Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results and Discussion
3.1. Surface Ultraviolet Radiation (UVR)
3.2. Aerosol Optical Depth (AOD) and SO2 Anomalies
3.3. Infrared Atmospheric Sounding Interferometer (IASI) and Flexible Particle Model (FLEXPART)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, T.J.; Vignelles, D.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Coltelli, M.; Salerno, G.; Chartier, M.; Couté, B.; Berthet, G.; et al. The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry. Geochim. Cosmochim. Acta 2018, 222, 74–93. [Google Scholar] [CrossRef] [Green Version]
- Daag, A.S.; Tubianosa, B.S.; Newhall, C.; Tungol, N.; Javier, D.; Dolan, M.; Delos Reyes, P.; Arboleda, R.; Martinez, M.; Regalado, T. Monitoring sulfur dioxide emission at Mount Pinatubo. In Fire and Mud: Eruptions and lahars of Mount Pinatubo, Philippines; University of Washington: Seattle, WA, USA, 1996; pp. 409–414. [Google Scholar]
- Halmer, M.M.; Schmincke, H.U.; Graf, H.F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J. Volcanol. Geotherm. Res. 2002, 115, 511–528. [Google Scholar] [CrossRef]
- Klüser, L.; Erbertseder, T.; Meyer-Arnek, J. Observation of volcanic ash from Puyehue-Cordón Caulle with IASI. Atmos. Meas. Tech. 2013, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Bignami, C.; Corradini, S.; Merucci, L.; de Michele, M.; Raucoules, D.; De Astis, G.; Stramondo, S.; Piedra, J. Multisensor Satellite Monitoring of the 2011 Puyehue-Cordon Caulle Eruption. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 2786–2796. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Diaz, S.B.; Paladini, A.A.; Braile, H.G.; Dieguez, M.C.; Deferrari, G.A.; Vernet, M.; Vrsalovic, J. Global and direct UV irradiance variation in the Nahuel Huapi National Park (Patagonia, Argentina) after the eruption of Puyehue-Cordon Caulle (Chile). J. Atmospheric Sol. Terr. Phys 2014, 112, 47–56. [Google Scholar] [CrossRef]
- Carn, S.A.; Krotkov, N.A. Chapter 12—Ultraviolet Satellite Measurements of Volcanic Ash. In Volcanic Ash; Mackie, S., Cashman, K., Ricketts, H., Rust, A., Watson, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 217–231. [Google Scholar]
- Raga, G.B.; Baumgardner, D.; Ulke, A.G.; Torres Brizuela, M.; Kucienska, B. The environmental impact of the Puyehue–Cordon Caulle 2011 volcanic eruption on Buenos Aires. Nat. Hazards Earth Syst. Sci. 2013, 13, 2319–2330. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Pistolesi, M.; Cioni, R.; Degruyter, W.; Elissondo, M.; Baumann, V. Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile. J. Geophys. Res. Solid Earth 2015, 120, 2242–2261. [Google Scholar] [CrossRef] [Green Version]
- Silva Parejas, C.; Lara, L.; Bertin, D.; Amigo, A.; Orozco, G. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards. Proceedings of EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 9382. [Google Scholar]
- Brunke, E.-G.; Labuschagne, C.; Scheel, H.E. Trace gas variations at Cape Point, South Africa, during May 1997 following a regional biomass burning episode. Atmos. Environ. 2001, 35, 777–786. [Google Scholar] [CrossRef]
- Hovila, J.; Arola, A.; Tamminen, J. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 degree x 1.0 degree V3; NASA Goddard Space Flight Center, Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. [Google Scholar] [CrossRef]
- Brogniez, C.; Auriol, F.; Deroo, C.; Arola, A.; Kujanpää, J.; Sauvage, B.; Kalakoski, N.; Pitkänen, A.; Riku, M.; Catalfamo, M. Validation of satellite-based noontime UVI with NDACC ground-based instruments: Influence of topography, environment and satellite overpass time. Atmos. Chem. Physics 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Fioletov, V.; Kerr, J.B.; Fergusson, A. The UV index: Definition, distribution and factors affecting it. Can. J. Public Health 2010, 101, I5–I9. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.-M.; Bencherif, H.; Portafaix, T.; Lamy, K.; Ncongwane, K.; Coetzee, G.J.R.; Wright, C.Y. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites. Int. J. Environ. Res. Public Health 2017, 14, 1384. [Google Scholar] [CrossRef] [Green Version]
- McArthur, L.J.B.; Halliwell, D.H.; Niebergall, O.J.; O’Neill, N.T.; Slusser, J.R.; Wehrli, C. Field comparison of network Sun photometers. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Nyeki, S.; Halios, C.H.; Baum, W.; Eleftheriadis, K.; Flentje, H.; Gröbner, J.; Vuilleumier, L.; Wehrli, C. Ground-based aerosol optical depth trends at three high-altitude sites in Switzerland and southern Germany from 1995 to 2010. J. Geophys. Res. Atmos. 2012, 117, D18202. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.; Eck, T.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The climate data toolbox for MATLAB. Geochem. Geophys. Geosystems 2019, 20, 3774–3781. [Google Scholar] [CrossRef] [Green Version]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; Krotkov, N.; Flemming, J.; da Silva, A.; Li, C.; Fioletov, V.; McLinden, C.; Anisimov, A.; Alshehri, Y.M.; et al. Study of SO Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-Chem Simulations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031993. [Google Scholar] [CrossRef]
- Clarisse, L.; Hurtmans, D.; Clerbaux, C.; Hadji-Lazaro, J.; Ngadi, Y.; Coheur, P.F. Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI). Atmos. Meas. Tech. 2012, 5, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; Prata, F. Infrared sounding of volcanic ash. In Volcanic ash: Methods of observation and monitoring; Mackie, S., Cashman, K., Ricketts, H., Rust, A., Watson, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Moxnes, E.D.; Kristiansen, N.I.; Stohl, A.; Clarisse, L.; Durant, A.; Weber, K.; Vogel, A. Separation of ash and sulfur dioxide during the 2011 Grímsvötn eruption. J. Geophys. Res. Atmos. 2014, 119, 7477–7501. [Google Scholar] [CrossRef] [Green Version]
- Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.F.; Van Roozendael, M.; et al. Volcanic SO2 fluxes derived from satellite data: A survey using OMI, GOME-2, IASI and MODIS. Atmos. Chem. Phys. 2013, 13, 5945–5968. [Google Scholar] [CrossRef] [Green Version]
- Carboni, E.; Grainger, R.G.; Mather, T.A.; Pyle, D.M.; Thomas, G.E.; Siddans, R.; Smith, A.J.A.; Dudhia, A.; Koukouli, M.E.; Balis, D. The vertical distribution of volcanic SO2 plumes measured by IASI. Atmos. Chem. Phys. 2016, 16, 4343–4367. [Google Scholar] [CrossRef] [Green Version]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Groot Zwaaftink, C.D.; et al. The Lagrangian particle dispersion model FLEXPART version 10.3. Geosci. Model Dev. 2019, 2019, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.C.; Carboni, E.; Dudhia, A.; Grainger, R.G. Improved detection of sulphur dioxide in volcanic plumes using satellite-based hyperspectral infrared measurements: Application to the Eyjafjallajökull 2010 eruption. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, S.; Prata, A.J.; Seibert, P.; Stebel, K.; Stohl, A. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmos. Chem. Phys. 2008, 8, 3881–3897. [Google Scholar] [CrossRef] [Green Version]
- Nyeki, S.; Wehrli, C.; Gröbner, J.; Kouremeti, N.; Wacker, S.; Labuschagne, C.; Mbatha, N.; Brunke, E.G. The GAW-PFR aerosol optical depth network: The 2008–2013 time series at Cape Point Station, South Africa. J. Geophys. Res. Atmos. 2015, 120, 5070–5084. [Google Scholar] [CrossRef]
- Tesfaye, M.; Sivakumar, V.; Botai, J.; Mengistu Tsidu, G. Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Balashov, N.V.; Thompson, A.M.; Piketh, S.J.; Langerman, K.E. Surface ozone variability and trends over the South African Highveld from 1990 to 2007. J. Geophys. Res. Atmos. 2014, 119, 4323–4342. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.B. Understanding the factors that affect surface ultraviolet radiation. Optical Eng. 2005, 44, 041002. [Google Scholar] [CrossRef]
- Günther, T.; Schulze, M.; Friederici, A.; Theisel, H. Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic. IEEE Comput. Graph. Appl. 2016, 36, 36–47. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du Preez, D.J.; Bencherif, H.; Bègue, N.; Clarisse, L.; Hoffman, R.F.; Wright, C.Y. Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site. Atmosphere 2020, 11, 548. https://doi.org/10.3390/atmos11050548
Du Preez DJ, Bencherif H, Bègue N, Clarisse L, Hoffman RF, Wright CY. Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site. Atmosphere. 2020; 11(5):548. https://doi.org/10.3390/atmos11050548
Chicago/Turabian StyleDu Preez, David Jean, Hassan Bencherif, Nelson Bègue, Lieven Clarisse, Rebecca F. Hoffman, and Caradee Yael Wright. 2020. "Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site" Atmosphere 11, no. 5: 548. https://doi.org/10.3390/atmos11050548
APA StyleDu Preez, D. J., Bencherif, H., Bègue, N., Clarisse, L., Hoffman, R. F., & Wright, C. Y. (2020). Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site. Atmosphere, 11(5), 548. https://doi.org/10.3390/atmos11050548