Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Methods and Metrics
2.3.1. Standardized Precipitation Evapotranspiration
- i)
- Severity is the cumulative sum of the index value based on the duration extent (Equation (1));
- ii)
- The intensity of an event is the severity divided by the duration (Equation (2)). Events that have shorter duration and higher severity will have large intensities.
- iii)
- The frequency of occurrence is defined in Equation (3):
2.3.2. Mann–Kendall Test
2.3.3. Empirical Cumulative Frequency
3. Results
3.1. Temporal Patterns and Frequency Incidences of Dry/Wet Events
3.2. Spatial Patterns of SPEI in the Study Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parsons, D.J.; Rey, D.; Tanguy, M.; Holman, I.P. Regional variations in the link between drought indices and reported agricultural impacts of drought. Agric. Syst. 2019, 173, 119–129. [Google Scholar] [CrossRef]
- Wilhite, D.A. Chapter 1 Drought as a natural hazard: Concepts and definitions. In Drought Mitigation Center Faculty Publications; Routledge: London, UK, 2000; p. 69. [Google Scholar]
- Rohli, R.V.; Bushra, N.; Lam, N.S.; Zou, L.; Mihunov, V.; Reams, M.A.; Argote, J.E. Drought indices as drought predictors in the south-central USA. Nat. Hazards 2016, 83, 1567–1582. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Wang, G. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Wang, G.; Gong, T.; Lu, J.; Lou, D.; Hagan, D.F.T.; Chen, T. On the long-term changes of drought over China (1948–2012) from different methods of potential evapotranspiration estimations. Int. J. Climatol. 2018, 38, 2954–2966. [Google Scholar] [CrossRef]
- WMO. Experts Recommend Agricultural Drought Indices for improved understanding of food production conditions. In Developments in Earth Surface Processes; WMO: Murcia, Spain, 2010; Press Release No. 887. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Łabędzki, L. Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- WMO; GWP. Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dyn. 2013, 41, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Bradford, R. Drought Events in Europe, in Drought and Drought Mitigation in Europe; Springer: Berlin/Heidelberg, Germany, 2000; pp. 7–20. [Google Scholar]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D. North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Seager, R.; Cane, M.A.; Stahle, D.W. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 2012, 5, 551. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Cheng, L.; Omid, M.; Alireza, F. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Liu, Y.; Liu, H.; Ren, J. Reconstruction of drought variability in North China and its association with sea surface temperature in the joining area of Asia and Indian–Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 417, 554–560. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.H.; Qin, Z.H.; Ke-Xun, H.E.; Chong, C.; Luo, Y.X.; Zhou, X.D. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Wang, G.; Li, J.; Mu, M.; Yan, G.; Zhu, S. Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. J. Geophys. Res. Atmos. 2016, 121, 9342–9355. [Google Scholar] [CrossRef] [Green Version]
- Chiew, F.H.S.; Potter, N.J.; Vaze, J.; Petheram, C.; Zhang, L.; Teng, J.; Post, D.A. Observed hydrologic non-stationarity in far south-eastern Australia: Implications for modelling and prediction. Stoch. Environ. Res. Risk Assess. 2014, 28, 3–15. [Google Scholar] [CrossRef]
- Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Development of drought severity-duration-frequency curves in Victoria, Australia. Australas. J. Water Resour. 2015, 19, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Hulme, M. Rainfall changes in Africa: 1931–1960 to 1961–1990. Int. J. Climatol. 1992, 12, 685–699. [Google Scholar] [CrossRef]
- Lyon, B.; DeWitt, D.G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Zhou, L.; Chen, H.; Nicholson, S.E.; Raghavendra, A.; Jiang, Y. Possible causes of the Central Equatorial African long-term drought. Environ. Res. Lett. 2016, 11, 124002. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Clim. Chang. 2017, 144, 519–533. [Google Scholar] [CrossRef]
- Lyon, B. Seasonal drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Gebremeskel, G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, impacts and resilience. Earth Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Nicholson, S.E. The predictability of rainfall over the Greater Horn of Africa. Part I: Prediction of seasonal rainfall. J. Hydrometeorol. 2014, 15, 1011–1027. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Hargitt, D.; Hoyois, P. Thirty Years of Natural Disasters 1974–2003: The Numbers; Presses universitaires de Louvain: Louvain, Belgium, 2004. [Google Scholar]
- Balint, Z.; Mutua, F.; Muchiri, P.; Omuto, C.T. Monitoring drought with the combined drought index in Kenya. In Developments in Earth Surface Processes; Elsevier: Berlin/Heidelberg, Germany, 2013; pp. 341–356. [Google Scholar]
- Ongoma, V.; Chen, H.; Gao, C. Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int. J. Climatol. 2018, 38, 1375–1392. [Google Scholar] [CrossRef]
- Rowell, D.P.; Booth, B.B.B.; Nicholson, S.E.; Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H. Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorol. Atmos. Phys. 2017, 129, 131–144. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Tan, G.; Ongoma, V.; Mafuru, K.B. Circulations associated with variations in boreal spring rainfall over Kenya. Earth Syst. Environ. 2018, 2, 421–434. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J.; Ayugi, B. Evaluation of spatiotemporal variability of rainfall over Kenya from 1979 to 2017. J. Atmos. Sol. -Terr. Phys. 2019, 194, 105097. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 2011, 37, 2417–2435. [Google Scholar] [CrossRef] [Green Version]
- Polong, F.; Chen, H.; Sun, S.; Ongoma, V. Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Theor. Appl. Climatol. 2019, 138, 777–792. [Google Scholar] [CrossRef]
- Karanja, A.; Ondimu, K.; Recha, C. Analysis of Temporal Drought Characteristic Using SPI Drought Index Based on Rainfall Data in Laikipia West Sub-County, Kenya. Open Access Libr. J. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Mutsotso, R.B.; Sichangi, A.W.; Makokha, G.O. Spatio-Temporal Drought Characterization in Kenya from 1987 to 2016. Adv. Remote Sens. 2018, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Changwony, C.; Sichangi, A.W.; Ngigi, M.M. Using GIS and Remote Sensing in Assessment of Water Scarcity in Nakuru County, Kenya. Adv. Remote Sens. 2017, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.; Armenski, T.; Gocic, M.; Popov, S.; Popovic, L.; Trajkovic, S. Influence of mathematical and physical background of drought indices on their complementarity and drought recognition ability. Atmos. Res. 2017, 194, 268–280. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Wambua, R.M.; Mutua, B.M.; Raude, J.M. Detection of Spatial, Temporal and Trend of Meteorological Drought Using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the Upper Tana River Basin, Kenya. Open J. Mod. Hydrol. 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Mumo, L.; Yu, J.; Fang, K. Assessing Impacts of Seasonal Climate Variability on Maize Yield in Kenya. Int. J. Plant Prod. 2018, 12, 297–307. [Google Scholar] [CrossRef]
- Camberlin, P. Climate of Eastern Africa. In Oxford Research Encyclopedia of Climate Science; Oxford University Press USA: New York, NY, USA, 2018. [Google Scholar]
- Ayugi, B.O.; Wen, W.; Chepkemoi, D. Analysis of spatial and temporal patterns of rainfall variations over Kenya. J. Env. Earth Sci. 2016, 6, 69–83. [Google Scholar]
- Ogwang, B.A.; Chen, H.; Tan, G.; Ongoma, V.; Ntwali, D. Diagnosis of East African climate and the circulation mechanisms associated with extreme wet and dry events: A study based on RegCM4. Arab. J. Geosci. 2015, 8, 10255–10265. [Google Scholar] [CrossRef]
- Kinuthia, J.; Asnani, G. A newly found jet in North Kenya (Turkana Channel). Mon. Weather Rev. 1982, 110, 1722–1728. [Google Scholar] [CrossRef]
- Hastenrath, S.; Polzin, D.; Camberlin, P. Exploring the predictability of the ‘short rains’ at the coast of East Africa. Int. J. Climatol. A J. R. Meteorol. Soc. 2004, 24, 1333–1343. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F. Relationships between QBO in the lower equatorial stratospheric zonal winds and East African seasonal rainfall. Meteorol. Atmos. Phys. 2000, 73, 227–244. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Pohl, B.; Crétat, J.; Camberlin, P. Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn. 2011, 37, 1357–1379. [Google Scholar] [CrossRef]
- Hastenrath, S. Zonal circulations over the equatorial Indian Ocean. J. Clim. 2000, 13, 2746–2756. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F.H.; Ogallo, L.J. ENSO signals in East African rainfall seasons. Int. J. Climatol. 2000, 20, 19–46. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Michaelsen, J. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayugi, B.; Tan, G.; Ullah, W.; Boiyo, R.; Ongoma, V. Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016. Atmos. Res. 2019, 225, 96–109. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society Boston: Boston, MA, USA, 1993. [Google Scholar]
- Gozzo, L.F.; Palma, D.S.; Custodio, M.S.; Machado, J.P. Climatology and Trend of Severe Drought Events in the State of Sao Paulo, Brazil, during the 20th Century. Atmosphere 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Balint, Z.; Mutua, F.; Muchiri, P. Drought Monitoring with the Combined Drought Index; FAO-SWALIM: Nairobi, Kenya, 2011; pp. 3–25. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2010, 102, 287–305. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: San Francisco, CA, USA, 1975; Volume 8. [Google Scholar]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theor. Appl. Climatol. 2018, 135, 893–910. [Google Scholar] [CrossRef]
- Araghi, A.; Mousavi-Baygi, M.; Adamowski, J. Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theor. Appl. Climatol. 2016, 125, 213–225. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Tan, G. Recent trends of surface air temperatures over Kenya from 1971 to 2010. Meteorol. Atmos. Phys. 2019, 131, 1401–1413. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zambreski, Z.T. A statistical assessment of drought variability and climate prediction for Kansas. Ph.D. Thesis, Kansas State University, Manhattan, Kansas, 2016. [Google Scholar]
- Mumo, L.; Yu, J. Gauging the performance of CMIP5 historical simulation in reproducing observed gauge rainfall over Kenya. Atmos. Res. 2020, 236, 104808. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Vicente-serrano, S.M.; López-moreno, J.I.; Beguería, S.; García-ruiz, J.M. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J. Hydrol. 2010, 386, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.D.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Federer, C.; Vörösmarty, C.; Fekete, B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour. Res. 1996, 32, 2315–2321. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar] [CrossRef] [Green Version]
- Ogwang, B.A.; Chen, H.; Li, X.; Chujie, G. The influence of topography on East African October to December climate: Sensitivity experiments with RegCM4. Adv. Meteorol. 2014, 2014, 143917. [Google Scholar] [CrossRef]
- Awange, J.L.; Aluoch, J.; Ogallo, L.A.; Omulo, M.; Omondi, P. Frequency and severity of drought in the Lake Victoria region (Kenya) and its effects on food security. Clim. Res. 2007, 33, 135–142. [Google Scholar] [CrossRef]
- Mwangi, E.; Wetterhall, F.; Dutra, E.; Di Giuseppe, F.; Pappenberger, F. Forecasting droughts in East Africa. Hydrol. Earth Syst. Sci. 2014, 18, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ. 2014, 103, 71–79. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F. Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or pacific decadal variability? Clim. Dyn. 2013, 40, 3009–3022. [Google Scholar] [CrossRef]
- Dai, A. Future warming patterns linked to today’s climate variability. Sci. Rep. 2016, 6, 19110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 2015, 45, 2667–2681. [Google Scholar] [CrossRef]
- Hulme, M. Climate change within the period of meteorological records. In The Physical geography of Africa; Oxford University Press: Oxfor, UK, 1996; pp. 88–102. [Google Scholar]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 14637–14665. [Google Scholar] [CrossRef]
- Ji, M.; Huang, J.; Xie, Y.; Liu, J. Comparison of dryland climate change in observations and CMIP5 simulations. Adv. Atmos. Sci. 2015, 32, 1565–1574. [Google Scholar] [CrossRef]
- Liebmann, B.; Hoerling, M.P.; Funk, C.; Bladé, I.; Dole, R.M.; Allured, D.; Quan, X.; Pegion, P.; Eischeid, J.K. Understanding recent eastern Horn of Africa rainfall variability and change. J. Clim. 2014, 27, 8630–8645. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef]
- Tierney, J.E.; Ummenhofer, C.C.; deMenocal, P.B. Past and future rainfall in the Horn of Africa. Sci. Adv. 2015, 1, e1500682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef] [PubMed]
- Dilling, L.; Daly, M.E.; Kenney, D.A.; Klein, R.; Miller, K.; Ray, A.J.; Travis, W.R.; Wilhelmi, O. Drought in urban water systems: Learning lessons for climate adaptive capacity. Clim. Risk Manag. 2019, 23, 32–42. [Google Scholar] [CrossRef]
Trend Analysis | SPEI-Test | |||
---|---|---|---|---|
SPEI-3 Dry | SPEI-3 Wet | SPEI-12 Dry | SPEI-12 Wet | |
S | 3150 | 1130 | 2080 | −1170 |
Z | 13.12 | 11.38 | 11.77 | −11.77 |
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Alpha | 0.05 | 0.05 | 0.05 | 0.05 |
significance | Significant | Significant | Significant | Significant |
Increasing | Increasing | Increasing | Decreasing |
Event | SPEI | Duration | Severity | Intensity |
---|---|---|---|---|
Dry | 3 | 78 | −111.15 | −1.43 |
12 | 64 | −98.70 | −1.54 | |
Wet | 3 | 61 | 94.79 | 1.55 |
12 | 61 | 93.31 | 1.53 |
Grid | Duration | Severity | Intensity | Grid | Duration | Severity | Intensity |
---|---|---|---|---|---|---|---|
Dry Event for SPEI-3 | Wet Event for SPEI-3 | ||||||
4 | 80 | −110.74 | −1.38 | 4 | 81 | 115.69 | 1.42 |
15 | 81 | −109.76 | −1.35 | 26 | 80 | 117.26 | 1.46 |
16 | 81 | −109.74 | −1.35 | 44 | 85 | 121.71 | 1.43 |
27 | 82 | −114.28 | −1.39 | 48 | 81 | 117.61 | 1.45 |
36 | 83 | −114.81 | −1.38 | 72 | 87 | 125.92 | 1.44 |
49 | 83 | −112.69 | −1.35 | 73 | 80 | 119.58 | 1.49 |
67 | 80 | −107.9 | −1.34 | 76 | 80 | 116.05 | 1.45 |
Dry Event for SPEI-12 | Wet Event for SPEI-12 | ||||||
7 | 82 | −112.69 | −1.37 | 7 | 81 | 111.65 | 1.37 |
13 | 80 | −112.28 | −1.40 | 27 | 80 | 116.22 | 1.45 |
17 | 78 | −110.48 | −1.41 | 32 | 85 | 119.88 | 1.41 |
36 | 76 | −107.69 | −1.41 | 38 | 81 | 115.89 | 1.43 |
48 | 78 | −108.77 | −1.39 | 47 | 80 | 113.5 | 1.42 |
55 | 79 | −108.21 | −1.36 | 53 | 97 | 97.59 | 1.54 |
62 | 78 | −113.83 | −1.45 | 58 | 81 | 115.83 | 1.43 |
63 | 77 | −112.19 | −1.45 | 77 | 87 | 119.4 | 1.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayugi, B.; Tan, G.; Niu, R.; Dong, Z.; Ojara, M.; Mumo, L.; Babaousmail, H.; Ongoma, V. Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa. Atmosphere 2020, 11, 307. https://doi.org/10.3390/atmos11030307
Ayugi B, Tan G, Niu R, Dong Z, Ojara M, Mumo L, Babaousmail H, Ongoma V. Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa. Atmosphere. 2020; 11(3):307. https://doi.org/10.3390/atmos11030307
Chicago/Turabian StyleAyugi, Brian, Guirong Tan, Rouyun Niu, Zeyao Dong, Moses Ojara, Lucia Mumo, Hassen Babaousmail, and Victor Ongoma. 2020. "Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa" Atmosphere 11, no. 3: 307. https://doi.org/10.3390/atmos11030307
APA StyleAyugi, B., Tan, G., Niu, R., Dong, Z., Ojara, M., Mumo, L., Babaousmail, H., & Ongoma, V. (2020). Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa. Atmosphere, 11(3), 307. https://doi.org/10.3390/atmos11030307