21st Century Projections of Extreme Precipitation Indicators for Cyprus
Abstract
:1. Introduction
2. Methods and Data
2.1. Simulation Design
2.2. Observational Data
2.3. CORDEX Data
2.4. Sub-Periods of Analysis
2.5. Indices of Precipitation
- Consecutive dry days (CDD) and the greatest number of consecutive days with precipitation lower than 1 mm, within a year;
- Consecutive wet days (CWD) are the greatest number of consecutive days with precipitation higher or equal to 1 mm, within a year;
- Annual count of rainy days (RR1) is the annual count of days with observed rainfall greater than 1 mm;
- Annual count of days with precipitation larger than 20 mm (R20);
- Highest five-day precipitation amount for each year (RX5D).
3. Results
3.1. Mean Climatic Conditions
3.2. Precipitation Characteristics
3.2.1. Consecutive Dry Days (CDD)
3.2.2. Consecutive Wet Days (CWD)
3.2.3. Number of Rainy Days (RR1)
3.2.4. Maximum Five-Day Precipitation (RX5D)
3.2.5. Annual Count of Days with Heavy Precipitation (R20)
3.2.6. Absolute Maxima of Daily Precipitation (RXa)
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; Peñuelas, J.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, Y. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Paxian, A.; Hertig, E.; Seubert, S.; Vogt, G.; Jacobeit, J.; Paeth, H. Present-day and future Mediterranean precipitation extremes assessed by different statistical approaches. Clim. Dyn. 2014, 44, 845–860. [Google Scholar] [CrossRef]
- Kitoh, A.; Endo, H. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Weather Clim. Extrem. 2016, 11, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Chang. 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Chang. 2020, 20, 31. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Camera, C.; Hadjinicolaou, P.; Lelieveld, J. The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmos. Res. 2017, 191, 20–33. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Torma, C.; Giorgi, F.; Coppola, E. Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the Alps. J. Geophys. Res. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Cardoso, R.M. A simple method to assess the added value using high-resolution climate distributions: Application to the EURO-CORDEX daily precipitation. Int. J. Climatol. 2018, 38, 1484–1498. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Maule, C.F.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11∘ and 0.44∘ simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Pashiardis, S.; Lange, M.A. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos. 2014, 119, 693–712. [Google Scholar] [CrossRef]
- Christofi, C.; Bruggeman, A.; Kuells, C.; Constantinou, C. Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach. Appl. Geochem. 2020, 114, 104524. [Google Scholar] [CrossRef]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor. Appl. Climatol. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Gutowski, W.J. Coordinated Experiments for Projections of Regional Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Michaelides, S.; Lange, M.A. Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. Stoch. Environ. Res. Risk Assess. 2017, 31, 757–773. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Hadjinicolaou, P.; Kostopoulou, E.; Varotsos, K.V.; Zerefos, C. Precipitation and temperature regime over Cyprus as a result of global climate change. Adv. Geosci. 2010, 23, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Hadjinicolaou, P.; Giannakopoulos, C.; Zerefos, C.; Lange, M.A. Mid-21st century climate and weather extremes in Cyprus as projected by six regional climate models. Reg. Environ. Chang. 2011, 11, 441–457. [Google Scholar] [CrossRef]
- Giannakis, E.; Serghides, D.; Dimitriou, S.; Zittis, G. Land Transport CO2 emissions and Climate Change: Evidence from Cyprus. Int. J. Sustain. Energ. 2020. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note, NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008.
- Fita, L.; Polcher, J.; Giannaros, T.M.; Lorenz, T.; Milovac, J.; Sofiadis, G.; Katragkou, E.; Bastin, S. CORDEX-WRF v1.3: Development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community. Geosci. Model Dev. 2019, 12, 1029–1066. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 10–12 January 2004; pp. 11–15. [Google Scholar]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dyn. 2013, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, C.L.; Monaghan, A.J.; Steinhoff, D.F.; Yates, D. Bias-Corrected CMIP5 CESM Data in WRF/MPAS Intermediate File Format; TN-515+STR; NCAR: Boulder, CO, USA, 2015; p. 27. [Google Scholar]
- Zittis, G.; Bruggeman, A.; Hadjinicolaou, P.; Camera, C.; Lelieveld, J. Effects of meteorology nudging in regional hydroclimatic simulations of the Eastern Mediterranean. Atmosphere 2018, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Pashiardis, S.; Lange, M.A. High Resolution Gridded Datasets for Meteorological Variables: Cyprus, 1980–2010 and 2020–2050; AGWATER Scientific Report 5; The Cyprus Institute: Nicosia, Cyprus, 2013; p. 77. [Google Scholar]
- Earth System Grid Federation Datanode, at the National Supercomputer Centre, Linköping. Available online: https://esg-dn1.nsc.liu.se/projects/esgf-liu/ (accessed on 30 March 2020).
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes—Workshop summary. Clim. Chang. 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Können, G.P. Trends in Indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Michaelides, S.; Nicolaides, K.; Karacostas, T. Statistical characteristics of the cold season depressions over the area of Cyprus. Meteorol. Cas. 2004, 7, 61–66. [Google Scholar]
- Nicolaides, K.A.; Michalelides, S.C.; Karacostas, T. Synoptic and dynamic characteristics of selected deep depressions over Cyprus. Adv. Geosci. 2006, 7, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Pendergrass, A.G.; Coleman, D.B.; Deser, C.; Lehner, F.; Rosenbloom, N.; Simpson, I.R. Nonlinear Response of Extreme Precipitation to Warming in CESM1. Geophys. Res. Lett. 2019, 46, 10551–10560. [Google Scholar] [CrossRef]
- Meredith, E.P.; Maraun, D.; Semenov, V.A.; Park, W. Evidence for added value of convection-permitting models for studying changes in extreme precipitation. J. Geophys. Res. 2015, 120, 12500–12513. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, E.; Sobolowski, S.; Pichelli, E. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 2018, 1–32. [Google Scholar] [CrossRef]
- Legasa, M.N.; Manzanas, R.; Fernández, J.; García, S.H. Assessing multi-domain overlaps and grand ensemble generation in CORDEX regional projections. Geophys. Res. Lett. 2020, 47, e2019GL086799. [Google Scholar] [CrossRef]
Driving Global Model | Regional Climate Model | |
---|---|---|
1. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | CLMcom-CCLM4-8-17_v1 |
2. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | CNRM-ALADIN63_v2 |
3. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | DMI-HIRHAM5_v2 |
4. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | KNMI-RACMO22E_v2 |
5. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | RMIB-UGent-ALARO-0_v1 |
6. | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | SMHI-RCA4_v1 |
7. | ICHEC-EC-EARTH (r12i1p1) | CLMcom-CCLM4-8-17_v1 |
8. | ICHEC-EC-EARTH (r12i1p1) | DMI-HIRHAM5_v1 |
9. | ICHEC-EC-EARTH (r12i1p1) | KNMI-RACMO22E_v1 |
10. | ICHEC-EC-EARTH (r12i1p1) | SMHI-RCA4_v1 |
11. | ICHEC-EC-EARTH (r3i1p1) | KNMI-RACMO22E_v1 |
12. | ICHEC-EC-EARTH (r3i1p1) | SMHI-RCA4_v1 |
13. | IPSL-IPSL-CM5A-MR (r1i1p1) | SMHI-RCA4_v1 |
14. | MOHC-HadGEM2-ES (r1i1p1) | CLMcom-CCLM4-8-17_v1 |
15. | MOHC-HadGEM2-ES (r1i1p1) | MOHC_HadREM_v1 |
16. | MOHC-HadGEM2-ES (r1i1p1) | DMI-HIRHAM5_v1 |
17. | MOHC-HadGEM2-ES (r1i1p1) | KNMI-RACMO22E_v2 |
18. | MOHC-HadGEM2-ES (r1i1p1) | SMHI-RCA4_v1 |
19. | MOHC-HadGEM2-ES (r1i1p1) | ICTP_RegCM4_v1 |
20. | MPI-M-MPI-ESM-LR (r1i1p1) | CLMcom-CCLM4-8-17_v1 |
21. | MPI-M-MPI-ESM-LR (r1i1p1) | MPI-CSC-REMO2009_v1 |
22. | MPI-M-MPI-ESM-LR (r1i1p1) | SMHI-RCA4_v1 |
23. | NCC-NorESM1-M (r1i1p1) | DMI-HIRHAM5_v2 |
24. | NCC-NorESM1-M (r1i1p1) | GERICS-REMO2015_v1 |
25. | NCC-NorESM1-M (r1i1p1) | KNMI-RACMO22E_v1 |
26. | NCC-NorESM1-M (r1i1p1) | SMHI-RCA4_v1 |
T (°C) | P (mm) | CDD (days) | CWD (days) | RR1 (days) | R5D (mm) | R20 (days) | RXa (mm) | ||
---|---|---|---|---|---|---|---|---|---|
CY-OBS | Min | 12.2 | 266 | 57 | 4.5 | 39 | 52.3 | 1.8 | 69 |
Mean | 18.1 | 476 | 104.5 | 6 | 53.3 | 90.9 | 5.6 | 106 | |
Max | 19.6 | 928 | 146.2 | 8.1 | 74.9 | 166.8 | 14.1 | 202 | |
WRF | Min | 15.2 | 210 | 47.1 | 4.6 | 35.8 | 44.5 | 1.1 | 43 |
Mean | 18.9 | 379 | 112.2 | 5.9 | 51.8 | 66.7 | 3.5 | 85 | |
Max | 21.1 | 761 | 162.1 | 7.7 | 80.7 | 126.2 | 9.6 | 169 |
T (°C) | P (%) | CDD (days) | CWD (days) | RR1 (days) | R5D (mm) | R20 (days) | RXa (%) | ||
---|---|---|---|---|---|---|---|---|---|
WRF MID-CTL | Min | 1.4 | −16.8 | −8.4 | −1.8 | −9.8 | −17.1 | −1.6 | −68.5 |
Mean | 1.8 | −11.5 | 4 | −0.8 | −6.8 | −1.5 | −0.1 | −20.4 | |
Max | 1.9 | −1.5 | 16.7 | 0.3 | −4.1 | 11.4 | 0.6 | 81.8 | |
WRF END-CTL | Min | 3 | −35.9 | 3.5 | −2.5 | −21.7 | −32.1 | −2.5 | −71.7 |
Mean | 3.7 | −30.7 | 19.5 | −1.3 | −14.9 | −11.3 | −0.7 | −12.9 | |
Max | 4.1 | −24.3 | 41.2 | −0.6 | −11 | 5.5 | 0.3 | 88.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zittis, G.; Bruggeman, A.; Camera, C. 21st Century Projections of Extreme Precipitation Indicators for Cyprus. Atmosphere 2020, 11, 343. https://doi.org/10.3390/atmos11040343
Zittis G, Bruggeman A, Camera C. 21st Century Projections of Extreme Precipitation Indicators for Cyprus. Atmosphere. 2020; 11(4):343. https://doi.org/10.3390/atmos11040343
Chicago/Turabian StyleZittis, George, Adriana Bruggeman, and Corrado Camera. 2020. "21st Century Projections of Extreme Precipitation Indicators for Cyprus" Atmosphere 11, no. 4: 343. https://doi.org/10.3390/atmos11040343
APA StyleZittis, G., Bruggeman, A., & Camera, C. (2020). 21st Century Projections of Extreme Precipitation Indicators for Cyprus. Atmosphere, 11(4), 343. https://doi.org/10.3390/atmos11040343