Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurements
2.3. Geographic Predictor Variables
2.3.1. Land Use
2.3.2. Industrial Areas
2.3.3. Residential Areas
2.3.4. Transport Administration Areas
2.3.5. Informal Settlements
2.3.6. Water Bodies
2.3.7. Road Traffic
2.4. Exposure Modelling
2.5. Health Impact Assessment
3. Results
3.1. Measured Particulate Matter (PM2.5) Levels
3.2. Land-Use Regression (LUR) Modelling
3.3. Health Impact Assessments
4. Discussion
4.1. Seasonal Variation
4.2. Unexplained Concentration Peaks
4.3. Using Low-Cost Sensors
4.4. LUR Model
4.5. Health Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 15, 9592–9597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Kunzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease Due to Outdoor Air Pollution. J. Toxicol. Environ. Health Part A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Yasseen, A.S.; Stieb, D.M.; Hystad, P.; Van Donkelaar, A.; Martin, R.V.; Brook, J.R.; Crouse, D.L.; Burnett, R.T.; Chen, H.; et al. Ambient air pollution and adverse birth outcomes: Differences by maternal comorbidities. Environ. Res. 2016, 148, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Crouse, D.L.; Pinault, L.; Godri-Pollitt, K.; Lavigne, E.; Evans, G.; Van Donkelaar, A.; Martin, R.V.; Burnett, R.T. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Res. 2016, 146, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.; Li, Y.; Niu, Y.; Ding, Y.; Yu, X.; Zhu, B.; Duan, R.; Duan, H.; Kou, C.; Li, Y.; et al. Association between ambient air pollution and pregnancy complications: A systematic review and meta-analysis of cohort studies. Environ. Res. 2020, 185, 109471. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhao, J.; Wang, Q.; Shen, H.; Wang, Y.; Xie, X.; Wang, L.; et al. The association between ambient PM2.5 exposure and the risk of preterm birth in China: A retrospective cohort study. Sci. Total. Environ. 2018, 633, 1453–1459. [Google Scholar] [CrossRef]
- DeFranco, E.; Moravec, W.; Xu, F.; Hall, E.; Hossain, M.; Haynes, E.N.; Muglia, L.; Chen, A. Exposure to airborne particulate matter during pregnancy is associated with preterm birth: A population-based cohort study. Environ. Health 2016, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Coker, E.; Ghosh, J.; Jerrett, M.; Gomez-Rubio, V.; Beckerman, B.; Cockburn, M.; Liverani, S.; Su, J.; Li, A.; Kile, M.L.; et al. Modeling spatial effects of PM2.5 on term low birth weight in Los Angeles County. Environ. Res. 2015, 142, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Yin, Y.; Zhang, J.; Zhou, R. The impact of particulate matter 2.5 on the risk of preeclampsia: An updated systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2020, 27, 37527–37539. [Google Scholar] [CrossRef]
- Dadvand, P.; Figueras, F.; Basagnana, X.; Beelen, R.; Cirach, M.; Schembari, A.; Hoek, G.; Brunekreef, B.; Nieuwenhuijsen, M.J. Ambient air pollution and preeclampsia: A spatiotemporal analysis. Environ. Health Perspect. 2013, 121, 1365–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Chen, Y.; Yang, X.; Yang, Z.; Liu, S.; Pei, L.; Feng, B.; Cao, G.; Liu, X.; Lin, H.; et al. The associations of air pollution exposure during pregnancy with fetal growth and anthropometric measurements at birth: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2019, 26, 20137–20147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C.; Liu, D.; Ha, S.; Kim, S.S.; Pollack, A.; Mendola, P. Ambient air pollution and risk of Gestational Hypertension. Am. J. Epidemiol. 2017, 3, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekonnen, M.T.; Gulilat, T.Y. Trends of Ambient Air Pollution and the Corresponding Respiratory Diseases in Addis Ababa. Res. Rep. Toxicol. 2018, 2, 5. [Google Scholar]
- African Economic Outlook 2018. Available online: www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/African_Economic_Outlook_2018_-_EN.pdf (accessed on 2 September 2020).
- Transport and Environment in Sub-Saharan Africa. Available online: https://mediamanager.sei.org/documents/Publications/SEI-Pub2197-Haq-Schwela-test_tande_v2.pdf (accessed on 13 October 2020).
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Particulate matter from road traffic in Africa. J. Earth Sci. Geotech. Eng. 2017, 7, 289–304. [Google Scholar]
- Doumbia, E.H.H. Caractérisation Physico-Chimique de la Pollution Atmosphérique en Afrique de l’Ouest et Étude D’impact sur la Santé. Ph.D. Thesis, Université Toulouse III-Paul Sabatier, Toulouse, France, 1 July 2013. [Google Scholar]
- Kinney, P.L.; Gichuru, M.G.; Volavka-Close, N.; Ngo, N.; Ndiba, P.K.; Law, A.; Gachanja, A.; Gaita, S.M.; Chillrud, S.N.; Sclar, E. Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environ. Sci. Policy 2011, 14, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Egondi, T.; Muindi, K.; Kyobuntungi, C.; Gatari, M.; Rocklöv, J. Measuring exposure levels of inhalable airborne particles (PM2.5) in two socially deprived areas of Nairobi. Environ. Res. 2016, 148, 500–506. [Google Scholar] [CrossRef]
- Gebere, G.; Feleke, Z.; Sahle-Demissie, E. Mass concentrations and elemental composition of urban atmospheric aerosols in Addis Ababa, Ethiopia. Bull. Chem. Soc. Ethiop. 2010, 24, 3. [Google Scholar] [CrossRef]
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. 2014. Available online: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 1 October 2020).
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef]
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Sources and levels of particulate matter in North African and Sub-Saharan cities: A literature review. Environ. Sci. Pollut. Res. 2018, 25, 12303–12328. [Google Scholar] [CrossRef]
- Pieterse, E.; Parnell, S.; Haysom, G.J.U.-H. Economic Commission for Africa U-H, Nairobi. 2015. Towards an African Urban Agenda. Available online: www.urbanafrica.net/resources/report/ (accessed on 1 July 2020).
- Tryner, T.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Bulot, F.M.J.; Johnston, S.J.; Basford, P.J.; Easton, N.H.C.; Apetroaie-Cristea, M.; Foste, G.L.; Morris, A.K.R.; Cox, S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 1797. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors. Aerosol Air Qual. Res. 2020, 20, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Coker, E.; Kizito, S. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies. Int. J. Environ. Res. Public Health 2018, 15, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerckhoffs, J.; Wang, M.; Melifeste, K.; Malmqvist, E.; Fischer, P.; Janssen, N.A.H.; Beelen, R.; Hoek, G. A national fine spatial scale land-use regression model for ozone. Environ. Res. 2015, 140, 440–448. [Google Scholar] [CrossRef]
- Bertazzon, S.; Johnson, M.; Eccles, K.; Kaplan, G.G. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat. Spatiotemporal Epidemiol. 2015, 15, 9–21. [Google Scholar] [CrossRef] [Green Version]
- ESCAPE Exposure Assessment Manual. Available online: http://www.escapeproject.eu/manuals/ (accessed on 1 January 2017).
- Kerckhoffs, J.; Hoek, G.; Vlaanderen, J.; Van Nunen, E.; Messier, K.; Brunekreef, B.; Gulliver, J.; Vermeulen, R. Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring. Environ. Res. 2017, 159, 500–508. [Google Scholar] [CrossRef]
- Kloog, I.; Nordio, F.; Coull, A.B.; Schwartz, J. Incorporating Local Land Use Regression and Satellite Aerosol Optical Depth In A Hybrid Model Of Spatiotemporal PM2.5 Exposures In The Mid-Atlantic States. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; De Hoogh, K. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 2017, 226, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmospheric Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Gebreab, S.Z.; Vienneau, D.; Feigenwinter, C.; Ba, H.; Cissé, G.; Tsai, M.-Y. Spatial air pollution modelling for a West-African town. Geospat. Health 2015, 26, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saucy, A.; Röösli, M.; Künzli, N.; Tsai, M.Y.; Sieber, C.; Olaniyan, T.; Baatjies, R.; Jeebhay, M.F.; Davey, M.; Flückiger, B.; et al. Land Use Regression Modelling of Outdoor NO2 and PM2.5 Concentrations in Three Low Income Areas in the Western Cape Province, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulti, T.D.; Sori, D.N. Evaluating land-use plan using conformance-based approach in Adama city, Ethiopia. Spat. Inf. Res. 2017, 25, 605–613. [Google Scholar] [CrossRef]
- Climate Ethiopia. Available online: www.albatros.se/resmal/afrika/etiopien/klimat (accessed on 11 October 2020).
- Mulugeta, M.; Tolossa, D.; Abebe, G. Description of long-term climate data in Eastern and Southeastern Ethiopia. Data Brief. 2017, 12, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Ethiopia Demographics. Available online: www.worldometers.info/demographics/ethiopia-demographics/ (accessed on 28 October 2020).
- Avehu, F.M. Evaluation of Traffic Congestion and Level of Service at Major Intersections in Adama City. Master’s Thesis, Addis Ababa University, Addis, Ethiopia, 2015. [Google Scholar]
- Adama city Administrative office report. Unpublished. 2019.
- Hagan, D.H.; Kroll, J.H. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 2020, 13, 6343–6355. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost airparticle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; LeMasters, G.K. A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure. Inhal. Toxicol. 2007, 19 (Suppl. 1), 127–133. [Google Scholar] [CrossRef] [Green Version]
- Eeftens, M.; Beelen, R.; De Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; De Nazelle, A.; et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- Han, L.; Zhao, J.; Gao, Y.; Gu, Z.; Xin, K.; Zhang, J. Spatial distribution characteristics of PM2.5 and PM 10 in Xi’an City predicted by land use regression models. Sustain. Cities Soc. 2020, 61, 102329. [Google Scholar] [CrossRef]
- Tularam, H.; Ramsay, L.F.; Muttoo, S.; Naidoo, R.N.; Brunekreef, B.; Meliefste, K.; De Hoogh, K. Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 5406. [Google Scholar] [CrossRef] [PubMed]
- WorldView. Available online: www.satimagingcorp.com/satellite-sensors/worldview-2/ (accessed on 1 January 2020).
- Open Street Map. Available online: www.openstreetmap.org/ (accessed on 1 January 2019).
- Chang, T.-Y.; Liang, C.-H.; Wu, C.-F.; Chang, L.-T. Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131, 104959. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T.H.; Choi, C.; Cheng, W.; Lai, P.-C.; Tian, L.; Thach, T.-Q.; et al. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total. Environ. 2017, 592, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vinneau, D.; Gulliver, J.; Fisher, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 33, 7561–7578. [Google Scholar] [CrossRef]
- WHO AirQ Software. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/activities/airq-software-tool-for-health-risk-assessment-of-air-pollution (accessed on 3 July 2020).
- Sacks, J.D.; Fann, N.; Gumy, S.; Kim, I.; Ruggeri, G.; Mudu, P. Quantifying the Public Health Benefits of Reducing Air Pollution: Critically Assessing the Features and Capabilities of WHO’s AirQ+ and U.S. EPA’s Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP—CE). Atmosthere 2020, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.T.; Liu, M.C.; Hung, P.C.; Chang, S.H.; Chang, M.B. PAH emissions from coal combustion and waste incineration. J. Hazard. Mater. 2016, 318, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, K.; Wu, W.; Tian, H.; Yi, P.; Zhi, G.; Fan, J.; Liu, S. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos. Environ. 2017, 152, 6–15. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Zhang, M.; Zhan, M.; Wang, P.; Lin, X.; Chen, T.; Lu, S.; Yan, J. Study on the relationship between waste classification, combustion condition and dioxin emission from waste incineration. Waste Dispos. Sustain. Energy 2019, 1, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Gulliver, J.; De Hoogh, K.; Fecht, D.; Vienneau, D.; Briggs, D.J. Comparative assessment of GIS-based methods and metrics for estimating long-term exposures to air pollution. Atmos. Environ. 2011, 45, 7072–7080. [Google Scholar] [CrossRef]
- Morgenstern, V.; Zutavern, A.; Cyrys, J.; Brockow, I.; Ghering, U.; Koletzko, S.; Bauer, C.P.; Reinhardt, D.; Wichmann, H.E.; Heinrich, J. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup. Environ. Med. 2006, 64, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowski, M. WHO Air Quality Guidelines for Europe. J. Toxicol. Environ. Health Part A 2007, 71, 47–50. [Google Scholar] [CrossRef] [PubMed]
- NAAQS Table. Available online: www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 13 September 2020).
- Air Quality Standards. Available online: https://ec.europa.eu/environment/air/quality/standards.htm (accessed on 13 September 2020).
- Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air Quality in African Cities: Public Health Implications. Annu. Rev. Public Health. 2020, Accepted. [Google Scholar]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
Variables | Measurement Unit | Expected Direction of Effects |
---|---|---|
Less than 100 m to motor, primary, or secondary road | m | + |
Inside the city center | yes/no | + |
Measured altitude in meters above sea level | m | − |
Road distance in meters within a 100 m, 300m or 500m radius | m | + |
Primary road * distance in meters within a 100 m, 300 m and 500 m radius | m | + |
Motorway in meters within a radius of 500 m | m | + |
Secondary road ** distance within a 100 m, 300 m and 500 m radius | m | + |
Tertiary road *** distance within a 100 m, 300 m and 500 m radius | m | + |
Residential road **** distance within a 100, 300 m 500 m radius | m | + |
Service road ***** distance within a 100, 300, 500 m radius | m | + |
Other road ****** in meters within a 100, 300, 500 m radius | m | + |
Area of residential use within a radius of 100, 300, 1000, 3000 m | m2 | + |
Area of industrial use within a radius of 100, 300, 1000, 3000 m | m2 | + |
Area of transportation administration ******* use within a radius of 100, 300, 1000, 3000 m | m2 | + |
Area of informal settlement within a radius of 100, 300, 1000 m | m2 | + |
Distance to nearest primary road | m | − |
Distance to nearest motorway | m | − |
Distance to nearest secondary road | m | − |
Distance to nearest tertiary road | m | − |
Distance to nearest residential road | m | − |
Distance to nearest service road | m | − |
Distance to nearest other road | m | + |
Distance to nearest road | m | − |
Distance to nearest waterbody or creek/river | m | − |
Distance to nearest industry | m | − |
Distance to nearest transportation administration area | m | − |
Primary road distance in meters between 300 m and 500 m | m | + |
Site | Type | Measurement Period Date + Total Time (Min) + N = Total Number of Datapoints | Average PM2.5 (µg/m3) | Median PM2.5 (µg/m3) | Min PM2.5 (µg/m3) | Max PM2.5 (µg/m3) | 98th Percentile (µg/m3) |
---|---|---|---|---|---|---|---|
1 | Urban | 18–20 February (2376) N = 142,560 | 20 | 17 | 1.2 | 880 | 55 |
2 | Urban | 18–20 February (2482) N = 148,920 | 21 | 19 | 3.4 | 330 | 49 |
3 | Urban | 18–20 February (2722) N = 163,320 | 22 | 20 | 1.8 | 1450 | 54 |
4 | Traffic | 18–20 February (2736) N = 164,160 | 23 | 20 | 2.5 | 1460 | 54 |
5 | Traffic | 18–20 February (2593) N = 155,580 | 33 | 28 | 0.7 | 890 | 85 |
6 | Urban | 20–21 February (1441) N = 86,460 | 17 | 16 | 2.4 | 180 | 32 |
7 | Urban | 20–21 February (1154) N = 69,240 | 39 | 21 | 2.4 | 790 | 325 |
8 | Urban | 20–21 February (1356) N = 81,360 | 24 | 23 | 3.5 | 330 | 50 |
9 | Urban | 20–21 February (1428) N = 85,680 | 25 | 23 | 3.9 | 190 | 58 |
10 | Urban | 20–21 February (1440) N = 86,400 | 42 | 22 | 3.8 | 310 | 52 |
11 | Urban | 21–22 February (1365) N = 81,900 | 16 | 14 | 0.8 | 470 | 41 |
12 | Urban | 21–22 February (1440) N = 86,400 | 32 | 23 | 1.5 | 1170 | 126 |
13 | Urban | 21–22 February (1465) N = 87,900 | 19 | 13 | 0.6 | 320 | 70 |
14 | Traffic | 21–22 February (1474) N = 88,440 | 16 | 14 | 0.3 | 1040 | 39 |
15 | Traffic | 21–22 February (1216) N = 72,960 | 17 | 15 | 0.2 | 420 | 44 |
16 | Urban | 22–23 February (1441) N = 86,460 | 25 | 20 | 2.0 | 560 | 84 |
17 | Traffic | 22–23 February (1330) N = 79,800 | 24 | 20 | 1.9 | 2140 | 61 |
18 | Urban | 22–23 February (1329) N = 78,740 | 21 | 18 | 1.5 | 770 | 47 |
19 | Traffic | 22–23 February (1414) N = 84,840 | 21 | 18 | 0.9 | 550 | 55 |
20 | Urban | 22–23 February (1440) N = 86,400 | 27 | 22 | 1.3 | 390 | 69 |
Model Variable | Risk Estimate (Beta) | Standard Error (SE) | p Value | Variance Inflation Factor (VIF) |
---|---|---|---|---|
Intercept | 25.855 | 2.409 | 0.000 | |
Primary road distance in meters within 300 m | 0.006 | 0.003 | 0.062 | 1.145 |
Distance to nearest road | −0.383 | 0.206 | 0.081 | 1.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abera, A.; Mattisson, K.; Eriksson, A.; Ahlberg, E.; Sahilu, G.; Mengistie, B.; Bayih, A.G.; Aseffaa, A.; Malmqvist, E.; Isaxon, C. Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls. Atmosphere 2020, 11, 1357. https://doi.org/10.3390/atmos11121357
Abera A, Mattisson K, Eriksson A, Ahlberg E, Sahilu G, Mengistie B, Bayih AG, Aseffaa A, Malmqvist E, Isaxon C. Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls. Atmosphere. 2020; 11(12):1357. https://doi.org/10.3390/atmos11121357
Chicago/Turabian StyleAbera, Asmamaw, Kristoffer Mattisson, Axel Eriksson, Erik Ahlberg, Geremew Sahilu, Bezatu Mengistie, Abebe Genetu Bayih, Abraham Aseffaa, Ebba Malmqvist, and Christina Isaxon. 2020. "Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls" Atmosphere 11, no. 12: 1357. https://doi.org/10.3390/atmos11121357