The Microphysical Properties of a Sea-Fog Event along the West Coast of the Yellow Sea in Spring
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observation
2.2. Calculation Methods
3. Results
3.1. General Characteristics
3.2. Fog Droplets Microphysical Characteristics
3.3. Analytical Expression for Fog DSD
3.4. Comparison of the Effect on Visibility of Large and Small Droplets
3.5. Comparison of the Calculated Visibility with Different Methods
4. Discussion and Conclusions
- The fog event began at around 0827 UTC 6 April 2017, and dissipated at 0230 UTC 8 April 2017 (LST = UTC + 8 h). From 0930 UTC 6 April to 0039 UTC 7 April and from 1000 UTC 7 April to 0109 UTC 8 April, the visibility remained below 200 meters, and the two fog periods lasted 31 h together. The mean value of the average LWC was 0.057 g/m−3, and the mean value of NUM was 64.4 cm−3.
- The small droplets (radius less than 5 μm) have a decisive influence on the total NUM (the contribution of the small droplets to the total NUM is 84.84%), and large droplets (radius greater than 5 μm) have a decisive influence on the total LWC (the contribution of the large droplets to the total LWC is 93.16%).
- The observed DSD can be described well by the Gamma distribution but exhibits a bimodal distribution. We propose a G-exponential distribution function, which can describe the DSD more accurately.
- The large droplets (radius greater than 5 μm) have a higher effect to attenuation of visibility than small droplets (radius less than 5 μm), as the contribution of the large droplets to the in the whole spectra is 75.54%.
- The new visibility parameterization can improve visibility estimation, validated by the sea-fog event with the result that the performs best (the smallest MAE) compared with and .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DSD | droplet-size distribution |
QDMS | Qingdao Meteorological Station |
LWC | liquid water content |
NUM | number concentration |
CMY | Changmenyan station |
RH | relative humidity |
SAT | sea air temperature |
SST | sea surface temperature |
sst | the total sum of squares |
sse | the sum of squared errors |
the coefficient of determination | |
MAE | the mean absolute error |
References
- Wang, B.H. Sea Fog; China Ocean Press: Beijing, China, 1985; p. 330. [Google Scholar]
- Lewis, J.M.; Korčin, D.; Redmond, K.T. Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bull. Am. Meteor. Soc. 2004, 85, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Croft, P.J.; Pfost, R.L.; Medlin, J.M.; Johnson, G.A. Fog forecasting for the southern region: A conceptual model approach. Weather Forecast. 1997, 12, 545–556. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J. Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure Appl. Geophys. 2007, 164, 1161–1178. [Google Scholar] [CrossRef]
- Eldridge, R.G. The relationship between visibility and liquid water content in fog. J. Atmos. Sci. 1971, 28, 1183–1186. [Google Scholar] [CrossRef] [Green Version]
- Roach, W.T. On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Q. J. R. Meteorol. Soc. 1976, 102, 361–372. [Google Scholar] [CrossRef]
- Gultepe, I.; Müller, M.D.; Boybeyi, Z. A new warm fog parameterization scheme for numerical weather prediction models. J. Appl. Meteorol. 2006, 45, 1469–1480. [Google Scholar] [CrossRef]
- Elias, T.; Haeffelin, M.; Drobinski, P.; Gomes, L.; Rangognio, J.; Bergot, T.; Chazette, P.; Raut, J.C.; Colomb, M. Particulate contribution to extinction of visible radiation: Pollution, haze and fog. Atmos. Res. 2009, 92, 443–454. [Google Scholar] [CrossRef]
- Kunkel, B.A. Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Clim. Appl. Meteorol. 1984, 23, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Statistical theory of the Marshall-Palmer distribution of raindrops. Atmos. Environ. 1993, 27, 15–19. [Google Scholar]
- Liu, Y.; You, L.; Yang, W.; Liu, F. On the size distribution of cloud droplets. Atmos. Res. 1995, 35, 201–216. [Google Scholar] [CrossRef]
- Niu, S.; Lu, C.; Liu, Y.; Zhao, L.; Lu, J.; Yang, J. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study. Adv. Atmos. Sci. 2010, 27, 1259–1275. [Google Scholar] [CrossRef]
- Schmitt, C.G.; Stuefer, M.; Heymsfield, A.J.; Kim, C.K. The microphysical properties of ice fog measured in urban environments of Interior Alaska. J. Geophys. Res. 2013, 118, 11136–11147. [Google Scholar] [CrossRef]
- Zhang, S.P.; Xie, S.P.; Liu, Q.Y.; Yang, Y.Q.; Wang, X.G.; Ren, Z.P. Seasonal variations of yellow sea fog: Observations and mechanisms. J. Clim. 2009, 2, 6758–6772. [Google Scholar] [CrossRef]
- Goodin, D.S. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed; John Wiley and Sons: New York, NY, USA, 1981. [Google Scholar]
- Yang, L.; Liu, J.W.; Ren, Z.P.; Xie, S.P.; Zhang, S.P.; Gao, S.H. Atmospheric Conditions for Advection-Radiation Fog over the Western Yellow Sea. J. Geophys. Res. 2018, 123, 5455–5468. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, B.G.; Wang, Z.Y.; Hao, T.Y. Fog Droplet Size Distribution and the Interaction between Fog Droplets and Fine Particles during Dense Fog in Tianjin, China. Atmosphere 2020, 11, 258. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.C.; Jonsson, H.; Wang, L.P.; Buzorius, G.; Flagan, R.C.; Seinfeld, J.H.; Nenes, A. On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Skewness and kurtosis of measured raindrop size distributions. Atmos. Envrion. 1992, 26, 2713–2716. [Google Scholar]
- Koschmieder, H. Theorie der horizontalen Sichtweite. Beitrage zur Physik der freien Atmosphare. Meteorol. Z. 1925, 12, 33–53. [Google Scholar]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; John Wiley and Sons, Inc.: New York, NY, USA, 1976; pp. 1–421. [Google Scholar]
- Lentz, W.J. Generating Bessel functions in Mie scattering calculations using continued fractions. Appl. Opt. 1976, 15, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.Q.; Liu, L. An improved algorithm of classical Mie scattering calculation. China Powder Sci. Technol. 2005, 11, 45–50. (In Chinese) [Google Scholar]
Microphysical Properties | ||||
---|---|---|---|---|
Liquid Water Content (g m−3) | Number Concentration (cm−3) | Mean Radius (μm) | Peak Radius (μm) | |
Maximum | 0.172 | 146.9 | 6.7 | 3.3 |
Minimum | 0.001 | 1.0 | 1.9 | 1.8 |
Average | 0.057 | 64.4 | 4.0 | 2.7 |
G-exponential Distribution (Frequency) | Gamma Distribution (Frequency) | |
---|---|---|
sse 10 | 79.67% | 29.22% |
sse 20 | 85.08% | 59.15% |
R2 0.95 | 93.19% | 67.04% |
R2 0.90 | 95.36% | 82.87% |
Average | G-exponential Distribution | Gamma Distribution |
---|---|---|
sse | 3.9312 | 14.0286 |
R2 | 0.9465 | 0.8280 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yi, L.; Zhang, S.; Shi, X.; Chen, X. The Microphysical Properties of a Sea-Fog Event along the West Coast of the Yellow Sea in Spring. Atmosphere 2020, 11, 413. https://doi.org/10.3390/atmos11040413
Wang S, Yi L, Zhang S, Shi X, Chen X. The Microphysical Properties of a Sea-Fog Event along the West Coast of the Yellow Sea in Spring. Atmosphere. 2020; 11(4):413. https://doi.org/10.3390/atmos11040413
Chicago/Turabian StyleWang, Shengkai, Li Yi, Suping Zhang, Xiaomeng Shi, and Xianyao Chen. 2020. "The Microphysical Properties of a Sea-Fog Event along the West Coast of the Yellow Sea in Spring" Atmosphere 11, no. 4: 413. https://doi.org/10.3390/atmos11040413
APA StyleWang, S., Yi, L., Zhang, S., Shi, X., & Chen, X. (2020). The Microphysical Properties of a Sea-Fog Event along the West Coast of the Yellow Sea in Spring. Atmosphere, 11(4), 413. https://doi.org/10.3390/atmos11040413