A Landscape Study of Sediment Formation and Transport in the Urban Environment
Abstract
:1. Introduction
2. Experiments
2.1. Descriptions of the Studied Cities
2.2. Description of the Surveyed Sites
2.3. Method of the Field Landscape Survey
- Road (a section of the street road network connecting residential areas, and public and industrial areas of the city);
- Green zone, including areas with pervious cover: lawns, flower beds, and playgrounds with a grass cover;
- Sidewalks and adjacent pedestrian paths;
- Vehicle zone (driveways connecting courtyard spaces with the road network, parking spaces, and illegal parking places that are areas of other functional zones illegally used for parking).
- Functional purpose (functional zone);
- Association with external or internal parts of the EURL;
- Type of surface cover, paving (asphalt, gravel, grass, etc.);
- Percentage of disturbed surface cover (expert’s evaluation);
- Overall technical condition of the paving and infrastructure element (five-point expert’s evaluation);
- Quality of the cleaning (five-point expert’s evaluation);
- The number of parked cars;
- The number of parking spaces;
- Presence and type of earthworks, construction, and landscaping works;
- Slope gradient (yes/no);
- Local depressions(yes/no);
- Causes of soil erosion and sediment formation;
- Visual signs of external sources of sediment entry.
3. Results
3.1. Functional Zones
3.2. Motor Transport
3.3. Soils
3.4. Disturbed Cover
3.5. Vegetation
3.6. Cleaning and Technical Condition
3.7. Earthworks and Construction on Sites
3.8. Gradient
3.9. Sediment Formation and Transport
4. Discussion
4.1. Motor Transport
4.2. Management—Technical Condition
4.3. Management—Vegetation
4.4. Management—Cleaning
4.5. Earthworks
4.6. Sediment Production
4.7. Connectivity, Sediment Transport
4.8. Representativeness of the Study
4.9. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chin, A.; Beach, T.; Luzzadder-Beach, S.; Solecki, W.D. Challenges of the “Anthropocene”. Anthropocene 2017, 20, 1–3. [Google Scholar] [CrossRef]
- Ford, J.R.; Price, S.J.; Cooper, A.H.; Waters, C.N. An assessment of lithostratigraphy for anthropogenic deposits. Geol. Soc. Lond. Spec. Publ. 2014, 395, 55–89. [Google Scholar] [CrossRef] [Green Version]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Galuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef]
- Gerten, C.; Fina, S.; Rusche, K. The Sprawling Planet: Simplifying the Measurement of Global Urbanization Trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Vlasov, D.V.; Korlyakov, I.D.; Kasimov, N.S. Contamination of urban soils with heavy metals in Moscow as affected by building development. Sci. Total Environ. 2018, 636, 854–863. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.-C.; Mäder, P.; Zanetta, A.; Frey, D.; Stehle, B.; Kuhn, A.; Munyangabe, A.; Fliessbach, A. Urban Soil Quality Assessment—A Comprehensive Case Study Dataset of Urban Garden Soils. Front. Environ. Sci. 2018, 6, 136. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Sushkova, S.; Konstantinov, A.; Rajput, V.D.; Sherstnev, A. Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia. J. Environ. Manag. 2019, 239, 366–375. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Keesstra, S.D.; Maroulis, J. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology 2017, 277, 237–250. [Google Scholar] [CrossRef]
- Chambers, L.G.; Chin, Y.-P.; Filippelli, G.M.; Gardner, C.B.; Herndon, E.M.; Long, D.T.; Lyons, W.B.; MacPherson, G.L.; McElmurry, S.P.; McLean, C.E.; et al. Developing the scientific framework for urban geochemistry. Appl. Geochem. 2016, 67, 1–20. [Google Scholar] [CrossRef]
- Muthusamy, M.; Tait, S.; Schellart, A.; Beg, M.N.A.; Carvalho, R.F.; de Lima, J.L.M.P. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces. J. Hydrol. 2018, 557, 426–433. [Google Scholar] [CrossRef]
- Taylor, K. Urban environments. In Environmental Sedimentology; Perry, C., Taylor, K., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2007; pp. 190–222. [Google Scholar]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Urban sediment supply to streams from hillslope sources. Sci. Total Environ. 2019, 653, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Platt, R.H. The ecological city: Introduction and overview. In The Ecological City: Preserving and Restoring Urban Biodiversity; Platt, R.H., Rowntree, R.A., Muick, P.C., Eds.; University of Massachusetts Press: Amherst, MA, USA, 1994; pp. 1–17. [Google Scholar]
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Global sediment yields from urban and urbanizing watersheds. Earth Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Taylor, K.G.; Owens, P.N. Sediments in urban river basins: A review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J. Soils Sediments 2009, 9, 281–303. [Google Scholar] [CrossRef]
- Seleznev, A.A.; Yarmoshenko, I.V.; Malinovsky, G.P. Urban geochemical changes and pollution with potentially harmful elements in seven Russian cities. Sci. Rep. 2020, 10, 1668. [Google Scholar] [CrossRef]
- Sutherland, R.A. Lead in grain size fractions of road-deposited sediment. Environ. Pollut. 2003, 121, 229–237. [Google Scholar] [CrossRef]
- Padoan, E.; Romè, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E. Human Health Risk Assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 2019, 9, 16364. [Google Scholar] [CrossRef]
- Townsend, K.R.; Lu, H.-C.; Sharley, D.J.; Pettigrove, V. Associations between microplastic pollution and land use in urban wetland sediments. Environ. Sci. Pollut. Res. 2019, 26, 22551–22561. [Google Scholar] [CrossRef]
- Marshall, S.; Sharley, D.; Jeppe, K.; Sharp, S.; Rose, G.; Pettigrove, V. Potentially Toxic Concentrations of Synthetic Pyrethroids Associated with Low Density Residential Land Use. Front. Environ. Sci. 2016, 4, 75. [Google Scholar] [CrossRef]
- Froger, C.; Ayrault, S.; Evrard, O.; Monvoisin, G.; Bordier, L.; Lefèvre, I.; Quantin, C. Tracing the sources of suspended sediment and particle-bound trace metal elements in an urban catchment coupling elemental and isotopic geochemistry, and fallout radionuclides. Environ. Sci. Pollut. Res. 2018, 25, 28667–28681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Huang, L.; Li, J.; Ying, Q.; Zhang, H.; Liu, X.; Liao, H.; Li, N.; Liu, Z.; Mao, Y.; et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environ. Int. 2018, 115, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Owens, P.N.; Blake, W.H.; Gaspar, L.; Gateuille, D.; Koiter, A.J.; Lobb, D.A.; Petticrew, E.; Reiffarth, D.; Smith, H.; Woodward, J. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci. Rev. 2016, 162, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive Road Dust PM2.5 Emissions and Their Potential Health Impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- WHO. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project: Final Technical Report; The WHO European Centre for Environment and Health: Bonn, Switzerland, 2013. [Google Scholar]
- Alghamdi, M.A.; Shamy, M.; Redal, M.A.; Khoder, M.; Awad, A.H.; Elserougy, S. Microorganisms associated particulate matter: A preliminary study. Sci. Total Environ. 2014, 479–480, 109–116. [Google Scholar] [CrossRef]
- Groulx, N.; Urch, B.; Duchaine, C.; Mubareka, S.; Scott, J.A. The Pollution Particulate Concentrator (PoPCon): A platform to investigate the effects of particulate air pollutants on viral infectivity. Sci. Total Environ. 2018, 628–629, 1101–1107. [Google Scholar] [CrossRef]
- Qin, N.; Liang, P.; Wu, C.; Wang, G.; Xu, Q.; Xiong, X.; Wang, T.; Zolfo, M.; Segata, N.; Qin, H.; et al. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 2020, 21, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Martínez, V.; Van Pelt, S.; Moore-Kucera, J.; Baddock, M.C.; Zobeck, T.M. Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Res. 2015, 18, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Gardner, T.; Acosta-Martinez, V.; Calderón, F.J.; Zobeck, T.M.; Baddock, M.; Van Pelt, R.S.; Senwo, Z.; Dowd, S.; Cox, S. Pyrosequencing Reveals Bacteria Carried in Different Wind-Eroded Sediments. J. Environ. Qual. 2012, 41, 744–753. [Google Scholar] [CrossRef]
- Hui, N.; Parajuli, A.; Puhakka, R.; Grönroos, M.; Roslund, M.I.; Vari, H.K.; Selonen, V.A.; Yan, G.; Siter, N.; Nurminen, N.; et al. Temporal variation in indoor transfer of dirt-associated environmental bacteria in agricultural and urban areas. Environ. Int. 2019, 132, 105069. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.Y.; King, G.H.; Saraswat, A.; Henderson, S.B. Seasonal ambient particulate matter and population health outcomes among communities impacted by road dust in British Columbia, Canada. J. Air Waste Manag. Assoc. 2017, 67, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Sevilla, A.; Rodríguez, M.L.; García-Maraver, Á.; Zamorano, M. An index to quantify street cleanliness: The case of Granada (Spain). Waste Manag. 2013, 33, 1037–1046. [Google Scholar] [CrossRef]
- Yuen, J.Q.; Olin, P.H.; Lim, H.S.; Benner, S.G.; Sutherland, R.A.; Ziegler, A.D. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. J. Environ. Manag. 2012, 101, 151–163. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. A suburban sediment budget: Coarse-grained sediment flux through hillslopes, stormwater systems and streams. Earth Surf. Process. Landf. 2019, 44, 2600–2614. [Google Scholar] [CrossRef]
- Butler, D.; Davies, J.W. Urban. Drainage, 3rd ed.; Spon Press: London, UK, 2011. [Google Scholar]
- Murakami, M.; Fujita, M.; Furumai, H.; Kasuga, I.; Kurisu, F. Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. J. Hazard. Mater. 2009, 164, 707–712. [Google Scholar] [CrossRef]
- Knox, E.G.; Bouchard, C.E.; Barrett, J.G. Erosion and Sedimentation in Urban Areas. In Agronomy Monographs; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2015; pp. 179–197. [Google Scholar]
- Hewett, C.J.M.; Simpson, C.; Wainwright, J.; Hudson, S. Communicating risks to infrastructure due to soil erosion: A bottom-up approach. Land Degrad. Dev. 2018, 29, 1282–1294. [Google Scholar] [CrossRef] [Green Version]
- Volpov, E.; Kishcha, P. An advanced technique for outdoor insulation pollution mapping in the israel electric company power grid. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3539–3548. [Google Scholar] [CrossRef]
- Jain, M.K.; Kothyari, U.C. Estimation of soil erosion and sediment yield using GIS. Hydrol. Sci. J. 2000, 45, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, R.; Dutta, D. Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale. Water Resour. Manag. 2006, 21, 1635–1647. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis) Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Process. Landforms 2012, 38, 30–46. [Google Scholar] [CrossRef]
- Walling, D.E. The sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Wohl, E.; Brierley, G.; Cadol, D.; Coulthard, T.J.; Covino, T.; Fryirs, K.A.; Grant, G.; Hilton, R.G.; Lane, S.N.; Magilligan, F.J.; et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landf. 2018, 44, 4–26. [Google Scholar] [CrossRef]
- Mahoney, D.T.; Fox, J.F.; Al Aamery, N. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. J. Hydrol. 2018, 561, 862–883. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D. Degradation in urban areas. Curr. Opin. Environ. Sci. Health 2018, 5, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Santikari, V.P.; Murdoch, L.C. Effects of construction-related land use change on streamflow and sediment yield. J. Environ. Manag. 2019, 252, 109605. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.A.; Zech, W.C.; Donald, W.N.; Turochy, R.; Fagan, B.G. Transferring Innovative Erosion and Sediment Control Research Results into Industry Practice. Water 2019, 11, 2549. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.; Woo, H. Sediment Problems in Korea. J. Hydraul. Eng. 2000, 126, 486–491. [Google Scholar] [CrossRef]
- Yan, H.; Ding, G.; Feng, K.; Zhang, L.; Li, H.; Wang, Y.; Wu, T. Systematic evaluation framework and empirical study of the impacts of building construction dust on the surrounding environment. J. Clean. Prod. 2020, 275, 122767. [Google Scholar] [CrossRef]
- Perez, M.A.; Zech, W.C.; Donald, W.N.; Fang, X. Design Methodology for the Selection of Temporary Erosion and Sediment Control Practices Based on Regional Hydrological Conditions. J. Hydrol. Eng. 2016, 21, 05016001. [Google Scholar] [CrossRef]
- Ercoli, R.F.; Matias, V.R.S.; Zago, V.C.P. Urban Expansion and Erosion Processes in an Area of Environmental Protection in Nova Lima, Minas Gerais State, Brazil. Front. Environ. Sci. 2020, 8, 52. [Google Scholar] [CrossRef]
- Pitt, R.E.; Williamson, D.; Voorhees, J.; Clark, S.; Harrisburg, P.S. Review of Historical Street Dust and Dirt Accumulation and Washoff Data. JWMM 2005. [Google Scholar] [CrossRef] [Green Version]
- Zafra, C.A.; Temprano, J.; Tejero, I. Particle size distribution of accumulated sediments on an urban road in rainy weather. Environ. Technol. 2008, 29, 571–582. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Järlskog, I.; Lundberg, J.; Janhäll, S.; Elmgren, M.; Johansson, C.; Norman, M.; Silvergren, S. Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden. Atmos. Environ. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Seleznev, A.A.; Yarmoshenko, I.V.; Malinovsky, G.P. Assessment of Total Amount of Surface Sediment in Urban Environment Using Data on Solid Matter Content in Snow-Dirt Sludge. Environ. Process. 2019, 6, 581–595. [Google Scholar] [CrossRef]
- Hong, N.; Guan, Y.; Yang, B.; Zhong, J.; Zhu, P.; Ok, Y.S.; Hou, D.; Tsang, D.C.; Guan, Y.; Liu, A. Quantitative source tracking of heavy metals contained in urban road deposited sediments. J. Hazard. Mater. 2020, 393, 122362. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Luo, J.; Yuan, M.; Huang, Y.; Shen, H.; Li, T. The influence of urban planning factors on PM2.5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Sci. Total Environ. 2019, 659, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, X.; Dong, L. Field assessment of the effects of land-cover type and pattern on PM10 and PM2.5 concentrations in a microscale environment. Environ. Sci. Pollut. Res. 2018, 26, 2314–2327. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential landscapes as social-ecological systems: A synthesis of multi-scalar interactions between people and their home environment. Urban. Ecosyst. 2011, 15, 19–52. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Xia, C.; Chu, J.; Lin, J.; Li, W.; Wu, J. Portraying urban landscape: A quantitative analysis system applied in fifteen metropolises in China. Sustain. Cities Soc. 2019, 46, 101396. [Google Scholar] [CrossRef]
- Rioux, J.-F.; Cimon-Morin, J.; Pellerin, S.; Alard, D.; Poulin, M. How Land Cover Spatial Resolution Affects Mapping of Urban Ecosystem Service Flows. Front. Environ. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Bogdan, S.-M.; Pătru-Stupariu, I.; Zaharia, L. The Assessment of Regulatory Ecosystem Services: The Case of the Sediment Retention Service in a Mountain Landscape in the Southern Romanian Carpathians. Procedia Environ. Sci. 2016, 32, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Apitz, S.E. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA). Sci. Total Environ. 2012, 415, 9–30. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Urban catchment runoff increases bedload sediment yield and particle size in stream channels. Anthropocene 2018, 23, 53–66. [Google Scholar] [CrossRef]
- Cui, M.; Lu, H.; Etyemezian, V.; Su, Q. Quantifying the emission potentials of fugitive dust sources in Nanjing, East China. Atmos. Environ. 2019, 207, 129–135. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Blake, W.H.; Kikuchi, R.; Ferreira, A.J.D. Temporal Dynamics of Sediment Sources in an Urbanizing Mediterranean Catchment. Land Degrad. Dev. 2017, 28, 2354–2369. [Google Scholar] [CrossRef]
- Seleznev, A.; Yarmoshenko, I.; Malinovsky, G.; Ilgasheva, E.; Baglaeva, E.; Ryanskaya, A.; Kiseleva, D.; Gulyaeva, T. Snow-dirt sludge as an indicator of environmental and sedimentation processes in the urban environment. Sci. Rep. 2019, 9, 17241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleznev, A.A.; Teterin, A.F.; Yarmoshenko, I.V. Meteorological conditions of surface sediment runoff formation during spring snowmelt in urban environment. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2020, 331, 7–16. [Google Scholar] [CrossRef]
City, Population, ×103 | Cars, ×103/Cars Per 103 People (2017) | Coor- Dinates | Average Jan/Jul Temp., °C | Average Precipitation Summer Months/Year, mm | Climate Zone | Geographical Region | General Relief | Industries | Municipal Budget in 2018 Per Capita, ×103 RUB |
---|---|---|---|---|---|---|---|---|---|
Ekaterinburg 1480 | 446.5/302 | 56°50′ N 60°35′ E | −12.6 /19.0 | 213/501 | Temperate continental | Eastern slope of the Middle Urals | Floodplain terraces along the river, hilly plains, low mountains | Machinery, metallurgy, research and development. | 27.2 |
Nizhniy Novgorod 1260 | 352/276 | 56°19′ N 44°00′ E | −8.9 /19.4 | 224/648 | Humid continental | Valley of the Volga and Oka rivers | Floodplains and hilly plains | Machinery, river shipping | 26.5 |
Rostov-on-Don 1130 | 319.2/285 | 47°14′ N 39°42′ E | −3.0 /23.4 | 127/596 | Moderate continental, steppe | Valley of the Don river | Floodplain terraces along the river | Machinery, river shipping, food industry | 29.2 |
Tyumen 770 | 279/363 | 57°09′ N 65°32′ E | −15.0 /18.8 | 204/485 | Temperate continental | Valley of the Tura river | Floodplain terraces along the river | Metal processing, machinery, oil processing, gas-fired power plants | 34.7 |
Chelyabinsk 1200 | 320.4/269 | 55°09′ N 61°24′ E | −14.1 /19.3 | 186/430 | Temperate | Eastern slope of the South Urals | Floodplain terraces along the river, hilly plains | Ferrous and non-ferrous metallurgy, chemical industry, machinery, coal-fired power plants | 29.4 |
Murmansk 292 | 96.5/330 * | 68°58′ N 33°05′ E | −10.1 /12.8 | 201/547 | Subarctic climate | The Kola Peninsula, bank Kola Bay | Low mountains along sea bay | Seaport, ship repair, fishing, fish processing | 46.2 |
Parameter | Value |
---|---|
Total area | 10,000 m2 |
Areas of road/front yard green zone/internal courtyard/buildings,% | 14/17/46/23 |
Areas of green and sidewalks zones/vehicle zone in internal courtyard, % | 57/43 |
Number of segments at the site/the average area of the segment | 14/560 m2 |
Number of parking spaces in internal/external parts | 50/13 |
Number of illegal parking in internal/external parts | 12/1 |
Area of segments with unsatisfactory technical condition | 59% |
Area of segments with impervious cover with poor cleaning | 60% |
Area of lawns with projective grass cover less than 50% | 50% |
Tree canopy cover (excluding the area of buildings and roads) | 26% |
Area affected by earthworks and construction | 9% |
Area of impervious cover/lawn/disturbed cover (roads and buildings excluded), % | 38/38/24 |
Segments connectivity: probability of solid sediment transfer from neighbouring segments to the given one | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarmoshenko, I.; Malinovsky, G.; Baglaeva, E.; Seleznev, A. A Landscape Study of Sediment Formation and Transport in the Urban Environment. Atmosphere 2020, 11, 1320. https://doi.org/10.3390/atmos11121320
Yarmoshenko I, Malinovsky G, Baglaeva E, Seleznev A. A Landscape Study of Sediment Formation and Transport in the Urban Environment. Atmosphere. 2020; 11(12):1320. https://doi.org/10.3390/atmos11121320
Chicago/Turabian StyleYarmoshenko, Ilia, Georgy Malinovsky, Elena Baglaeva, and Andrian Seleznev. 2020. "A Landscape Study of Sediment Formation and Transport in the Urban Environment" Atmosphere 11, no. 12: 1320. https://doi.org/10.3390/atmos11121320
APA StyleYarmoshenko, I., Malinovsky, G., Baglaeva, E., & Seleznev, A. (2020). A Landscape Study of Sediment Formation and Transport in the Urban Environment. Atmosphere, 11(12), 1320. https://doi.org/10.3390/atmos11121320