SST Warming in Recent Decades in the Gulf Stream Extension Region and Its Impact on Atmospheric Rivers
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. AR Detection
2.3. Eady Growth Rate
2.4. Linear Trend and its Significance
3. SST Warming in the GS Fronts
4. Increased Storm Track Activity and AR Frequency
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Small, R.J. Influence of the Gulf Stream on the troposphere. Nature 2008, 452, 206. [Google Scholar] [CrossRef]
- Minobe, S.; Miyashita, M.; Kuwano-Yoshida, A.; Tokinaga, H.; Xie, S.P. Atmospheric response to the Gulf Stream: Seasonal variations. J. Clim. 2010, 23, 3699–3719. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.A.; Small, R.J.; Samelson, R.M.; Qiu, B.; Joyce, T.M.; Kwon, Y.O.; Cronin, M.F. Western boundary currents and frontal air-sea interaction: Gulf stream and Kuroshio Extension. J. Clim. 2010, 23, 5644–5667. [Google Scholar] [CrossRef]
- Joyce, T.M.; Kwon, Y.O.; Yu, L. On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Clim. 2009, 22, 3177–3192. [Google Scholar] [CrossRef]
- Kuwano-Yoshida, A.; Minobe, S. Storm-track response to SST fronts in the Northwestern Pacific Region in an AGCM. J. Clim. 2017, 30, 1081–1102. [Google Scholar] [CrossRef]
- Booth, J.F.; Thompson, L.; Patoux, J.; Kelly, K.A. Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon Weather Rev. 2012, 140, 1241–1256. [Google Scholar] [CrossRef]
- de Vries, H.; Scher, S.; Haarsma, R.; Drijfhout, S.; van Delden, A. How Gulf-Stream SST-fronts influence Atlantic winter storms: Results from a downscaling experiment with HARMONIE to the role of modified latent heat fluxes and low-level baroclinicity. Clim. Dyn. 2018, 52, 5899–5909. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; Msadek, R.; Kwon, Y.O.; Booth, J.F.; Zarzycki, C. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Clim. Dyn. 2018, 52, 2067–2089. [Google Scholar] [CrossRef]
- Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.; Drumond, A.; Reason, C.J.C.; Taschetto, A.S.; Ramos, A.M.; Kumar, R.; Marengo, J. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annu. Rev. Environ. Resour. 2016, 41, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D. Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett. 2006, 33, 13801. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.W.; Michelson, S.A.; Neiman, P.J.; Ralph, F.M.; Wilczak, J.M. Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Weather Rev. 2006, 134, 1063–1080. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar] [CrossRef]
- Dacre, H.F.; Martínez-Alvarado, O.; Mbengue, C.O. Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeorol. 2019, 20, 1183–1196. [Google Scholar] [CrossRef]
- Dettinger, M. Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Am. Water Resour. Assoc. 2011, 47, 514–523. [Google Scholar] [CrossRef]
- Champion, A.J.; Allan, R.P.; Lavers, D.A. Atmospheric rivers do not explain UK summer extreme rainfall. J. Geophys. Res. Atmos. 2015, 120, 6731–6741. [Google Scholar] [CrossRef]
- Lavers, D.A.; Allan, R.P.; Wood, E.F.; Villarini, G.; Brayshaw, D.J.; Wade, A.J. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 2011, 38, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Villarini, G.; Allan, R.P.; Wood, E.F.; Wade, A.J. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. Atmos. 2012, 117, 1–13. [Google Scholar] [CrossRef]
- Sodemann, H.; Stohl, A. Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Weather Rev. 2013, 141, 2850–2868. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Sodemann, H. Remote sources of water vapor forming precipitation on the Norwegian west coast at 608N—A tale of hurricanes and an atmospheric river. J. Geophys. Res. 2008, 113, D05102. [Google Scholar]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R.; Tomé, R. Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeorol. 2015, 16, 579–597. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Brands, S.; Miguez-Macho, G. Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic Margin. J. Geophys. Res. 2016, 121, 931–948. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 2013, 40, 3259–3264. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. 2015, 120, 12514–12535. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Ramos, A.M.; Pinto, J.G.; Trigo, R.M.; Liberato, M.L.R.; Miguez-Macho, G. The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dyn. 2018, 9, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Pasquier, J.T.; Pfahl, S.; Grams, C.M. Modulation of Atmospheric River Occurrence and Associated Precipitation Extremes in the North Atlantic Region by European Weather Regimes. Geophys. Res. Lett. 2019, 46, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, Q.; Ren, X. Influence of boreal winter intraseasonal variation of Aleutian Low on water vapor transport and Atmospheric rivers. Atmosphere 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Tsukijihara, T.; Kawamura, R.; Kawano, T. Influential role of inter-decadal explosive cyclone activity on the increased frequency of winter storm events in Hokkaido, the northernmost island of Japan. Int. J. Climatol. 2019, 39, 1700–1715. [Google Scholar] [CrossRef]
- Matthews, T.; Murphy, C.; McCarthy, G.; Broderick, C.; Wilby, R.L. Super Storm Desmond: A process-based assessment. Environ. Res. Lett. 2018, 13, 014024. [Google Scholar] [CrossRef]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M.; et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Banzon, V.F.; Reynolds, R.W.; Stokes, D.; Xue, Y. A 1/4-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Clim. 2014, 27, 8221–8228. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhu, Y.; Newell, R.E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 1998, 126, 725–735. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.C.L.D.; Cairns, M.M.; Galarneau, T.J.; Eylander, J. Defining “Atmospheric river”: How the glossary of meteorology helped resolve a debate. Bull. Am. Meteorol. Soc. 2018, 99, 837–839. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Vázquez, M.; Lavers, D. Atmospheric rivers: A mini-review. Front. Earth Sci. 2014, 2, 2. [Google Scholar] [CrossRef]
- Rutz, J.J.; James Steenburgh, W.; Martin Ralph, F. The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Weather Rev. 2015, 143, 1924–1944. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rutz, J.J.; Cordeira, J.M.; Dettinger, M.; Anderson, M.; Reynolds, D.; Schick, L.J.; Smallcomb, C. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 2019, 100, 269–289. [Google Scholar] [CrossRef]
- Shaman, J.; Samelson, R.M.; Skyllingstad, E. Air-sea fluxes over the gulf stream region: Atmospheric controls and trends. J. Clim. 2010, 23, 2651–2670. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Valdes, P.J. On the existence of storm tracks. J. Atmos. Sci. 1990, 47, 1854–1864. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Fan, M.; Schneider, E.K. Observed decadal North Atlantic tripole SST variability. Part I: Weather noise forcing and coupled response. J. Atmos. Sci. 2012, 69, 35–50. [Google Scholar] [CrossRef]
- Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Resilience of the Gulf Stream path on decadal and longer timescales. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seidov, D.; Mishonov, A.; Reagan, J.; Baranova, O.; Cross, S.; Parsons, R. Regional climatology of the northwest Atlantic Ocean: High-resolution mapping of ocean structure and change. Bull. Am. Meteorol. Soc. 2018, 99, 2129–2138. [Google Scholar] [CrossRef]
- Sickmöller, M.; Blender, R.; Fraedrich, K. Observed winter cyclone tracks in the northern hemisphere in re-analysed ECMWF data. Q. J. R. Meteorol. Soc. 1999, 126, 591–620. [Google Scholar] [CrossRef]
- Small, R.J.; Tomas, R.A.; Bryan, F.O. Storm track response to ocean fronts in a global high-resolution climate model. Clim. Dyn. 2014, 43, 805–828. [Google Scholar] [CrossRef]
- Ciasto, L.M.; Li, C.; Wettstein, J.J.; Kvamstø, N.G. North Atlantic storm-track sensitivity to projected sea surface temperature: Local versus remote influences. J. Clim. 2016, 29, 6973–6991. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E.; Martin Ralph, F. An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeorol. 2018, 19, 321–337. [Google Scholar] [CrossRef]
- Xu, G.; Ma, X.; Chang, P.; Wang, L. A comparison of northern hemisphere atmospheric rivers detected by a new image-processing based method and magnitude-thresholding based methods. Atmosphere 2020, 11, 628. [Google Scholar] [CrossRef]
- Łupikasza, E.B. Seasonal patterns and consistency of extreme precipitation trends in Europe, December 1950 to February 2008. Clim. Res. 2017, 72, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Azad, R.; Sorteberg, A. Extreme daily precipitation in coastal western Norway and the link to atmospheric rivers. J. Geophys. Res. 2017, 122, 2080–2095. [Google Scholar] [CrossRef]
- Mattingly, K.S.; Mote, T.L.; Fettweis, X. Atmospheric River Impacts on Greenland Ice Sheet Surface Mass Balance. J. Geophys. Res. Atmos. 2018, 123, 8538–8560. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol. 2015, 522, 382–390. [Google Scholar] [CrossRef]
- Payne, A.E.; Demory, M.-E.; Leung, L.R.; Ramos, A.M.; Shields, C.A.; Rutz, J.J.; Siler, N.; Villarini, G.; Hall, A.; Ralph, F.M. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 2020, 1, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Chang, P.; Szunyogh, I.; Saravanan, R.; Bacmeister, J.T. A Modeling Strategy for the Investigation of the Effect of Mesoscale SST Variability on Atmospheric Dynamics. Geophys. Res. Lett. 2019, 46, 3982–3989. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Jia, Y.; Ji, R.; Zhang, J. SST Warming in Recent Decades in the Gulf Stream Extension Region and Its Impact on Atmospheric Rivers. Atmosphere 2020, 11, 1109. https://doi.org/10.3390/atmos11101109
Wu Y, Jia Y, Ji R, Zhang J. SST Warming in Recent Decades in the Gulf Stream Extension Region and Its Impact on Atmospheric Rivers. Atmosphere. 2020; 11(10):1109. https://doi.org/10.3390/atmos11101109
Chicago/Turabian StyleWu, Yifei, Yinglai Jia, Rui Ji, and Jie Zhang. 2020. "SST Warming in Recent Decades in the Gulf Stream Extension Region and Its Impact on Atmospheric Rivers" Atmosphere 11, no. 10: 1109. https://doi.org/10.3390/atmos11101109
APA StyleWu, Y., Jia, Y., Ji, R., & Zhang, J. (2020). SST Warming in Recent Decades in the Gulf Stream Extension Region and Its Impact on Atmospheric Rivers. Atmosphere, 11(10), 1109. https://doi.org/10.3390/atmos11101109