Characteristics of Extreme Value Statistics of Annual Maximum Monthly Precipitation in East Asia Calculated Using an Earth System Model of Intermediate Complexity
Abstract
:1. Introduction
2. Data and Methods
2.1. Earth System Model
2.2. Target Grid
2.3. Analysis Method
2.4. Data
3. Current Climate Reproducibility
4. Results and Discussion
4.1. 100-Year Climatological Annual Maximum Monthly Precipitation
4.2. Estimated Annual Maximum Monthly Precipitation with a Return Level of 100 Years
4.3. Autocorrelation
4.4. Wavelet Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Kawase, H.; Tsuguti, H.; Nakaegawa, T.; Seino, N.; Murata, A.; Takayabu, I. The Heavy Rain Event of July 2018 in Japan Enhanced by Historical Warming. Bull. Atmos. Meteorol. Soc. 2019, 101. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. Hydrol. Sci. J. 2004, 49, 591–610. [Google Scholar] [CrossRef]
- Takara, K. Frequency Analysis of Larger Samples of Hydrologic Extreme-Value Data: How to estimate the T-year quantile for samples with a size of more than the return period T. Disaster Prev. Res. Inst. Annu. 2006, 49B, 7–12. [Google Scholar]
- Ishihara, K.; Nakaegawa, T. Estimation of Probable Daily Precipitation with Nonparametric Method at 51 Meteorological Observatories in Japan. J. Jpn. Soc. Hydrol. Wat. Resour. 2008, 21, 459–463. [Google Scholar] [CrossRef]
- Nakaegawa, T. Estimation of the frequency analysis of annual maximum monthly precipitation in east Asia based on a dynamical ensemble method. Proc. Hydraul. Eng. 2004, 51, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Nakaegawa, T. Characteristics of the Largest Recorded Annual Maximum Monthly Precipitation in an Atmospheric Global Climate Model Experiment. J. Jpn. Soc. Hydrol. Wat. Resour. 2010, 23, 373–383. [Google Scholar] [CrossRef]
- Mizuta, R.; Murata, A.; Ishii, M.; Shiogama, H.; Hibino, K.; Mori, N.; Arakawa, O.; Imada, Y.; Yoshida, K.; Aoyagi, T.; et al. Over 5000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models. Bull. Am. Meteor. Soc. 2017, 99, 1383–1398. [Google Scholar] [CrossRef]
- Sugi, M.; Imada, Y.; Nakaegawa, T.; Kamiguchi, K. Estimating probability of extreme rainfall over Japan using Extended Regional Frequency Analysis. Hydrol. Res. Lett. 2017, 11, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Chang. 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.Y.; Campin, J.M.; et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model. Dev. 2010, 3, 603–633. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Aerts, J.C.; de Moel, H.; Renssen, H. Verification of a coupled climate-hydrological model against Holocene palaeohydrological records. Glob. Planet. Chang. 2007, 57, 283–300. [Google Scholar] [CrossRef]
- Ward, P.J.; Renssen, H.; Aerts, J.C.; Verburg, P.H. Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe). Clim. Chang. 2011, 106, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Kobashi, T.; Menviel, L.; Jeltsch-Thömmes, A.; Vinther, B.M.; Box, J.E.; Muscheler, R.; Nakaegawa, T.; Pfister, P.L.; Döring, M.; Leuenberger, M.; et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Stuhne, G.R.; Peltier, W.R. Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica. J. Geophys. Res. Earth Surf. 2015, 120, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Orlanski, I. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Molina-Aguilar, J.P.; Gutierrez-Lopez, A.; Raynal-Villaseñor, J.A.; Garcia-Valenzuela, L.G. Optimization of Parameters in the Generalized Extreme-Value Distribution Type 1 for Three Populations Using Harmonic Search. Atmosphere 2019, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Młyński, D.; Wałęga, A.; Petroselli, A.; Tauro, F.; Cebulska, M. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2019, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.R.M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Nakaegawa, T. Preliminary study of the relationship between precipitation over japan and Niño 3 sea surface temperature. Proc. Hydraul. Eng. 2004, 48, 85–90. [Google Scholar] [CrossRef]
- Kobashi, T.; Severinghaus, J.P.; Barnola, J.M.; Kawamura, K.; Carter, T.; Nakaegawa, T. Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Clim. Chang. 2010, 100, 733–756. [Google Scholar] [CrossRef] [Green Version]
- Nakaegawa, T.; Horiuchi, S.; Kim, H. Development of a web application for examining climate data of global lake basins: CGLB. Hydrol. Res. Lett. 2015, 9, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Kamahori, H.; Arakawa, O. Tropical cyclone induced precipitation over Japan using observational data. SOLA 2018, 14, 165–169. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakaegawa, T.; Kobashi, T.; Kamahori, H. Characteristics of Extreme Value Statistics of Annual Maximum Monthly Precipitation in East Asia Calculated Using an Earth System Model of Intermediate Complexity. Atmosphere 2020, 11, 1273. https://doi.org/10.3390/atmos11121273
Nakaegawa T, Kobashi T, Kamahori H. Characteristics of Extreme Value Statistics of Annual Maximum Monthly Precipitation in East Asia Calculated Using an Earth System Model of Intermediate Complexity. Atmosphere. 2020; 11(12):1273. https://doi.org/10.3390/atmos11121273
Chicago/Turabian StyleNakaegawa, Tosiyuki, Takuro Kobashi, and Hirotaka Kamahori. 2020. "Characteristics of Extreme Value Statistics of Annual Maximum Monthly Precipitation in East Asia Calculated Using an Earth System Model of Intermediate Complexity" Atmosphere 11, no. 12: 1273. https://doi.org/10.3390/atmos11121273