Future Crop Yield Projections Using a Multi-model Set of Regional Climate Models and a Plausible Adaptation Practice in the Southeast United States
Abstract
:1. Introduction
2. Weather/Climate Data
2.1. Observed Data
2.2. NARCCAP Phase II
3. Crop Model
4. Results
4.1. Crop Yield Amounts in Current Climate
4.2. Future Climate Projection
4.3. Crop Yield Amounts in Future Climate
4.4. Weighted Ensemble
4.5. Adaptation Practice
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, D.W.; Baigorria, G.A.; Romero, C.C.; Cocke, S.; Oh, J.-H.; Kim, B.-M. Assessing crop yield simulations driven by the NARCCAP regional climate models in the southeast United States. J. Geophys. Res. Atmos. 2017, 122, 2549–2558. [Google Scholar] [CrossRef]
- USDA-NASS (United States Department of Agriculture—National Agricultural Statistics Service). 2019 Statistics by State. Available online: http://www.nass.usda.gov/Statistics_by_State/ (accessed on 9 September 2020).
- Prasad, P.V.V.; Boote, K.J.; Allen, H., Jr.; Thomas, J.M.G. Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob. Chang. Biol. 2003, 9, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Kukal, M.S.; Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. Great Plains agricultural production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Baigorria, G.A.; Jones, J.W.; O’Brien, J.J. Understanding rainfall spatial variability in the Southeast USA at different timescales. Int. J. Climatol. 2007, 27, 749–760. [Google Scholar] [CrossRef]
- Mearns, L.O.; Gutowski, W.J.; Jones, R.; Leung, L.-Y.; McGinnis, S.; Nunes, A.M.B.; Qian, Y. A regional climate change assessment program for North America. EOS 2009, 311–312. [Google Scholar] [CrossRef]
- Mearns, L.O.; Arritt, R.; Biner, S.; Bukovsky, M.S.; McGinnis, S.; Sain, S.; Caya, D.; Correia, J.; Flory, D.; Gutowski, W.; et al. The North American regional climate change assessment program overview of phase I results. Bull. Am. Meteorol. Soc. 2012, 93, 1337–1362. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Bukovsky, M.; Gao, J.; Mearns, L.O.; O’Neill, B. The NA-CORDEX Dataset; NCAR Climate Data Gateway: Boulder, CO, USA, 2017. [Google Scholar]
- Mbow, H.O.; Reisinger, A.; Canadell, J.; O’Brien, P. Food Security. In Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergov. Panel Clim. Chang. 2019, 22, 58. [Google Scholar]
- Nouri, M.; Homaee, M.; Bannayan, M.; Hoogenboom, G. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agric. Water Manag. 2017, 186, 108–119. [Google Scholar] [CrossRef]
- Dobor, L.; Zoltán, B.; Tomáš, H.; Tamás, A.; Tamás, S.; Nándor, F. Crop planting date matters: Estimation methods and effect on future yields. Agric. For. Meteorol. 2016, 223, 103–115. [Google Scholar] [CrossRef]
- Anwar, M.R.; Wang, B.; Liu, D.L.; Waters, C. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Sci. Total Environ. 2020, 714, 136806. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, X.; Smith, W.; Grant, B.; Jing, Q.; Cannon, A.J.; Neilsen, D.; McConkey, B.; Li, G.; Bonsal, B.; et al. Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C. Environ. Res. Lett. 2019, 14, 074005. [Google Scholar] [CrossRef]
- Bristow, K.; Campbell, G. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Caya, D.; Laprise, R. A semi-Lagrangian semi-implicit regional climate model: The Canadian RCM. Mon. Weather Rev. 1999, 127, 341–362. [Google Scholar] [CrossRef]
- Juang, H.; Hong, S.; Kanamitsu, M. The NMC nested regional spectral model: An update. Bull. Am. Meteorol. Soc. 1997, 78, 2125–2143. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Hassell, D.; Hudson, D.; Wilson, S.; Jenkins, G.; Mitchell, J. Generating High Resolution Climate Change Scenarios Using PRECIS; Met Office: Exeter, UK, 2003; p. 34.
- Grell, G.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Tech. Note NCAR/TN-398; NCAR, Mesoscale and Microscale Meteorology Division: Boulder, CO, USA, 1993; p. 107. [Google Scholar]
- Giorgi, F.; Marinucci, M.R.; Bates, G.T. Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Weather Rev. 1993, 121, 2794–2813. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; NCAR Tech. Note NCAR/TN-468+STR; NCAR, Mesoscale and Microscale Meteorology Division: Boulder, CO, USA, 2005; p. 88. [Google Scholar]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The Community Climate System Model: CCS3. J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Flato, G.M. The Third Generation Coupled Global Climate Model (CGCM3). 2005. Available online: http://www.ec.gc.ca/ccmac-cccma/default.asp?n=1299529F-1 (accessed on 1 September 2019).
- GFDL GAMDT (The GFDL Global Model Development Team). The new GFDL global atmospheric and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Clim. 2004, 17, 4641–4673. [Google Scholar] [CrossRef]
- Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2000, 16, 147–168. [Google Scholar] [CrossRef]
- Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 2000, 16, 123–146. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G. Methodologies for simulating impacts of climate change on crop production. Field Crop. Res. 2011, 124, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Hoogenboom, G.; Porter, C.; Boote, K.; Batchelor, W.; Hunt, L.; Wilkens, P.; Singh, U.; Gijsman, A.; Ritchie, J. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Batchelor, W.D.; Hunt, L.A.; Boote, K.J.; Singh, U.; Uryasev, O.; Bowen, W.T.; et al. Decision Support System for Agrotechnology Transfer Version 4.0; University of Hawaii: Honolulu, HI, USA, 2004. [Google Scholar]
- Baigorria, G.A.; Romero, C.C. Assessment of erosion hotspots in a watershed: Integrating the WEPP model and FIS in a case study in the Peruvian Andes. Environ. Modeling Softw. 2007, 22, 1175–1183. [Google Scholar] [CrossRef]
- USDA-NRCS. 2015 Soil Surveys. Available online: http://www.nrcs.usda.gov/wps/portal /nrcs/soilsurvey/soils/survey/state/ (accessed on 15 March 2017).
- Romero, C.C.; Hoogenboom, G.; Baigorria, G.A.; Koo, J.; Gijsman, A.J.; Wood, S. Reanalysis of a global soil database for crop and environmental modeling. Environ. Model. Softw. 2012, 35, 163–170. [Google Scholar] [CrossRef]
- Ruane, A.C.; McDermid, S.; Rosenzweig, C.; Baigorria, G.A.; Jones, J.W.; Romero, C.C.; De Wayne, C. Carbon-Temperature-Water change analysis for peanut production under climate change: A prototype for the AgMIP Coordinated Climate-Crop modeling project (C3MP). Glob. Chang. Biol. 2014, 20, 394–407. [Google Scholar] [CrossRef] [PubMed]
- USDA-NASS. Field Crops. Usual planting and harvesting dates, Agricultural Handbook Number 628. 2010. Available online: http://usda.mannlib.cornell.edu/usda/current/planting-10-29-2010.pdf (accessed on 15 March 2017).
- Shin, D.W.; Krishnamurti, T.N. Short to medium-range superensemble precipitation forecasts using satellite products: 1. Deterministic forecasting. J. Geophy. Res. 2003, 108, 8383. [Google Scholar] [CrossRef]
- Kar, S.C.; Hovsepyan, A.; Park, C.K. Economic values of the APCN multi-model ensemble categorical seasonal predictions. Meteorol. Appl. 2006, 13, 267–277. [Google Scholar] [CrossRef]
- Shin, D.W.; Kang, S.-D.; Cocke, S.; Goo, T.-Y.; Kim, H.-D. Seasonal probability of precipitation forecasts using a weighted ensemble approach. Int. J. Climatol. 2008, 28, 1971–1976. [Google Scholar] [CrossRef]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. In Mitigation and Adaptation Strategies for Global Change; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 85–114. [Google Scholar]
- Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A review of coupled hydrologic and crop growth models. Agric. Water Manag. 2019, 224, 105746. [Google Scholar] [CrossRef]
- López-Lambraño, A.A.; Martínez-Acosta, L.; Gámez-Balmaceda, E.; Medrano-Barboza, J.P.; López, J.F.R.; López-Ramos, A. Supply and demand analysis of water resources. Case study: Irrigation water demand in a semi-arid zone in Mexico. Agriculture 2020, 10, 333. [Google Scholar] [CrossRef]
- Alston, J.; Norton, G.; Pardey, P. Science under Scarcity: Principles and Practices for Agricultural Research Evaluation and Priority Setting; Cornell University Press: New York, NY, USA, 1995. [Google Scholar]
- Solis, D.; Bravo-Ureta, B.E. Economic and financial sustainability of private agricultural extension in El Salvador. J. Sustain. Agric. 2005, 26, 81–102. [Google Scholar] [CrossRef]
- Gittinger, J.P. Economic Analysis of Agricultural Projects; Johns Hopkins University Press: Baltimore, MD, USA, 1982. [Google Scholar]
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis: Concepts and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Ravallion, M. Evaluation in the Practice of Development; Policy Research Working Paper 4547; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
Driving AOGCM | |||||
---|---|---|---|---|---|
RCM | CCSM | CGCM3 | GFDL | HadCM3 | |
CRCM | CC | C3 | |||
ECP2 | EG | EH | |||
HRM3 | HG | HH | |||
MM5I | MC | MH | |||
RCM3 | R3 | RG | |||
WRFG | WC | W3 |
RMSE | SCORR | ||||||
---|---|---|---|---|---|---|---|
Crop | Maize | Peanut | Cotton | Maize | Peanut | Cotton | |
Model | |||||||
C3 | 1032 | 1138 | 903 | 0.92 | 0.79 | 0.64 | |
CC | 3073 | 2434 | 2010 | 0.80 | 0.57 | 0.37 | |
EG | 1680 | 880 | 1057 | 0.82 | 0.79 | 0.78 | |
HG | 1075 | 974 | 739 | 0.92 | 0.88 | 0.79 | |
HH | 1273 | 649 | 423 | 0.93 | 0.82 | 0.80 | |
MC | 1487 | 1251 | 901 | 0.85 | 0.61 | 0.47 | |
R3 | 1859 | 939 | 1027 | 0.82 | 0.76 | 0.72 | |
RG | 2641 | 728 | 599 | 0.83 | 0.82 | 0.72 | |
W3 | 2333 | 1685 | 1553 | 0.93 | 0.84 | 0.71 | |
WC | 3977 | 2120 | 1826 | 0.84 | 0.70 | 0.64 |
Tmax (°C) | Tmin (°C) | Rain (mm/day) | ||
---|---|---|---|---|
Model | ||||
C3 | 3.00 | 2.58 | −0.15 | |
CC | 3.61 | 2.86 | −0.21 | |
EG | 1.56 | 2.06 | 0.55 | |
HG | 3.62 | 3.37 | 0.16 | |
HH | 2.61 | 2.43 | 0.44 | |
MC | 2.86 | 2.26 | −0.50 | |
R3 | 3.09 | 2.28 | −0.10 | |
RG | 3.24 | 2.55 | −0.52 | |
W3 | 2.11 | 1.71 | −0.31 | |
WC | 3.92 | 2.12 | −0.38 |
Crop | Maize | Peanut | Cotton | |
---|---|---|---|---|
Model | ||||
C3 | −381 | −721 | −518 | |
CC | −1524 | −315 | −356 | |
EG | −778 | 179 | 281 | |
HG | −1905 | −735 | −432 | |
HH | −571 | −646 | −290 | |
MC | −1712 | −827 | −685 | |
R3 | −419 | −387 | 65 | |
RG | −2050 | −704 | −144 | |
W3 | −336 | −206 | −62 | |
WC | −1217 | −394 | −219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.W.; Cocke, S.; Baigorria, G.A.; Romero, C.C.; Kim, B.-M.; Kim, K.-Y. Future Crop Yield Projections Using a Multi-model Set of Regional Climate Models and a Plausible Adaptation Practice in the Southeast United States. Atmosphere 2020, 11, 1300. https://doi.org/10.3390/atmos11121300
Shin DW, Cocke S, Baigorria GA, Romero CC, Kim B-M, Kim K-Y. Future Crop Yield Projections Using a Multi-model Set of Regional Climate Models and a Plausible Adaptation Practice in the Southeast United States. Atmosphere. 2020; 11(12):1300. https://doi.org/10.3390/atmos11121300
Chicago/Turabian StyleShin, D. W., Steven Cocke, Guillermo A. Baigorria, Consuelo C. Romero, Baek-Min Kim, and Ki-Young Kim. 2020. "Future Crop Yield Projections Using a Multi-model Set of Regional Climate Models and a Plausible Adaptation Practice in the Southeast United States" Atmosphere 11, no. 12: 1300. https://doi.org/10.3390/atmos11121300
APA StyleShin, D. W., Cocke, S., Baigorria, G. A., Romero, C. C., Kim, B.-M., & Kim, K.-Y. (2020). Future Crop Yield Projections Using a Multi-model Set of Regional Climate Models and a Plausible Adaptation Practice in the Southeast United States. Atmosphere, 11(12), 1300. https://doi.org/10.3390/atmos11121300