Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Note on Nomenclature
2.2. Large-Eddy Simulation Solver PALM
2.2.1. Nested LES Domain Approach
2.3. Urban Surface Model in LES
2.4. LES Modelling
2.4.1. Boundary Conditions and Initialization
2.4.2. Modeling of Trees as Porous Media
2.5. Different Simulation Configurations
2.5.1. Data Acquisition from LES
- Horizontal 2D mean flow distributions are gathered from both the and domains such that , where . The planes at the last two elevations and are only extracted from .
- A total of 11 virtual tower measurement stations is placed at locations , where refer to different station labels within . At each site, all prognostic variables are sampled at frequency and vertical resolution of m. To tie resolution information into the comparison, the reference case [R] was used to gather two identical datasets, first, as described, from and, second, from the solution of with 2 m () resolution. This data will be thus labeled [R2] throughout this document. The exact coordinate of [R2] virtual tower deviates from [R] by 0.5 m in both horizontal directions. This offset was examined to have a negligible effect on the results. The locations and labels, shown in Figure 5, are chosen by design to establish a representative sample of urban settings:
- M1: Narrow street canyon primarily aligned with the streamwise direction.
- M2: Same as above but with a different urban plan upstream.
- M3: Intersection at an opening with an isolated, dense formation of trees.
- M4: Narrow boulevard (street canyon with regular array of trees on both sides of the road) oriented perpendicular to the mean wind.
- M5: Upstream corner of a park with large deciduous trees.
- M6: Downstream corner of the abovementioned park.
- M7: Narrow streamwise aligned street canyon of which upstream is partially influenced by vegetation.
- M8: Wide street canyon with sporadic arrays of relatively small trees. Complex arrangement of city blocks upstream.
- M9: Further downstream location of the abovementioned street canyon. Upstream weakly influenced by trees.
- M10: T-intersection with a narrow street canyon upstream, a dense array of trees immediately behind the measurement station.
- M11: Center of a public square shielded by upstream buildings and trees.
2.6. Analysis Methods
2.6.1. Statistical Evaluation of Differences in 2D Mean Flow Distributions
2.6.2. Joint Time–Frequency Analysis with Wavelets
2.6.3. Fourier Transform: Filtering and Spectrum
2.6.4. Wavelet Transform: Time–Frequency Joint Analysis
2.6.5. Entropy and Divergence of Turbulent Signals
3. Results and Discussion
3.1. Similarity Scaling Parameters
3.2. Horizontal Mean Flow Distributions
3.3. Local Turbulence Profiles
3.3.1. Mean Flow
3.3.2. Velocity Variance
3.4. Time–Frequency Analysis
3.4.1. Filtering Out the Largest Atmospheric Boundary Layer Modes
3.4.2. Comparing Coherent Structure Content Using Entropy and Divergence
4. Conclusions
Recommendations
- Nested domain approach is essential in realistic UBL flows due to the size requirement for the computational domain.
- Sufficient grid resolution is critical when urban canopy flow is of primary interest. Grid spacing of or better is recommended in the vicinity of the urban roughness elements and close to the ground.
- The accuracy of the profile is relevant when detailed information is sought close to the ground in proximity of trees.
- The shape of vegetation should be modelled as accurately as possible, but the flow system within a densely arranged urban environment is not very sensitive to the precision of the constant drag coefficient in the vegetation drag model.
- The grid resolution on the top part of the domain can be relaxed as the largest eddies do not influence the urban canopy turbulence to an observable degree. However, it is beneficial to employ sufficiently tall computational domains, with , particularly when the transition from fully developed ABL flow to a developing UBL flow is resolved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABL | Atmospheric boundary layer |
DA | Double average |
ISL | Inertial sublayer |
LAD | Leaf area density |
LAI | Leaf area index |
LES | Large-Eddy Simulation |
LSM | Large-scale motions |
RSL | Roughness sublayer |
UBL | Urban boundary layer |
VLSM | Very-large-scale motions |
Appendix A. Fourier Filtering: Continuous and Discrete Version
Appendix B. Wavelet Transform, Morlet Family, and Its Approximated Form
References
- Britter, R.E.; Hanna, S.R. Flow and Dispersion in Urban Areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Meneveau, C.; Parlange, M.B. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol. 2006, 40, 2653–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bou-Zeid, E.; Overney, J.; Rogers, B.D.; Parlange, M.B. The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies. Bound.-Layer Meteorol. 2009, 132, 415–436. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.T.; Castro, I.P. Large-eddy simulation for flow and dispersion in urban streets. Atmos. Environ. 2009, 43, 2174–2185. [Google Scholar] [CrossRef] [Green Version]
- Giometto, M.; Christen, A.; Meneveau, C.; Fang, J.; Krafczyk, M.; Parlange, M. Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface. Bound.-Layer Meteorol. 2016, 160, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Santiago, J.L.; Martilli, A. A Dynamic Urban Canopy Parameterization for Mesoscale Models Based on Computational Fluid Dynamics Reynolds-Averaged Navier–Stokes Microscale Simulations. Bound.-Layer Meteorol. 2010, 137, 417–439. [Google Scholar] [CrossRef]
- Krayenhoff, E.; Santiago, J.L.; Martilli, A.; Christen, A.; Oke, T. Parametrization of drag and turbulence for urban neighbourhoods with trees. Bound.-Layer Meteorol. 2015, 156, 157–189. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Hang, J. Recent Advances in Urban Ventilation Assessment and Flow Modelling. Atmosphere 2019, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Castro, I.P. Near Wall Flow over Urban-like Roughness. Bound.-Layer Meteorol. 2002, 104, 229–259. [Google Scholar] [CrossRef]
- Kanda, M.; Moriwaki, R.; Kasamatsu, F. Large-Eddy Simulation of Turbulent Organized Structures within and above Explicitly Resolved Cube Arrays. Bound.-Layer Meteorol. 2004, 112, 343–368. [Google Scholar] [CrossRef]
- Coceal, O.; Thomas, T.; Castro, I.; Belcher, S. Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound.-Layer Meteorol. 2006, 121, 491–519. [Google Scholar] [CrossRef]
- Coceal, O.; Thomas, T.; Belcher, S. Spatial variability of flow statistics within regular building arrays. Bound.-Layer Meteorol. 2007, 125, 537–552. [Google Scholar] [CrossRef]
- Letzel, M. High Resolution Large-Eddy Simulation of Turbulent Flow around Buildings. Inst. für Meteorologie und Klimatologie, 2007. Available online: www.muk.uni-hannover.de/institut/dissertationen.htm (accessed on 11 February 2020).
- Xie, Z.; Castro, I. LES and RANS for turbulent flows over arrays of wall-mounted obstacles. Flow Turbul. Combust. 2006, 76, 291–312. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.T.; Castro, I.P. Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 2008, 81, 449–470. [Google Scholar] [CrossRef] [Green Version]
- Letzel, M.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Anderson, W.; Li, Q.; Bou-Zeid, E. Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes. J. Turbul. 2015, 16, 809–831. [Google Scholar] [CrossRef]
- Castro, I.P.; Xie, Z.T.; Fuka, V.; Robins, A.G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O. Measurements and Computations of Flow in an Urban Street System. Bound.-Layer Meteorol. 2017, 162, 207–230. [Google Scholar] [CrossRef]
- Giometto, M.; Christen, A.; Egli, P.; Schmid, M.; Tooke, R.; Coops, N.; Parlange, M. Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv. Water Resour. 2017, 106, 154–168. [Google Scholar] [CrossRef]
- Hertwig, D.; Patnaik, G.; Leitl, B. LES validation of urban flow, part I: Flow statistics and frequency distributions. Environ. Fluid Mech. 2017, 17, 521–550. [Google Scholar] [CrossRef]
- Hertwig, D.; Patnaik, G.; Leitl, B. LES validation of urban flow, part II: Eddy statistics and flow structures. Environ. Fluid Mech. 2017, 17, 551–578. [Google Scholar] [CrossRef] [Green Version]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, A.; Ketelsen, K.; Barmpas, F.; Tsegas, G.; Moussiopoulos, N.; Raasch, S. Nested Multi-scale System in the PALM Large-Eddy Simulation Model. In Air Pollution Modeling and Its Application XXV; Mensink, C., Kallos, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 287–292. [Google Scholar]
- Wood, C.R.; Järvi, L.; Kouznetsov, R.D.; Nordbo, A.; Joffre, S.; Drebs, A.; Vihma, T.; Hirsikko, A.; Suomi, I.; Fortelius, C.; et al. An Overview of the Urban Boundary Layer Atmosphere Network in Helsinki. Bull. Am. Meteorol. Soc. 2013, 94, 1675–1690. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, N.; Chauhan, K.; Marusic, I.; Monty, J.; Klewicki, J. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteorol. 2012, 145, 273–306. [Google Scholar] [CrossRef]
- Fang, J.; Porté-Agel, F. Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2015, 155, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, S. The Method of Volume Averaging; Springer Science & Business Media: Berlin, Germany, 2013; Volume 13. [Google Scholar]
- Schmid, M.F.; Lawrence, G.A.; Parlange, M.B.; Giometto, M.G. Volume Averaging for Urban Canopies. Bound.-Layer Meteorol. 2019, 173, 349–372. [Google Scholar] [CrossRef] [Green Version]
- Wicker, L.J.; Skamarock, W.C. Time-Splitting Methods for Elastic Models Using Forward Time Schemes. Mon. Weather. Rev. 2002, 130, 2088–2097. [Google Scholar] [CrossRef]
- Deardorff, J. Stratoculumus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Moeng, C.; Wyngaard, J. Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 1988, 45, 3573–3587. [Google Scholar] [CrossRef] [Green Version]
- Saiki, E.; Moeng, C.; Sullivan, P. Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteorol. 2000, 95, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Resler, J.; Krč, P.; Belda, M.; Juruš, P.; Benešová, N.; Lopata, J.; Vlček, O.; Damašková, D.; Eben, K.; Derbek, P.; et al. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model. Geosci. Model Dev. 2017, 10, 3635–3659. [Google Scholar] [CrossRef] [Green Version]
- Auvinen, M. RasterH3D: Raster Maps of Helsinki City Processed from Helsinki 3D Open Access LiDAR Point Cloud Dataset. 2019. Available online: https://doi.org/10.5281/zenodo.2538073 (accessed on 13 February 2020).
- Hussain, M.; Lee, B. A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings. J. Wind. Eng. Ind. Aerodyn. 1980, 6, 207–225. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Auvinen, M.; Järvi, L.; Hellsten, A.; Rannik, U.; Vesala, T. Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling. Geosci. Model Dev. 2017, 10, 4187–4205. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Adrian, R. Very large-scale motion in the outer layer. Phys. Fluids 1999, 11, 417–422. [Google Scholar] [CrossRef]
- Balakumar, B.; Adrian, R. Large-and very-large-scale motions in channel and boundary-layer flows. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 665–681. [Google Scholar] [CrossRef]
- Chung, D.; McKeon, B.J. Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 2010, 661, 341–364. [Google Scholar] [CrossRef] [Green Version]
- Guala, M.; Hommema, S.; Adrian, R. Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 2006, 554, 521–542. [Google Scholar] [CrossRef]
- Hutchins, N.; Marusic, I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 2007, 579, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, N.; Marusic, I. Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 647–664. [Google Scholar] [CrossRef] [Green Version]
- Mathis, R.; Hutchins, N.; Marusic, I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 2009, 628, 311–337. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W. Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: Evidence from large-eddy simulations. J. Fluid Mech. 2016, 789, 567–588. [Google Scholar] [CrossRef]
- Fishpool, G.M.; Lardeau, S.; Leschziner, M.A. Persistent Non-Homogeneous Features in Periodic Channel-Flow Simulations. Flow Turbul. Combust. 2009, 83, 323–342. [Google Scholar] [CrossRef]
- Raupach, M.; Thom, A.S. Turbulence in and above plant canopies. Annu. Rev. Fluid Mech. 1981, 13, 97–129. [Google Scholar] [CrossRef]
- Finnigan, J. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- Yue, W.; Parlange, M.B.; Meneveau, C.; Zhu, W.; Van Hout, R.; Katz, J. Large-eddy simulation of plant canopy flows using plant-scale representation. Bound.-Layer Meteorol. 2007, 124, 183–203. [Google Scholar] [CrossRef]
- De Langre, E. Effects of wind on plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, F.; Stiller, J.; Bienert, A.; Maas, H.G.; Queck, R.; Bernhofer, C. Large-eddy simulation of inhomogeneous canopy flows using high resolution terrestrial laser scanning data. Bound.-Layer Meteorol. 2012, 142, 223–243. [Google Scholar] [CrossRef]
- Mayhead, G. Some drag coefficients for british forest trees derived from wind tunnel studies. Agric. Meteorol. 1973, 12, 123–130. [Google Scholar] [CrossRef]
- Rudnicki, M.; Mitchell, S.J.; Novak, M.D. Wind tunnel measurements of crown streamlining and drag relationships for three conifer species. Can. J. For. Res. 2004, 34, 666–676. [Google Scholar] [CrossRef]
- Vollsinger, S.; Mitchell, S.J.; Byrne, K.E.; Novak, M.D.; Rudnicki, M. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can. J. For. Res. 2005, 35, 1238–1249. [Google Scholar] [CrossRef]
- Raupach, M.R. Drag and drag partition on rough surfaces. Bound.-Layer Meteorol. 1992, 60, 375–395. [Google Scholar] [CrossRef]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Gromke, C.; Blocken, B.; Janssen, W.; Merema, B.; van Hooff, T.; Timmermans, H. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build. Environ. 2015, 83, 11–26. [Google Scholar] [CrossRef]
- Katul, G.; Albertson, J. An Investigation of Higher-Order Closure Models for a Forested Canopy. Bound.-Layer Meteorol. 1998, 89, 47–74. [Google Scholar] [CrossRef]
- Raupach, M.; Woods, N.; Dorr, G.; Leys, J.; Cleugh, H. The entrapment of particles by windbreaks. Atmos. Environ. 2001, 35, 3373–3383. [Google Scholar] [CrossRef]
- Ghasemian, M.; Amini, S.; Princevac, M. The influence of roadside solid and vegetation barriers on near-road air quality. Atmos. Environ. 2017, 170, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.F.G. Flow around a Line Obstacle. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1983. [Google Scholar]
- Grunert, F.; Benndorf, D.; Klingbeil, K. Neuere Ergebnisse zum Aufbau von Schutzpflanzungen. Beitrage fur die Forstwirtschaft 1984, 18, 108–115. [Google Scholar]
- Tanhuanpää, T.; Vastaranta, M.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Raisio, J. Mapping of urban roadside trees—A case study in the tree register update process in Helsinki City. Urban For. Urban Green. 2014, 13, 562–570. [Google Scholar] [CrossRef]
- Markkanen, T.; Rannik, Ü.; Marcolla, B.; Cescatti, A.; Vesala, T. Footprints and Fetches for Fluxes over Forest Canopies with Varying Structure and Density. Bound.-Layer Meteorol. 2003, 106, 437–459. [Google Scholar] [CrossRef]
- Zhou, X.; Brandle, J.; Takle, E.; Mize, C. Estimation of the three-dimensional aerodynamic structure of a green ash shelterbelt. Agric. For. Meteorol. 2002, 111, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F.; Smith, G.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Rotach, M.W.; Vogt, R.; Bernhofer, C.; Batchvarova, E.; Christen, A.; Clappier, A.; Feddersen, B.; Gryning, S.E.; Martucci, G.; Mayer, H.; et al. BUBBLE—An Urban Boundary Layer Meteorology Project. Theor. Appl. Climatol. 2005, 81, 231–261. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Hellsten, A.; Zilitinkevich, S. Role of convective structures and background turbulence in the dry convective boundary layer. Bound.-Layer Meteorol. 2013, 149, 323–353. [Google Scholar] [CrossRef]
- Sanei Tabass, M.; Mohtashami Borzadaran, G.R.; Amini, M. Renyi entropy in continuous case is not the limit of discrete case. Math. Sci. Appl. E-Notes 2016, 4, 113–117. [Google Scholar]
- Bonachela, J.A.; Hinrichsen, H.; Munoz, M.A. Entropy estimates of small data sets. J. Phys. A Math. Theor. 2008, 41, 202001. [Google Scholar] [CrossRef]
- Roulston, M.S. Estimating the errors on measured entropy and mutual information. Phys. D Nonlinear Phenom. 1999, 125, 285–294. [Google Scholar] [CrossRef]
- Frisch, U.; Kolmogorov, A.N. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Gao, R.X.; Yan, R. Wavelets Theory and Applications for Manufacturing; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wojtaszczyk, P. A Mathematical Introduction to Wavelet; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–666. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Erdogmuns, D. Renyi’s Entropy, Divergence and Their Nonparametric Estimators. In Information Theoretic Learning; Springer: New York, NY, USA, 2010; pp. 47–102. [Google Scholar]
- Krishnamurthy, A.; Kandasamy, K.; Póczos, B.; Wasserman, L.A. Nonparametric Estimation of Renyi Divergence and Friends. In Proceedings of the ICML, Beijing, China, 21–26 June 2014. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge Univ. Press: Cambridge, UK, 2001. [Google Scholar]
- Shannon, C.E. Communication in the presence of noise. Proc. Inst. Radio Eng. 1949, 37, 10–21. [Google Scholar] [CrossRef]
Domain dimensions | 7168 m | 3072 m | 1024 m | |
1536 m | 1024 m | 512 m | ||
512 m | 256 m | 128 m | ||
Cell size | 4 m | 2 m | 1 m | |
Domain node counts | 1792 | 1536 | 1024 | |
384 | 512 | 512 | ||
128 | 128 | 128 | ||
Total domain node count | ||||
Nested model node count |
Mean | building heights | m | m |
tree heights | m | m | |
Characteristic canopy height | m | ||
Std. of | building heights | m | m |
tree heights | m | m | |
Plan area fractions of | buildings | ||
trees | |||
Frontal area fractions of | buildings | ||
trees |
Model Constituent | Reference Case | Modified Case |
---|---|---|
LAD profile: | [R]: | [P]: |
for and | ||
Drag coefficient: | [R]: | [D]: |
Neutral ABL height: | [R]: | [B]: |
Case | Friction Velocity | Roughness ength | Displacement Height |
---|---|---|---|
[R] | 0.539 | 0.063 | 1.08 |
[P] | 0.521 | 0.063 | 1.08 |
[B] | 0.505 | 0.067 | 1.05 |
[D] | 0.535 | 0.066 | 1.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auvinen, M.; Boi, S.; Hellsten, A.; Tanhuanpää, T.; Järvi, L. Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation. Atmosphere 2020, 11, 201. https://doi.org/10.3390/atmos11020201
Auvinen M, Boi S, Hellsten A, Tanhuanpää T, Järvi L. Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation. Atmosphere. 2020; 11(2):201. https://doi.org/10.3390/atmos11020201
Chicago/Turabian StyleAuvinen, Mikko, Simone Boi, Antti Hellsten, Topi Tanhuanpää, and Leena Järvi. 2020. "Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation" Atmosphere 11, no. 2: 201. https://doi.org/10.3390/atmos11020201
APA StyleAuvinen, M., Boi, S., Hellsten, A., Tanhuanpää, T., & Järvi, L. (2020). Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation. Atmosphere, 11(2), 201. https://doi.org/10.3390/atmos11020201