Decrease of Observed Mean and Extreme Snow Depth Over Europe. Geophys. Res. Lett. 2018, 45, 12312–12319. [Google Scholar] [CrossRef] [Green Version]
- Crespi, A.; Brunetti, M.; Lentini, G.; Maugeri, M. 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int. J. Climatol. 2018, 38, 878–895. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Dowle, M.; Srinivasan, A.; Gorecki, J.; Chirico, M.; Stetsenko, P.; Short, T.; Lianoglou, S.; Antonyan, E.; Bonsch, M.; Parsonage, H.; et al. Data.Table: Extension of “Data.Frame”, version 1.12.8. CRAN 2019.
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; RStudio. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, version 3.2.1; RStudio, Inc.: Boston, MA, USA, 2019. [Google Scholar]
- Matiu, M.; Petitta, M.; Notarnicola, C.; Zebisch, M. Auxilary files for MDPI Atmosphere paper: Evaluating snow in EURO-CORDEX regional climate models. Dataset Zenodo 2019. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef]
- Isotta, F.A.; Frei, C.; Weilguni, V.; Perčec Tadić, M.; Lassègues, P.; Rudolf, B.; Pavan, V.; Cacciamani, C.; Antolini, G.; Ratto, S.M.; et al. The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 2014, 34, 1657–1675. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Pons, M.R.; Herrera, S.; Gutiérrez, J.M. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections. Clim. Dyn. 2016, 46, 3645–3655. [Google Scholar] [CrossRef]
- Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Dombrowski-Etchevers, I.; Déqué, M.; Castebrunet, H. Statistical adaptation of ALADIN RCM outputs over the French Alps—Application to future climate and snow cover. Cryosphere 2012, 6, 785–805. [Google Scholar] [CrossRef] [Green Version]
- Räisänen, J.; Eklund, J. 21st Century changes in snow climate in Northern Europe: A high-resolution view from ENSEMBLES regional climate models. Clim. Dyn. 2012, 38, 2575–2591. [Google Scholar] [CrossRef]
- Wi, S.; Dominguez, F.; Durcik, M.; Valdes, J.; Diaz, H.F.; Castro, C.L. Climate change projection of snowfall in the Colorado River Basin using dynamical downscaling. Water Resour. Res. 2012, 48, W05504. [Google Scholar] [CrossRef] [Green Version]
- Kawase, H.; Hara, M.; Yoshikane, T.; Ishizaki, N.N.; Uno, F.; Hatsushika, H.; Kimura, F. Altitude dependency of future snow cover changes over Central Japan evaluated by a regional climate model. J. Geophys. Res. Atmos. 2013, 118, 2013JD020429. [Google Scholar] [CrossRef]
- Kawase, H.; Murata, A.; Mizuta, R.; Sasaki, H.; Nosaka, M.; Ishii, M.; Takayabu, I. Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations. Clim. Chang. 2016, 139, 265–278. [Google Scholar] [CrossRef]
Modelling Institute | RCM | SNC | SND | SNW |
---|---|---|---|---|
CNRM | ALADIN53 | X | ||
CNRM | ALADIN63 | G | G | G |
CLMcom | CCLM4-8-17 | X | X | X |
DMI | HIRHAM5 1 | G | G | G |
KNMI | RACMO22E | X | X | X |
SMHI | RCA4 | X | X | (G) |
ICTP | RegCM4-6 | X | ||
MPI-CSC 2 | REMO2009 | X | ||
GERICS | REMO2015 | X | ||
IPSL-INERIS | WRF331F | X | X | |
IPSL | WRF381P | X | X |
Elevation Class [m] | Month | CCLM4-8-17 | RACMO22E | RCA4 | WRF331F |
---|---|---|---|---|---|
(0, 500] | Nov | 0 (0, 0) | 1 (0, 1) | 2 (1, 2) | 0 (0, 1) |
(0, 500] | Dec | 0 (0, 0) | 3 (2, 5) | 3 (2, 4) | 1 (1, 2) |
(0, 500] | Jan | 0 (−1, 0) | 3 (2, 7) | 3 (2, 4) | 0 (0, 1) |
(0, 500] | Feb | 0 (−1, 0) | 4 (2, 9) | 3 (2, 4) | 0 (0, 1) |
(0, 500] | Mar | 0 (0, 0) | 3 (1, 7) | 2 (2, 4) | 0 (0, 0) |
(0, 500] | Apr | 0 (0, 0) | 0 (0, 1) | 1 (1, 1) | 0 (0, 0) |
(0, 500] | May | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
(500, 1000] | Nov | −1 (−1, 0) | 1 (0, 1) | 1 (1, 2) | 1 (0, 1) |
(500, 1000] | Dec | −1 (−3, 0) | 3 (1, 5) | 2 (0, 3) | 2 (0, 4) |
(500, 1000] | Jan | −1 (−3, 0) | 4 (1, 7) | 1 (−1, 3) | 1 (−1, 4) |
(500, 1000] | Feb | −3 (−6, −1) | 5 (1, 11) | 1 (−2, 3) | 0 (−2, 3) |
(500, 1000] | Mar | −1 (−4, 0) | 5 (2, 10) | 2 (1, 4) | 0 (−1, 1) |
(500, 1000] | Apr | 0 (0, 0) | 1 (0, 2) | 1 (1, 2) | 0 (0, 0) |
(500, 1000] | May | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
(1000, 2000] | Nov | −1 (−2, 1) | 2 (0, 3) | 2 (0, 8) | 0 (−1, 3) |
(1000, 2000] | Dec | −2 (−7, 0) | −3 (−4, 3) | −1 (−6, 22) | −5 (−8, 6) |
(1000, 2000] | Jan | −3 (−8, 1) | −7 (−11, 3) | 1 (−11, 38) | −8 (−13, 6) |
(1000, 2000] | Feb | −3 (−12, 3) | −8 (-15, 9) | 7 (−8, 57) | −7 (−17, 5) |
(1000, 2000] | Mar | 1 (−7, 6) | −3 (-9, 17) | 19 (−1, 94) | −3 (−25, 1) |
(1000, 2000] | Apr | −1 (−4, 1) | 6 (0, 33) | 24 (14, 108) | 0 (−6, 6) |
(1000, 2000] | May | 0 (0, 0) | 1 (0, 19) | 34 (3, 72) | 0 (0, 1) |
RCM | GCM | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reanalysis Driven | |||||||||||||
CCLM4-8-17 | ECMWF-ERAINT | o/o | o/o | o/o | o/o | o/o | −/+ | o/+ | o/o | o/o | o/o | o/o | o/o |
RACMO22E | o/o | o/o | +/+ | +/+ | +/+ | +/+ | +/+ | o/+ | o/o | o/o | o/o | o/o | |
RCA4 | o/o | o/o | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/o | o/o | |
WRF331F | o/o | o/o | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/o | o/o | o/o | o/o | |
GCM Driven | |||||||||||||
ALADIN63 | CNRM-CERFACS-CNRM-CM5 | o/o | o/+ | o/+ | +/+ | +/+ | o/+ | +/+ | o/+ | o/+ | o/+ | o/o | o/o |
MOHC-HadGEM2-ES | o/o | o/+ | o/+ | o/+ | −/+ | o/+ | o/+ | o/+ | o/o | o/o | o/o | o/o | |
CCLM4-8-17 | CNRM-CERFACS-CNRM-CM5 | o/o | o/o | +/+ | +/+ | o/+ | o/+ | o/+ | o/o | o/o | o/o | o/o | o/o |
ICHEC-EC-EARTH | o/o | o/o | o/o | o/o | −/o | −/o | o/o | o/o | o/o | o/o | o/o | o/o | |
MOHC-HadGEM2-ES | o/o | o/o | +/o | o/o | −/o | −/+ | o/+ | o/o | o/− | o/o | o/o | o/o | |
MPI-M-MPI-ESM-LR | o/o | o/o | o/o | o/o | −/o | −/+ | o/+ | o/o | o/o | o/o | o/o | o/o | |
HIRHAM5 | CNRM-CERFACS-CNRM-CM5 | o/o | −/o | −/o | −/+ | −/+ | −/+ | −/+ | o/o | o/o | o/o | o/o | o/o |
ICHEC-EC-EARTH | o/o | −/o | −/o | −/+ | −/+ | −/+ | −/+ | o/o | o/o | o/o | o/o | o/o | |
MOHC-HadGEM2-ES | o/o | −/o | −/o | −/+ | −/+ | −/+ | −/o | −/o | o/o | o/o | o/o | o/o | |
NCC-NorESM1-M | o/o | −/o | −/o | −/o | −/+ | −/+ | −/o | −/o | o/o | o/o | o/o | o/o | |
RACMO22E | CNRM-CERFACS-CNRM-CM5 | o/o | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | o/o | o/o | o/o |
ICHEC-EC-EARTH | +/o | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | o/+ | o/o | o/o | o/o | |
MOHC-HadGEM2-ES | o/o | +/o | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | o/o | o/o | o/o | o/o | |
MPI-M-MPI-ESM-LR | o/o | +/o | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | o/o | o/o | o/o | o/o | |
NCC-NorESM1-M | o/o | +/o | +/+ | +/+ | o/+ | +/+ | +/+ | +/+ | o/+ | o/o | o/o | o/o | |
RCA4 | CNRM-CERFACS-CNRM-CM5 | o/o | o/+ | o/+ | +/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/o |
ICHEC-EC-EARTH | o/+ | o/+ | o/+ | o/+ | −/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | |
IPSL-IPSL-CM5A-MR | o/+ | o/+ | o/+ | −/+ | −/+ | −/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/+ | |
MOHC-HadGEM2-ES | o/o | o/o | o/o | o/+ | −/+ | −/+ | o/+ | o/+ | o/+ | o/+ | o/o | o/o | |
MPI-M-MPI-ESM-LR | o/o | o/o | o/o | o/+ | −/+ | −/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/o | |
NCC-NorESM1-M | o/o | o/o | o/+ | o/+ | −/+ | −/+ | o/+ | o/+ | o/+ | o/+ | o/+ | o/o | |
WRF331F | IPSL-IPSL-CM5A-MR | o/o | +/+ | o/+ | o/+ | o/+ | o/+ | +/+ | o/+ | o/+ | o/+ | o/o | o/o |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matiu, M.; Petitta, M.; Notarnicola, C.; Zebisch, M. Evaluating Snow in EURO-CORDEX Regional Climate Models with Observations for the European Alps: Biases and Their Relationship to Orography, Temperature, and Precipitation Mismatches. Atmosphere 2020, 11, 46. https://doi.org/10.3390/atmos11010046
Matiu M, Petitta M, Notarnicola C, Zebisch M. Evaluating Snow in EURO-CORDEX Regional Climate Models with Observations for the European Alps: Biases and Their Relationship to Orography, Temperature, and Precipitation Mismatches. Atmosphere. 2020; 11(1):46. https://doi.org/10.3390/atmos11010046
Chicago/Turabian StyleMatiu, Michael, Marcello Petitta, Claudia Notarnicola, and Marc Zebisch. 2020. "Evaluating Snow in EURO-CORDEX Regional Climate Models with Observations for the European Alps: Biases and Their Relationship to Orography, Temperature, and Precipitation Mismatches" Atmosphere 11, no. 1: 46. https://doi.org/10.3390/atmos11010046
APA StyleMatiu, M., Petitta, M., Notarnicola, C., & Zebisch, M. (2020). Evaluating Snow in EURO-CORDEX Regional Climate Models with Observations for the European Alps: Biases and Their Relationship to Orography, Temperature, and Precipitation Mismatches. Atmosphere, 11(1), 46. https://doi.org/10.3390/atmos11010046