Verification of Weather and Seasonal Forecast Information Concerning the Peri-Urban Farmers’ Needs in the Lower Ganges Delta in Bangladesh
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Background
2.2. Datasets
2.2.1. ECMWF Seasonal Climate Hindcasts
2.2.2. Meteoblue Weather Forecast
2.2.3. Stations Observations
2.3. Methods
2.3.1. Agrometeorological Indices Definitions
- -
- Onset date: the first day of a period of three or more consecutive days in which rainfall is 5 mm or more. The analysis starts from the first of April to account for early onset monsoons.
- -
- Offset date: the first day of a period of three or more consecutive days after the first of August in which rainfall is less than 1 mm.
- -
- Total seasonal rainfall: the sum of rainfall over a season.
2.3.2. Bias-Correction and Lead-Time Selection of SEAS5 Hindcasts
2.3.3. Skill Assessment and Metrics
3. Results
3.1. Verification of SEAS5 for Coastal Bangladesh
3.2. Verification of Meteoblue Forecast for Khulna
3.3. Trend and Variability of Onset/Offset Days
4. Discussion
4.1. Ability of Hindcasts to Capture the Prevailing Conditions
4.2. Potential Benefits of Skillful Forecasts in Agricultural Decision Making
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Mean Precipitation | Standard Deviation | |||||
---|---|---|---|---|---|---|
Observed | Modelled | Modelled- Bias Corrected | Observed | Modelled | Modelled-Bias Corrected | |
JAN | 14 | 12 | 4 | 22 | 12 | 17 |
FEB | 31 | 23 | 12 | 42 | 25 | 27 |
MAR | 45 | 34 | 10 | 66 | 21 | 38 |
APR | 69 | 105 | 76 | 62 | 42 | 80 |
MAY | 182 | 228 | 351 | 85 | 73 | 258 |
JUN | 321 | 257 | 405 | 162 | 69 | 279 |
JUL | 347 | 251 | 326 | 144 | 60 | 215 |
AUG | 317 | 234 | 266 | 131 | 59 | 213 |
SEP | 280 | 225 | 217 | 157 | 30 | 110 |
OCT | 143 | 168 | 174 | 102 | 47 | 128 |
NOV | 35 | 36 | 27 | 54 | 37 | 63 |
DEC | 6 | 8 | 2 | 14 | 9 | 8 |
Mean Precipitation | Standard Deviation | |||
---|---|---|---|---|
Observed | Modelled | Observed | Modelled | |
JAN | 13 | 5 | 22 | 13 |
FEB | 31 | 9 | 43 | 12 |
MAR | 44 | 21 | 62 | 19 |
APR | 59 | 47 | 37 | 31 |
MAY | 178 | 83 | 73 | 57 |
JUN | 319 | 160 | 155 | 121 |
JUL | 362 | 168 | 146 | 94 |
AUG | 308 | 125 | 127 | 44 |
SEP | 302 | 157 | 165 | 75 |
OCT | 153 | 88 | 102 | 57 |
NOV | 38 | 28 | 57 | 47 |
DEC | 4 | 6 | 10 | 15 |
Appendix B
Skills Metrics | ROC | H-K | PCC | ROC | H-K | PCC | ROC | H-K | PCC |
---|---|---|---|---|---|---|---|---|---|
Period | Pre-Monsoon | Monsoon | Winter | ||||||
Barisal | 0.6 | 0.19 | −0.02 | 0.57 | 0.14 | 0.11 | 0.72 | 0.43 | 0.66 |
Bhola | 0.52 | 0.03 | −0.16 | 0.57 | 0.13 | 0.04 | 0.59 | 0.18 | 0.56 |
Chandpur | 0.51 | −0.02 | −0.25 | 0.51 | 0.13 | −0.02 | 0.59 | 0.18 | 0.64 |
Chittagong (AP) | 0.42 | −0.15 | 0.2 | 0.47 | −0.05 | −0.01 | 0.64 | 0.27 | 0.36 |
Chuadanga | 0.39 | −0.21 | −0.08 | 0.55 | 0.11 | 0.09 | 0.53 | 0.06 | 0.24 |
Comilla | 0.55 | −0.09 | −0.03 | 0.65 | 0.3 | 0.27 | 0.53 | 0.07 | 0.35 |
Cox’s Bazar | 0.53 | 0.05 | 0.31 | 0.56 | 0.12 | 0.13 | 0.62 | 0.25 | 0.43 |
Dhaka | 0.6 | −0.19 | −0.16 | 0.65 | 0.3 | 0.24 | 0.57 | 0.14 | 0.41 |
Faridpur | 0.61 | −0.21 | −0.21 | 0.48 | −0.05 | 0.04 | 0.57 | 0.14 | 0.31 |
Feni | 0.49 | −0.02 | −0.05 | 0.64 | 0.28 | 0.32 | 0.68 | 0.36 | 0.63 |
Hatiya | 0.65 | −0.30 | 0.23 | 0.53 | 0.07 | 0.29 | 0.71 | 0.43 | 0.59 |
Jashore | 0.45 | −0.10 | 0.12 | 0.47 | −0.06 | −0.14 | 0.83 | 0.66 | 0.66 |
Khepupara | 0.62 | −0.23 | −0.02 | 0.51 | 0.02 | −0.07 | 0.8 | 0.6 | 0.57 |
Khulna | 0.55 | −0.10 | −0.16 | 0.5 | 0.01 | −0.11 | 0.74 | 0.47 | 0.73 |
Kutubdia | 0.45 | −0.09 | 0.28 | 0.56 | 0.11 | 0.24 | 0.6 | 0.21 | 0.49 |
Madaripur | 0.61 | −0.21 | −0.20 | 0.56 | 0.12 | 0.01 | 0.62 | 0.24 | 0.29 |
M. court | 0.53 | 0.07 | 0.04 | 0.49 | −0.01 | −0.02 | 0.54 | 0.08 | 0.39 |
Mongla | 0.58 | 0.17 | −0.17 | 0.6 | −0.20 | −0.33 | 0.61 | 0.21 | 0.42 |
Patuakhali | 0.71 | −0.42 | −0.38 | 0.6 | 0.2 | 0.13 | 0.77 | 0.54 | 0.58 |
Sandwip | 0.53 | 0.06 | −0.04 | 0.54 | 0.07 | −0.06 | 0.74 | 0.48 | 0.56 |
Satkhira | 0.45 | −0.11 | 0.08 | 0.51 | 0.02 | −0.12 | 0.77 | 0.53 | 0.67 |
Sitakunda | 0.56 | 0.12 | 0.13 | 0.51 | 0.02 | 0.1 | 0.58 | 0.16 | 0.35 |
References
- IPCC. Climate Change 2014: Synthesis Report. An Assessment of Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: http://ipcc.ch/index/html (accessed on 28 September 2020).
- Steiner, J.L.; Briske, D.D.; Brown, D.P.; Rottler, C. Vulnerability of Southern Plains agriculture to climate change. Clim. Chang. 2018, 146, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Kurukulasuriya, P.; Ajwad, M.I. Application of the Ricardian technique to estimate the impact of climate change on smallholder farming in Sri Lanka. Clim. Chang. 2007, 81, 39–59. [Google Scholar] [CrossRef]
- Moore, F.; Lobell, D. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Chang. 2014, 4, 610–614. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Dhiab, B.; Galan, C.; Msallen, M.; Fornaciari, M. Olive tree phenology and climate variations in the Mediterranean are over the last two decades. Theor. Appl. Climatol. 2014, 115, 207–218. [Google Scholar] [CrossRef]
- Chatzopoulos, T.; Lippert, C. Adaptation and climate change impacts: A structural Ricardian analysis of farm types in Germany. J. Agric. Econ. 2015, 66, 537–554. [Google Scholar] [CrossRef]
- Paparrizos, S.; Matzarakis, A. Present and future assessment of Growing Degree Days over selected Greek areas with different climate conditions. Meteorol. Atmos. Phys. 2017, 129, 453–467. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.S.; Kächele, H.; Müller, K. What drives the willingness to pay for crop insurance against extreme weather events (flood and drought) in Pakistan? A hypothetical market approach. Clim. Dev. 2016, 8, 234–244. [Google Scholar] [CrossRef]
- Hossain, M.S.; Arshad, M.; Qian, L.; Kächel, E.H.; Khan, I.; Il Islam, M.D.; Golam Mahboob, M. Climate change impacts on farmland value in Bangladesh. Ecol. Indic. 2020, 112, 106181. [Google Scholar] [CrossRef]
- Iqbal, K.; Roy, P. Climate Change, agriculture and migration: Evidence from Bangladesh. Clim. Chang. Econ. 2015, 6, 1550006. [Google Scholar] [CrossRef]
- Clarke, D.; Williams, S.; Jahiruddin, M.; Parks, K.; Salehin, M. Projections of on-farm salinity in coastal Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Werners, S.; Roy, S.; Ashraf, S.; Hoang, L.; Datta, D.K.; Ludwig, F. Role of information in farmers’ response to weather and water related stresses in the Ganges Delta of Bangladesh. Sustainability 2020. under review. [Google Scholar]
- Lebel, L. Local knowledge and adaptation to climate change in natural resource-based societies of the Asia-Pacific. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1057–1076. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—A Bangladesh case study. Climate 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Azman, A.; Hossain, K.; Islam, S.; Majumder, A.H.; Hatta, Z.A. Community participation in disaster management: A case study of Bangladesh. Indian J. Ecol. 2016, 43, 463–472. [Google Scholar]
- Mirza, M.M.Q. Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob. Environ. Chang. 2002, 12, 127–138. [Google Scholar] [CrossRef]
- Huq, N.; Hugé, J.; Boon, E.; Gain, A.K. Climate change impacts in agricultural communities in rural areas of coastal Bangladesh: A tale of many stories. Sustainability 2015, 7, 8437–8460. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Hasan, M. Climate-induced human displacement: A case study of Cyclone Aila in the southwest coastal region of Bangladesh. Nat. Hazards 2016, 81, 1051–1071. [Google Scholar] [CrossRef]
- Islam, S.N. Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustain. Water Resour. Manag. 2016, 2, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamun, A.; Farhat Rahman, N.; Aziz, A.; Qayum, A.; Hossain, I.; Islam Nihad, S.A.; Kabir, S. Identification of Meteorological Drought Prone Area in Bangladesh using Standardized Precipitation Index. J. Earth Sci. Clim. Chang. 2018, 9, 1000457. [Google Scholar]
- Haque Mondol, A.; Al-Mamun, A.; Iqbal, M.; Jang, D.H. Precipitation concentration in Bangladesh over different temporal periods. Adv. Meteorol. 2018, 2018, 1849050. [Google Scholar]
- Ahasan, M.N.; Chowdhary, A.M.; Quadir, D.A. Variability and trends of summer monsoon rainfall over Bangladesh. J. Hydrol. Meteorol. 2010, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hoque, R.; Matsumoto, J.; Hirano, J. Climatological characteristics of monsoon seasonal transitions over Bangladesh. Geogr. Rep. Tokyo Metrop. Univ. 2011, 46, 31–41. [Google Scholar]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Shahid, S. Trends in extreme rainfall events of Bangladesh. Theor. Appl. Climatol. 2011, 104, 489–499. [Google Scholar] [CrossRef]
- Gain, A.K.; Aryal, K.P.; Sana, P.; Uddin, M.N. Effect of river salinity on crop diversity: A case study of south west coastal region of Bangladesh. J. Nepal Agric. Res. 2007, 8, 29–37. [Google Scholar] [CrossRef]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Rahman, M.; Lund, T.; Bryceson, I. Salinity impacts on agro-biodiversity in three coastal, rural villages of Bangladesh. Ocean Coast. Manag. 2011, 54, 455–468. [Google Scholar] [CrossRef]
- Mondal, M.S.; Jalal, M.R.; Khan, M.; Kumar, U.; Rahman, R.; Huq, H. Hydrometeorological trends in southwest coastal Bangladesh: Perspectives of climate change and human interventions. Am. J. Clim. Chang. 2013, 2, 62–70. [Google Scholar] [CrossRef]
- Hasan, K.; Desiere, S.; D’Haese, M.; Kumar, L. Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh. Food Secur. 2018, 10, 1073–1088. [Google Scholar] [CrossRef]
- Paparrizos, S.; Kumar, U.; Amjath-Babu, T.S.; Ludwig, F. Are farmers willing to pay for participatory climate information services? Insights from a case study in the peri-urban area of Khulna, Bangladesh. Clim. Serv. under review.
- Charney, J.; Shukla, J. Predictability of Monsoons, Monsoon Dynamics; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A 2011, 369, 4751–4767. [Google Scholar] [CrossRef] [PubMed]
- Gbangou, T.; Ludwig, F.; van Slobbe, E.; Hoang, L.; Kranjac-Berisavljevic, G. Seasonal variability and predictability of agro-meteorological indices: Tailoring onset of rainy season estimation to meet farmers’ needs in Ghana. Clim. Serv. 2019, 14, 19–30. [Google Scholar] [CrossRef]
- Kumar, U.; Werners, S.; Paparrizos, S.; Datta, D.K.; Ludwig, F. Understanding hydro-climatic information needs of smallholder farmers in the Ganges Delta. Atmosphere. under submission.
- Gadgil, S.; RupaKumar, K. The Asian monsoon-agriculture and economy. In The Asian Monsoon; Wang, B., Ed.; Springer: Berlin, Germany, 2006; pp. 651–683. [Google Scholar]
- Mani, J.K.; Mukherjee, D. Accuracy of Weather forecast for hill zone of West Bengal for better agricultural management practices. Indian J. Res. 2016, 5, 325–328. [Google Scholar]
- Debnath, G.C.; Das, G.K. Verification of operational forecast over eastern India during southwest monsoon season. MAUSAM 2017, 68, 327–334. [Google Scholar]
- Mahmud, I.; Bari, S.H.; Ur Rahman, M.T. Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method. Environ. Eng. Res. 2017, 22, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Goddard, L.; Mason, S.J.; Zebiak, S.E.; Ropelewski, C.F.; Basher, R.; Cane, M.A. Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 2001, 21, 1111–1152. [Google Scholar] [CrossRef]
- Hansen, J.W.; Challinor, A.; Ines, A.; Wheeler, T.; Moron, V. Translating climate forecasts into agricultural terms: Advances and challenges. Clim. Res. 2006, 33, 27–41. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; García-Serrano, J.; Lienert, F.; Pintó Biescas, A.; Rodrigues, L. Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 245–268. [Google Scholar] [CrossRef]
- Weisheimer, A.; Palmer, T.N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 2014, 11, 20131162. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- van Aalst, M.K.; Cannon, T.; Burton, I. Community level adaptation to climate change: The potential role of participatory community risk assessment. Glob. Environ. Chang. 2008, 18, 165–179. [Google Scholar] [CrossRef]
- Baethgen, W.E. Climate risk management for adaptation to climate variability and change. Crop. Sci. 2010, 50, S70. [Google Scholar] [CrossRef]
- Hansen, J.W.; Mason, S.J.; Sun, L.; Tall, A. Review of seasonal climate forecasting for agriculture in Sub-Saharan Africa. Exp. Agric. 2011, 47, 205–240. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.A.; Stern, N. Uncertainty in science and its role in climate policy. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 4818–4841. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Beyerle, U.; Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Chang. 2013, 3, 1033–1038. [Google Scholar] [CrossRef]
- Coughlan de Perez, E.; Monasso, F.; val Aalst, M.; Suarez, P. Science to prevent disasters. Nat. Geosci. 2014, 7, 78–79. [Google Scholar] [CrossRef]
- Coughlan de Perez, E.; Stephens, E.; Bischiniotis, K.; van Aalst, M.; van den Hurk, B.; Mason, S.; Nissan, H.; Pappenberger, F. Should seasonal rainfall forecasts be used for flood preparedness? Hydrol. Earth Syst. Sci. 2017, 21, 4517–4524. [Google Scholar] [CrossRef] [Green Version]
- Nissan, H.; Munoz, A.G.; Mason, S.J. Targeted model evaluations for climate services: A case study on heat waves in Bangladesh. Clim. Risk Manag. 2020, 28, 100213. [Google Scholar] [CrossRef]
- Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.E.; Brown, B.G.; Mason, S. Forecast verification: Current status and future directions. Meteorol. Appl. 2008, 15, 3–18. [Google Scholar] [CrossRef]
- Roy, M.K.; Datta, D.K.; Adhikari, D.K.; Chowdhury, B.K.; Roy, P.J. Geology of the Khulna city corporation. J. Life Earth Sci. 2005, 1, 57–63. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afroz, T.; Alam, S. Sustainable shrimp farming in Bangladesh: A quest for an integrated coastal zone management. Ocean Coast. Manag. 2013, 71, 275–283. [Google Scholar] [CrossRef]
- Ahmed, B.; Kelman, I.; Fehr, H.K.; Saha, M. Community resilience to Cyclone disasters in coastal Bangladesh. Sustainability 2016, 8, 805. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Walkerden, G.; Amati, M. Households’ experience of local government during recovery from cyclones in coastal Bangladesh: Resilience, equity, and corruption. Nat. Hazards 2017, 85, 361–378. [Google Scholar] [CrossRef]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model. Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef] [Green Version]
- Molteni, F.; Stockdale, T.; Balmaseda, M.; Balsamo, G.; Buizza, R.; Ferranti, L.; Magnusson, L.; Mogensen, K.; Palmer, T.; Vitart, F. The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 2011, 656, 49. [Google Scholar]
- Cardinalli, M.; Pisello, A.L.; Piselli, C.; Pigliautile, I.; Cotana, F. Microclimate mitigation for enhancing energy and environmental performance of Near Zero Energy Settlements in Italy. Sustain. Cities Soc. 2020, 53, 101964. [Google Scholar] [CrossRef]
- Stiller-Reeve, M. Monsoon Onset in Bangladesh: Reconciling Scientific and Societal Prespectives. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2015. [Google Scholar]
- Ahmed, R.; Karmakar, S. Arrival and Withdrawal Dates of the Summer Monsoon in Bangladesh. Int. J. Clim. 1993, 13, 727–740. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Integrated analysis of present and future response of precipitation over selected Greek areas with different climate conditions. Atm. Res. 2016, 169, 199–208. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Weiler, M.; Matzarakis, A. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions. Theor. Appl. Climatol. 2018, 131, 259–270. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W.; Best, W.H. Some Application of Statistics to Meteorology; Pennsylvania State University: State College, PA, USA, 1958. [Google Scholar]
- Gudmundsson, L.; Bremnes, J.; Haugen, J.; Engen-Skaugen, T. Downscaling RCM precipitation to the station scale using statistical transformations: A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Gbangou, T.; Ludwig, F.; van Slobbe, E.; Greuell, W.; Kranja-Berisavlevic, G. Rainfall and dry spell occurrence in Ghana: Trends and seasonal predictions with a dynamical and a statistical model. Theor. Appl. Climatol. 2020, 141, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. Atmos. 2002, 107, 4429. [Google Scholar] [CrossRef]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An inter-comparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Voisin, N.; Schaake, J.C.; Lettenmaier, D.P. Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Weather Forecast. 2010, 25, 1603–1627. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Wetterhall, F.; Pappenberger, F.; He, Y.; Freer, J.; Cloke, H. Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlinear Process. Geophys. 2012, 19, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.T. Projection of future precipitation extremes across the Bangkok Metropolitan Region. Heliyon 2019, 5, e01678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, E.; Di Giuseppe, F.; Wetterhall, F.; Pappenberger, F. Seasonal forecasts of droughts in African basins using the Standardized Precipitation Index. Hydrol. Earth Syst. Sci. 2013, 17, 2359–2373. [Google Scholar] [CrossRef] [Green Version]
- Trambauer, P.; Werner, M.; Winsemius, H.C.; Maskey, S.; Dutra, E.; Uhlenbrook, S. Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci. 2015, 19, 1695–1711. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.J.; Stephenson, D.B. How do we know whether seasonal climate forecasts are any good? In Seasonal Climate: Forecasting and Managing Risk; Series IV, NATO Science Series, Earth and Environmental Sciences; Troccoli, A., Harrison, M., Anderson, D.L.T., Mason, S.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 82. [Google Scholar]
- Sutanto, S.J.; van der Weert, M.; Wanders, N.; Blauhut, V.; Van Lanen, H.A.J. Moving from drought hazard to impact forecasts. Nat. Commun. 2019, 10, 4945. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, A.; Kuipers, W. On the Relationship between the Frequency of Rain and Various Meteorological Parameters. (With Reference to the Problem of Objective Forecasting); Staatsdrukkerij-en Uitgeverijbedrijf: S-Gravenhage, The Netherlands, 1965. [Google Scholar]
- Woodcock, F. The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Weather Rev. 1976, 104, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Accadia, C.; Mariani, S.; Casaioli, M.; Lavagnini, A.; Speranza, A. Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest neighbor average method on high-resolution verification grids. Weather Forecast. 2003, 18, 918–932. [Google Scholar] [CrossRef]
- Stephenson, D.B. Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast. 2000, 15, 221–232. [Google Scholar] [CrossRef]
- Tartaglione, N. Relationship between precipitation forecast errors and skill scores of dichotomous forecasts. Weather Forecast. 2010, 25, 355–365. [Google Scholar] [CrossRef]
- Gsella, A.; de Meij, A.; Kerschbaumer, A.; Reimer, E.; Thunis, P.; Cuvelier, C. Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmos. Environ. 2014, 89, 797–806. [Google Scholar] [CrossRef]
- Fekri, M.; Yau, M. An information-theoretical score of dichotomous precipitation forecast. Mon. Weather Rev. 2016, 144, 1633–1647. [Google Scholar] [CrossRef]
- Singh, H.; Arora, K.; Ashrit, R.; Rajagopal, E.N. Verification of pre-monsoon temperature forecasts over India during 2016 with a focus on heatwave prediction. Nat. Hazards Earth Syst. Sci. 2017, 17, 1469–1485. [Google Scholar] [CrossRef] [Green Version]
- Ogutu, G.E.; Franssen, W.H.; Supit, I.; Omondi, P.; Hutjes, R.W. Skill of ECMWF system-4 ensemble seasonal climate forecasts for East Africa. Int. J. Climatol. 2017, 37, 2734–2756. [Google Scholar] [CrossRef] [Green Version]
- Cofiño, A.; Bedia, J.; Iturbide, M.; Vega, M.; Herrera, S.; Fernández, J.; Frías, M.; Manzanas, R.; Gutiérrez, J.M. The ECOMS User Data Gateway: Towards seasonal forecast data provision and research reproducibility in the era of climate services. Clim. Serv. 2018, 9, 33–43. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutiérrez, J.; Fernández, J.; Van Meijgaard, E.; Calmanti, S.; Magariño, M.; Cofiño, A.; Herrera, S. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Clim. Serv. 2018, 9, 44–56. [Google Scholar] [CrossRef]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. Package ‘ROCR’. Visualizing the performance of scoring classifiers. 2015. Available online: https://rdrr.io/cran/ROCR/ (accessed on 31 August 2020).
- Ratri, D.N.; Whan, K.; Schmeits, M. A Comparative Verification of Raw and Bias-Corrected ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia). J. Appl. Meteor. Climatol. 2019, 58, 1709–1723. [Google Scholar] [CrossRef]
- Van den Besselaar, E.J.; van der Schrier, G.; Cornes, R.C.; Iqbal, A.S.; Klein Tank, A.M. SA-OBS: A daily gridded surface temperature and precipitation dataset for Southeast Asia. J. Clim. 2017, 30, 5151–5165. [Google Scholar] [CrossRef]
- Gubler, S.; Sedlmeier, K.; Bhend, J.; Avalos, G.; Coelho, C.A.S.; Escajadillo, Y.; Jacques-Coper, M.; Martinez, R.; Schwierz, C.; de Skansi, M.; et al. Assessment of ECMWF SEAS5 Seasonal Forecast Performance over South America. Weather Forecast. 2020, 35, 561–584. [Google Scholar] [CrossRef]
- Wetterhall, F.; Winsemius, H.; Dutra, E.; Werner, M.; Pappenberger, E. Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrol. Earth Syst. Sci. 2015, 19, 2577. [Google Scholar] [CrossRef] [Green Version]
- Nyadzi, E.; Werners, E.S.; Biesbroek, R.; Long, P.H.; Franssen, W.; Ludwig, F. Verification of seasonal climate forecast toward hydroclimatic information needs of rice farmers in Northern Ghana. Weather Clim. Soc. 2019, 11, 127–142. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Tippett, M.K.; Kucharski, F.; Almazroui, M.; Ismail, M. Predicting peak summer monsoon precipitation over Pakistan in ECMWF SEAS5 and North American Multimodel Ensemble. Int. J. Climatol. 2020, 1–18. [Google Scholar] [CrossRef]
- Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 2016, 20, 1971–1982. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.C.; Singh, A.K. Weather and agro advisory services to farmers and its benefits. Clim. Chang. 2019, 5, 116–123. [Google Scholar]
- Ash, A.; McIntosh, P.; Cullen, B.R.; Carberry, P.; Smith, M.S. Constraints and opportunities in applying seasonal climate forecasts in agriculture. Aust. J. Agric. Res. 2007, 58, 952–956. [Google Scholar] [CrossRef]
Skills Metrics | ROC | H-K | PCC | ROC | H-K | PCC | ROC | H-K | PCC |
---|---|---|---|---|---|---|---|---|---|
Period | Pre-Monsoon | Monsoon | Winter | ||||||
Khulna | 0.55 | −0.10 | −0.16 | 0.5 | 0.01 | −0.11 | 0.74 | 0.47 | 0.73 |
Forecast Interval | 7 | 14 | 3 | 7 | 14 | 3 | 7 | 14 | 3 |
---|---|---|---|---|---|---|---|---|---|
Days | Days | Months | Days | Days | Months | Days | Days | Months | |
Period | Pre-monsoon | Monsoon | Winter | ||||||
R2 | 32% | 41% | 16% | 35% | 44% | 31% | 35% | 47% | 63% |
Period 1: 1981–1996 | Period 2: 2001–2016 | ||||||
---|---|---|---|---|---|---|---|
Type | Mean (Day) | SD (Days) | Mean (Day) | SD (Days) | t Value | Degrees of Freedom | p-Value |
Onset | 25/05 | 25 | 11/06 | 17 | 2.5021 | 30 | 0.0197 * |
Offset | 13/09 | 21 | 10/09 | 21 | 0.70386 | 30 | 0.4871 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparrizos, S.; Smolenaars, W.; Gbangou, T.; Slobbe, E.v.; Ludwig, F. Verification of Weather and Seasonal Forecast Information Concerning the Peri-Urban Farmers’ Needs in the Lower Ganges Delta in Bangladesh. Atmosphere 2020, 11, 1041. https://doi.org/10.3390/atmos11101041
Paparrizos S, Smolenaars W, Gbangou T, Slobbe Ev, Ludwig F. Verification of Weather and Seasonal Forecast Information Concerning the Peri-Urban Farmers’ Needs in the Lower Ganges Delta in Bangladesh. Atmosphere. 2020; 11(10):1041. https://doi.org/10.3390/atmos11101041
Chicago/Turabian StylePaparrizos, Spyridon, Wouter Smolenaars, Talardia Gbangou, Erik van Slobbe, and Fulco Ludwig. 2020. "Verification of Weather and Seasonal Forecast Information Concerning the Peri-Urban Farmers’ Needs in the Lower Ganges Delta in Bangladesh" Atmosphere 11, no. 10: 1041. https://doi.org/10.3390/atmos11101041
APA StylePaparrizos, S., Smolenaars, W., Gbangou, T., Slobbe, E. v., & Ludwig, F. (2020). Verification of Weather and Seasonal Forecast Information Concerning the Peri-Urban Farmers’ Needs in the Lower Ganges Delta in Bangladesh. Atmosphere, 11(10), 1041. https://doi.org/10.3390/atmos11101041