Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM
Abstract
:1. Introduction
- 1.
- How is the annual cycle of LAI affected by the newly implemented phenology?
- 2.
- Do extreme climatic conditions have a changed impact with the new phenology module in CCLM?
- 3.
- What is the influence of the phenology on atmospheric variables, such as temperature, humidity, and precipitation, with special attention to extreme events?
2. Materials and Methods
2.1. Meteorological Observations
2.2. LAI Measurements
2.3. COSMO-CLM
2.4. Implementation of the Phenology Scheme
2.4.1. Dependence on Temperature
2.4.2. Dependence on Day Length
2.4.3. Dependence on Water Availability
3. Results and Discussion
3.1. Validation of LAI Observations
3.2. Annual Cycle of LAI
3.2.1. Start of the Growing Season
3.2.2. Influence of Temperature and Precipitation Extremes
3.3. Impacts of LAI on the Atmosphere
3.3.1. Impact on Latent Heat Flux
3.3.2. Impact on Precipitation and Temperature Extremes
4. Discussion
5. Conclusions
- 1.
- How is the annual cycle of LAI affected by the newly implemented phenology?The representation of the annual cycle of LAI significantly improved using the newly implemented phenology compared to the standard phenology in CCLM. The timing of LAI including its increase, maximum, and decrease is closer to observations with the new simulations. The interannual variability of the simulated SGS is more consistent with the observations.
- 2.
- Do extreme climatic conditions have a changed impact with the new phenology module in CCLM?Extreme warm/dry years and their influence on phenology can be better resolved with the new phenology in CCLM. The previously static annual cycle of LAI is adjusted with the dependence on temperature and water availability to extreme environmental conditions. This also changes the atmospheric variables influenced by vegetation.
- 3.
- What is the influence of the phenology on atmospheric variables, such as temperature, humidity, and precipitation, with special attention to extreme events?The newly implemented phenology causes changes in the energy and water cycle of the model compared to the standard simulations. An enhanced LAI in warm springs leads to more latent heat flux but also dry summers have enhanced latent heat in later summer because of fewer LAI combined with a fewer fraction of plant cover safes water earlier in the year in the soil which causes more transpiration later in the summer. The model with the standard phenology does not show the interannual differences and therefore misses this effect. The impact of phenology on extreme events of temperature and precipitation is too small to detect a significant improvement or deterioration with the new module.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
CCLM | COSMO-CLM |
DWD | German Meteorological Service (Deutscher Wetterdienst) |
HYRAS | hydrological raster datasets (Hydrologische Rasterdatensätze) |
LAI | Leaf Area Index |
REGNIE | regionalized precipitation totals (Regionalisierte Niederschlagshöhen) |
SGS | Start of Growing Season |
Appendix A. Statistical Methods
Appendix A.1. Pearson Correlation
Appendix A.2. Fisher Transformation
Appendix A.3. Standardization
References
- Schnelle, F. Pflanzen-Phänologie; Akademische Verlagsgesellschaft Geest & Portig: Leipzig, Germany, 1955. [Google Scholar]
- Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.; Fromentin, J.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Settele, J.; Scholes, R.; Betts, R.; Bunn, S.; Leadley, P.; Nepstad, D.; Overpeck, J.; Taboad, M. Terrestrial and inland water systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 271–359. [Google Scholar]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Jeong, S.J.; HO, C.H.; GIM, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO2 further lengthens growing season under warming conditions. Nature 2014, 510, 259–262. [Google Scholar] [CrossRef] [PubMed]
- White, M.; Thornton, P.; Running, S. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Heide, O.M. Growth and dormancy in Norway spruce ecotypes (Picea abies) I. Interaction of photoperiod and temperature. Physiol. Plant. 1974, 30, 1–12. [Google Scholar] [CrossRef]
- Oleksyn, J.; Tjoelker, M.; Reich, P.B. Growth and biomass partitioning of populations of European Pinus sylvestris L. under simulated 50∘ and 60∘ N daylengths: Evidence for photoperiodic ecotypes. New Phytol. 1992, 120, 561–574. [Google Scholar] [CrossRef]
- Hodges, T. Temperature and water stress effects on phenology. In Predicting Crop Phenology; CRC Press: Boca Raton, FL, USA, 1991; pp. 7–13. [Google Scholar]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Rötzer, T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim. Res. 2002, 19, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Currie, P.O.; Peterson, G. Using growing-season precipitation to predict crested wheatgrass yields. J. Range Manag. 1966, 19, 284–288. [Google Scholar] [CrossRef]
- Gilgen, A.K.; Buchmann, N. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosci. Discuss. 2009, 6, 5217–5250. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on Climate Change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collatz, G.J.; Bounoua, L.; Los, S.; Randall, D.; Fung, I.; Sellers, P. A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett. 2000, 27, 3381–3384. [Google Scholar] [CrossRef] [Green Version]
- Tölle, M.H.; Gutjahr, O.; Busch, G.; Thiele, J.C. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study. J. Geophys. Res. Atmos. 2014, 119, 2711–2724. [Google Scholar] [CrossRef]
- Stéfanon, M.; Drobinski, P.; d’Andrea, F.; de Noblet-Ducoudré, N. Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res. Atmos. 2012, 117, D24103. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.L.; Dai, Y.; Dickinson, R.E.; Shuttleworth, W.J. Sensitivity of ground heat flux to vegetation cover fraction and leaf area index. J. Geophys. Res. Atmos. 1999, 104, 19505–19514. [Google Scholar] [CrossRef]
- Williams, I.N.; Torn, M.S. Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling. Geophys. Res. Lett. 2015, 42, 9416–9424. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Oleson, K.; Lawrence, D.; Bonan, G.; Drewniak, B.; Huang, M.; Koven, C.; Levis, S.; Li, F.; Riley, W.; Subin, Z.; et al. Technical description of version 4.5 of the Community Land Model (CLM). 2013. Available online: http://www.cesm.ucar.edu/ (accessed on 6 November 2019).
- Sitch, S.; Smith, B.; Prentice, I.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.; Levis, S.; Lucht, W.; Sykes, M.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Ryder, J.; Polcher, J.; Peylin, P.; Ottle, C.; Chen, Y.Y.; van Gorsel, E.; Haverd, V.; McGrath, M.; Naudts, K.; El Zohbi, J.; et al. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations. Geosci. Model Dev. Discuss. 2014, 7, 8649–8701. [Google Scholar] [CrossRef]
- National Research Council. Strategies for Developing Climate Models: Model Hierarchy, Resolution, and Complexity. In A National Strategy for Advancing Climate Modeling; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Doms, G.; Förstner, J.; Heise, E.; Herzog, H.J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P.; et al. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization; Deutscher Wetterdienst: Offenbach, Germany, 2011; 154p. [Google Scholar]
- Schulz, J.-P.; Vogel, G.; Becker, C.; Kothe, S.; Rummel, U.; Ahrens, B. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. Meteorol. Z. 2016, 25, 607–620. [Google Scholar] [CrossRef]
- Schulz, J.-P.; Vogel, G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere 2020, 11, 513. [Google Scholar] [CrossRef]
- Dickinson, R.E. Modeling evapotranspiration for three-dimensional global climate models. Clim. Process. Clim. Sensit. 1984, 29, 58–72. [Google Scholar]
- Schättler, U.; Blahak, U. A Description of the Nonhydrostatic Regional COSMO-Model. Part V: Preprocessing: Initial and Boundary Data for the COSMO-Model; Deutscher Wetterdienst: Offenbach, Germany, 2017; pp. 16–25. [Google Scholar]
- Murray-Tortarolo, G.; Anav, A.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z.; Poulter, B.; Zaehle, S.; Ahlström, A.; Lomas, M.; et al. Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sens. 2013, 5, 4819–4838. [Google Scholar] [CrossRef] [Green Version]
- Knorr, W.; Kaminski, T.; Scholze, M.; Gobron, N.; Pinty, B.; Giering, R.; Mathieu, P.P. Carbon cycle data assimilation with a generic phenology model. J. Geophys. Res. Biogeosci. 2010, 115, G04017. [Google Scholar] [CrossRef] [Green Version]
- Neisser, J.; Adam, W.; Beyrich, F.; Leiterer, U.; Steinhagen, H. Atmospheric boundary layer monitoring at the Meteorological Observatory Lindenberg as a part of the “Lindenberg Column”: Facilities and selected results. Meteorol. Z. 2002, 11, 241–253. [Google Scholar] [CrossRef]
- Beyrich, F.; Adam, W.K. Site and Data Report for the Lindenberg Reference Site in CEOP—Phase I. In Berichte des Deutschen Wetterdienstes 230; Selbstverlag des Deutschen Wetterdienstes: Leipzig, Germany, 2007; pp. 17–42. [Google Scholar]
- Jäger, H.; Schmidt, S.; Kammann, C.; Grünhage, L.; Müller, C.; Hanewald, K. The University of Giessen Free-Air Carbon Dioxide Enrichment study: Description of the experimental site and of a new enrichment system. J. Appl. Bot. 2003, 77, 117–127. [Google Scholar]
- Andresen, L.C.; Yuan, N.; Seibert, R.; Moser, G.; Kammann, C.I.; Luterbacher, J.; Erbs, M.; Müller, C. Biomass responses in a temperate European grassland through 17 years of elevated CO2. Glob. Chang. Biol. 2018, 24, 3875–3885. [Google Scholar] [CrossRef] [PubMed]
- Post, H.; Hendricks Franssen, H.J.; Han, X.; Baatz, R.; Montzka, C.; Schmidt, M.; Vereecken, H. Evaluation and uncertainty analysis of regional-scale CLM4. 5 net carbon flux estimates. Biogeosciences 2018, 15, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Bogena, H.; Montzka, C.; Huisman, J.; Graf, A.; Schmidt, M.; Stockinger, M.; von Hebel, C.; Hendricks-Franssen, H.; van der Kruk, J.; Tappe, W.; et al. The TERENO-Rur Hydrological Observatory: A multiscale multi-compartment research platform for the advancement of hydrological science. Vadose Zone J. 2018, 17, 1–22. [Google Scholar] [CrossRef]
- Merkel, A.O.P.A. Climate-Data.org. Available online: https://de.climate-data.org/europa/deutschland/ (accessed on 13 February 2020).
- Rauthe, M.; Steiner, H.; Riediger, U.; Mazurkiewicz, A.; Gratzki, A. A Central European precipitation climatology–Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol. Z. 2013, 22, 235–256. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Radziejewski, M.; Pinskwar, I. Precipitation extremes in the changing climate of Europe. Clim. Res. 2006, 31, 51–58. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob. Planet. Chang. 2007, 57, 83–95. [Google Scholar] [CrossRef]
- Yan, Z.; Jones, P.; Davies, T.; Moberg, A.; Bergstrom, H.; Camuffo, D.; Cocheo, C.; Maugeri, M.; Demarée, G.; Verhoeve, T.; et al. Trends of extreme temperatures in Europe and China based on daily observations. Clim. Chang. 2002, 53, 355–392. [Google Scholar] [CrossRef]
- González-Aparicio, I.; Hidalgo, J. Dynamically based future daily and seasonal temperature scenarios analysis for the northern Iberian Peninsula. Int. J. Climatol. 2012, 32, 1825–1833. [Google Scholar] [CrossRef]
- Cutini, A.; Matteucci, G.; Mugnozza, G.S. Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. For. Ecol. Manag. 1998, 105, 55–65. [Google Scholar] [CrossRef]
- Li-Cor, I. LAI-2000 Plant Canopy Analyzer Instruction Manual; LI-COR Inc.: Lincoln, NE, USA, 1992. [Google Scholar]
- Kammann, C.; Grunhage, L.; Gruters, U.; Janze, S.; Jager, H. Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic Appl. Ecol. 2005, 6, 351–365. [Google Scholar] [CrossRef]
- Smets, B.; Verger, A.; Camacho, F.; Van der Goten, R.; Jacobs, T. Copernicus Global Land Operations ”Vegetation and Energy”, PRODUCT USER MANUAL. Issue 1.33—Version 2. 2019. Available online: https://land.copernicus.eu/ (accessed on 21 November 2019).
- Verger, A.; Baret, F.; Weiss, M. Near real-time vegetation monitoring at global scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3473–3481. [Google Scholar] [CrossRef]
- Chen, J.; Menges, C.; Leblanc, S. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Weather. Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Jameson, A.; Schmidt, W.; Turkel, E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In Fluid Mechanics and Heat Transfer; NASA Center for Aerospace Information (CASI): Hanover, MD, USA, 1981. [Google Scholar]
- Tiedtke, M. Parameterization of cumulus convection in large-scale models. In Physically-Based Modelling and Simulation of Climate and Climatic Change; Springer: Berlin/Heidelberg, Germany, 1988; pp. 375–431. [Google Scholar]
- Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London. Biol. Sci. 1976, 273, 593–610. [Google Scholar]
- Smiatek, G.; Rockel, B.; Schättler, U. Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM). Meteorol. Z. 2008, 17, 395–405. [Google Scholar] [CrossRef]
- Smith, B.; Prentice, I.C.; Sykes, M.T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 2001, 10, 621–637. [Google Scholar] [CrossRef]
- Raddatz, T.; Reick, C.; Knorr, W.; Kattge, J.; Roeckner, E.; Schnur, R.; Schnitzler, K.G.; Wetzel, P.; Jungclaus, J. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim. Dyn. 2007, 29, 565–574. [Google Scholar] [CrossRef]
- Reick, C.; Raddatz, T.; Brovkin, V.; Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst. 2013, 5, 459–482. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Jacob, D.; Podzun, R. Sensitivity studies with the regional climate model REMO. Meteorol. Atmos. Phys. 1997, 63, 119–129. [Google Scholar] [CrossRef]
- Wilhelm, C.; Rechid, D.; Jacob, D. Dynamic coupling of regional atmosphere to biosphere in the new generation regional climate system model REMO-iMOVE. Geosci. Model Dev. Discuss. 2013, 6, 3085–3135. [Google Scholar] [CrossRef] [Green Version]
- Schulz, J.-P.; Vogel, G.; Ahrens, B. A new leaf phenology for the land surface scheme TERRA of the COSMO atmospheric model. COSMO Newsl. 2015, 15. Available online: http://www.cosmo-model.org/ (accessed on 5 March 2019).
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.; Ciais, P.; Liu, Q.; Janssens, I.; Vicca, S.; Zeng, Z.; Jeong, S.J.; et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W.; Ehlig, C. The influence of soil water on transpiration by plants. J. Geophys. Res. 1963, 68, 5719–5724. [Google Scholar] [CrossRef]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Anav, A.; Murray-Tortarolo, G.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z. Evaluation of land surface models in reproducing satellite Derived leaf area index over the high-latitude northern hemisphere. Part II: Earth system models. Remote Sens. 2013, 5, 3637–3661. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt. Umwelt und Landwirtschaft. 2018. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/421/publikationen/20180125_uba_fl_umwelt_und_landwirtschaft_bf_final.pdf (accessed on 13 October 2020).
- Davin, E.L.; Seneviratne, S.I.; Ciais, P.; Olioso, A.; Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 2014, 111, 9757–9761. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogée, J.; Allard, V.; et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Luterbacher, J.; Liniger, M.A.; Menzel, A.; Estrella, N.; Della-Marta, P.M.; Pfister, C.; Rutishauser, T.; Xoplaki, E. Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. Res. Lett. 2007, 34, L12704. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K.; Filon, L.N.G. VII. Mathematical contributions to the theory of evolution.—IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation. Philos. Trans. R. Soc. London. Series Contain. Pap. Math. Phys. Character 1898, 191, 229–311. [Google Scholar]
- Fisher, R.A. Statistical Methods for Research Workers; Oliver and Boyd: Edinburgh, UK, 1925; Volume 6. [Google Scholar]
- Eid, M.; Gollwitzer, M.; Schmitt, M. Statistik und Forschungsmethoden: Mit Online-Materialien; Weinheim: Basel, Beltz, 2017; Volume 5. [Google Scholar]
Symbol | Description | Units |
---|---|---|
leaf area index | - | |
time, time step | s | |
growth rate, shedding rate | ||
soil surface temperature | ||
averaging time for temperature | s | |
phenology temperature, threshold | ||
LAI depending on temperature (and day length) | - | |
latitude | rad | |
declination of the sun | rad | |
day length, threshold | h (hours) | |
water content, maximum available | m | |
averaging time for water availability | s | |
LAI with water dependence | - | |
LAI with smoothed water availability | - |
r (LAI_ | r (LAI_ | r (LAI_ | r (LAI_ | z | p (Fisher) | |
---|---|---|---|---|---|---|
old∼Obs) | T∼Obs) | TD∼Obs) | TDW∼Obs) | (old∼TDW) | (old∼TDW) | |
Lindenberg | 0.73 | 0.56 | 0.77 | 0.82 | −2.287 | 0.011 |
Linden | 0.67 | 0.51 | 0.71 | 0.77 | −2.101 | 0.018 |
Selhausen | 0.76 | 0.57 | 0.81 | 0.86 | −2.979 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, E.; Schulz, J.-P.; Seibert, R.; Schmidt, M.; Zhang, M.; Luterbacher, J.; Tölle, M.H. Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM. Atmosphere 2020, 11, 1364. https://doi.org/10.3390/atmos11121364
Hartmann E, Schulz J-P, Seibert R, Schmidt M, Zhang M, Luterbacher J, Tölle MH. Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM. Atmosphere. 2020; 11(12):1364. https://doi.org/10.3390/atmos11121364
Chicago/Turabian StyleHartmann, Eva, Jan-Peter Schulz, Ruben Seibert, Marius Schmidt, Mingyue Zhang, Jürg Luterbacher, and Merja H. Tölle. 2020. "Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM" Atmosphere 11, no. 12: 1364. https://doi.org/10.3390/atmos11121364