Dependence of Mass–Dimensional Relationships on Median Mass Diameter
Abstract
:1. Introduction
2. Data and Methods
2.1. OLYMPEX Measurements
2.2. Derivation of Bulk Properties
2.3. Constraint of m–D Relationships
3. Results
3.1. Dependence of (a, b) on Dmm
3.1.1. Behavior of Equally Plausible Surfaces
3.1.2. Quantitative Dependences of (a, b) and on Dmm
3.2. Implications for Dmm,hy between 3–6 mm
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fontaine, E.; Leroy, D.; Schwarzenboeck, A.; Delanoë, J.; Protat, A.; Dezitter, F.; Grandin, A.; Strapp, J.W.; Lilie, L.E. Radar reflectivity factors simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems. Atmos. Meas. Tech. 2017, 10, 2239–2252. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Zhang, R.; Pitter, R.L. Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteorol. 1990, 29, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Matrosov, S.Y.; Wood, N.B. Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. J. Appl. Meteorol. Climatol. 2016, 55, 2063–2090. [Google Scholar] [CrossRef]
- Brown, P.R.; Francis, P.N. Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Ocean. Technol. 1995, 12, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Bansemer, A.; Schmitt, C.; Twohy, C.; Poellot, M.R. Effective ice particle densities derived from aircraft data. J. Atmos. Sci. 2004, 61, 982–1003. [Google Scholar] [CrossRef]
- Cotton, R.J.; Field, P.R.; Ulanowski, Z.; Kaye, P.H.; Hirst, E.; Greenaway, R.S.; Crawford, I.; Crosier, J.; Dorsey, J. The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Q. J. R. Meteorol. Soc. 2013, 139, 1923–1934. [Google Scholar] [CrossRef]
- Westbrook, C.D.; Ball, R.C.; Field, P.R.; Heymsfield, A.J. Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev. E 2004, 70, 021403. [Google Scholar] [CrossRef] [Green Version]
- Mace, S.B.; Benson, S.; Sonntag, K.L.; Kato, S.; Min, Q.; Minnis, P.; Twohy, C.H.; Poellot, M.; Dong, X.; Long, C.; et al. Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res. 2006, 111, D11S90. [Google Scholar] [CrossRef]
- Morrison, H.; Milbrandt, J.A. The altitude of snow growth by riming and vapor deposition in mixed-phase orographic clouds. J. Atmos. Sci. 2015, 72, 287–311. [Google Scholar] [CrossRef]
- Lin, Y.; Colle, B.A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Weather Rev. 2011, 139, 1013–1035. [Google Scholar] [CrossRef]
- Mitchell, D. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci. 1996, 53, 1710–1723. [Google Scholar] [CrossRef]
- Schmitt, C.G.; Heymsfield, A.J. On the occurrence of hollow bullet rosette– and column-shaped ice crystals in midlatitude cirrus. J. Atmos. Sci. 2007, 64, 4514–4519. [Google Scholar] [CrossRef]
- Finlon, J.A.; McFarquhar, G.M.; Nesbitt, S.W.; Rauber, R.M.; Morrison, H.; Wu, W.; Zhang, P. A novel approach to characterize the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys. 2019, 19, 3621–3643. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.J.; Bodas-Salcedo, A.; Cotton, R.; Lee, C. Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: A test of the met office global numerical weather prediction model. Q. J. R. Meteorol. Soc. 2011, 137, 1547–1560. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Twohy, C.H. Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds: Part I: Temperature dependence. J. Atmos. Sci. 2007, 64, 1047–1067. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Schmitt, C.; Bansemer, A.; Twohy, C.H. Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci. 2010, 67, 3303–3318. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.J.; Cotton, R.J.; Barrett, P.A.; Vance, A.K. A Comparison of ice water content measurement techniques on the FAAM Bae-146 aircraft. Atmos. Meas. Tech. 2014, 7, 3007–3022. [Google Scholar] [CrossRef] [Green Version]
- McFarquhar, G.M.; Timlin, M.S.; Rauber, R.M.; Jewett, B.F.; Grim, J.A.; Jorgensen, D.P. Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Weather Rev. 2007, 135, 3405–3428. [Google Scholar] [CrossRef]
- Fontaine, E.; Schwarzenboeck, A.; Delanoë, J.; Wobrock, W.; Leroy, D.; Dupuy, R.; Gourbeyre, C.; Protat, A. Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys. 2014, 14, 11367–11392. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Physica D 1992, 63, 410–423. [Google Scholar] [CrossRef]
- Bailey, M.; Hallett, J. Growth rates and habits of ice crystals between −20 ° and −70 °C. J. Atmos. Sci. 2004, 61, 514–544. [Google Scholar] [CrossRef]
- Bailey, M.; Hallett, J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci. 2009, 66, 2888–2899. [Google Scholar] [CrossRef] [Green Version]
- Um, J.; McFarquhar, G.M.; Hong, Y.P.; Lee, S.S.; Jung, C.H.; Lawson, R.P.; Mo, Q. Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys. 2015, 15, 3933–3956. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, J.D.; Hobbs, P.V. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 1974, 79, 2185–2197. [Google Scholar] [CrossRef]
- Holroyd, E.W. Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol. 1987, 4, 498–511. [Google Scholar] [CrossRef] [Green Version]
- McFarquhar, G.M.; Heymsfield, A.J.; Macke, A.; Iaquinta, J.; Aulenbach, S.M. Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, Case Study. J. Geophys. Res. 1999, 104, 31763–31779. [Google Scholar] [CrossRef]
- Um, J.; McFarquhar, G.M. Single-scattering properties of aggregates of bullet rosettes in cirrus single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol. 2007, 46, 757–775. [Google Scholar] [CrossRef]
- Um, J.; McFarquhar, G.M. Single-scattering properties of aggregates of plates. Q. J. R. Meteorol. Soc. 2009, 135, 291–304. [Google Scholar] [CrossRef]
- Lindqvist, H.; Muinonen, K.; Nousiainen, T.; Um, J.; McFarquhar, G.M.; Haapanala, P.; Makkonen, R.; Hakkarainen, H. Ice-cloud particle habit classification using principal components. J. Geophys. Res. Atmos. 2012, 117, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Praz, C.; Ding, S.; McFarquhar, G.M.; Berne, A. A versatile method for ice particle habit classification using airborne imaging probe data. J. Geophys. Res. Atmos. 2018, 123, 13472–13495. [Google Scholar] [CrossRef]
- Touloupas, G.; Annika Lauber, A.; Jan Henneberger, J.; Alexander Beck, A.; Lucchi, A. A convolutional neural network for classifying cloud particles recorded by imaging probes. Atmos. Meas. Tech. 2020, 13, 2219–2239. [Google Scholar] [CrossRef]
- Jackson, R.C.; McFarquhar, G.M.; Korolev, A.V.; Earle, M.E.; Liu, P.S.; Lawson, R.P.; Brooks, S.; Wolde, M.; Laskin, A.; Freer, M. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res. Atmos. 2012, 117, 1–20. [Google Scholar] [CrossRef]
- Finlon, J.A.; McFarquhar, G.M.; Rauber, R.M.; Plummer, D.M.; Jewett, B.F.; Leon, D.; Knupp, K.R. A comparison of X-band polarization parameters with in situ microphysical measurements in the comma head of two winter cyclones. J. Appl. Meteor. Climatol. 2016, 55, 2549–2574. [Google Scholar] [CrossRef]
- Erfani, E.; Mitchell, D.L. Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing. Atmos. Chem. Phys. 2016, 16, 4379–4400. [Google Scholar] [CrossRef] [Green Version]
- Khvorostyanov, V.I.; Curry, J.A. Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci. 2002, 59, 1872–1884. [Google Scholar] [CrossRef]
- Houze, R.A.; McMurdie, L.A.; Petersen, W.A.; Schwaller, M.R.; Baccus, W.; Lundquist, J.D.; Mass, C.F.; Nijssen, B.; Rutledge, S.A.; Hudak, D.R.; et al. The Olympic Mountains Experiment (OLYMPEX). Bull. Am. Meteorol. Soc. 2017, 98, 2167–2188. [Google Scholar] [CrossRef] [PubMed]
- Delene, D.; Hibert, K.; Poellot, M.; Brackin, N. The North Dakota Citation Research Aircraft Measurement Platform. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Field, P.R.; Wood, R.; Brown, P.R.A.; Kaye, P.H.; Hirst, E.; Greenaway, R.; Smith, J.A. Ice particle interarrival times measured with a fast FSSP. J. Atmos. Ocean. Technol. 2003, 20, 249–261. [Google Scholar] [CrossRef]
- Jackson, R.C.; McFarquhar, G.M.; Stith, J.; Beals, M.; Shaw, R.A.; Jensen, J.; Jensen, J.; Fugal, J.; Korolev, A. An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Ocean. Technol. 2014, 31, 2567–2590. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Parrish, J.L. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteorol. 1978, 17, 1566–1572. [Google Scholar] [CrossRef]
- Sadowy, G.; Berkun, A.C.; Chun, W.; Im, E.; Durden, S. Development of an advanced airborne precipitation radar. Microw. J. 2003, 46, 84–98. [Google Scholar]
- Durden, S.L.; Tanelli, S.; Sy, O.O. Comparison of GPM DPR and airborne radar observations in OLYMPEX. IEEE Geosci. Remote Sens. Lett. 2019. [Google Scholar] [CrossRef]
- Chase, R.J.; Finlon, J.A.; Borque, P.; McFarquhar, G.M.; Nesbitt, S.W.; Tanelli, S.; Sy, O.O.; Durden, S.L.; Poellot, M.R. Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophys. Res. Lett. 2018, 45, 5752–5760. [Google Scholar] [CrossRef]
- Lance, S.; Brock, C.A.; Rogers, D.; Gordon, J.A. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech. 2010, 3, 1683–1706. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Field, P.R.; Bailey, M.; Rogers, D.; Stith, J.; Twohy, C.; Wang, Z.; Haimov, S. Ice in clouds experiment-layer clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations. J. Atmos. Sci. 2011, 68, 2628–2654. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.J.; Tian, L.; Brown, P.R.; Westbrook, C.D.; Heymsfield, A.J.; Eastment, J.D. Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteorol. Climatol. 2012, 51, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Leroy, D.; Fontaine, E.; Schwarzenboeck, A.; Strapp, J.W. Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameter from in Situ Measurements. J. Atmos. Ocean. Tech. 2016, 33, 2461–2476. [Google Scholar] [CrossRef]
- Heymsfield, A.; Bansemer, A.; Wood, N.B.; Liu, G.; Tanelli, S.; Sy, O.O.; Poellot, M.; Liu, C. Toward improving ice water content and snow-rate retrievals from radars. Part II: Results from three wavelength radar–collocated in situ measurements and CloudSat–GPM–TRMM radar data. J. Appl. Meteorol. Climatol. 2018, 57, 365–389. [Google Scholar] [CrossRef]
- van de Hulst, H.C. Light Scattering by Small Particles; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Hogan, R.J.; Westbrook, C.D. Equation for the microwave backscatter cross-section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci. 2014, 71, 3292–3301. [Google Scholar] [CrossRef] [Green Version]
- Tyynelä, J.; Leinonen, J.; Westbrook, C.; Moisseev, D.; Nousiainen, T. Applicability of the Rayleigh–Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res. 2013, 118, 1826–1839. [Google Scholar] [CrossRef]
- Leinonen, J.; Kneifel, S.; Hogan, R.J. Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes. Q. J. R. Meteorol. Soc. 2018, 144 (Suppl. S1), 77–88. [Google Scholar] [CrossRef] [Green Version]
- McFarquhar, G.M.; Um, J.; Freer, M.; Baumgardner, D.; Kok, G.L.; Mace, G. Importance of small ice crystals to cirrus properties: Observations from the tropical warm pool international cloud experiment (TWP-ICE). Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Korolev, A.; Strapp, J.W.; Isaac, G.A.; Emery, E. Improved Airborne Hot-Wire Measurements of Ice Water Content in Clouds. J. Atmos. Ocean. Technol. 2013, 30, 2121–2131. [Google Scholar] [CrossRef]
- Cober, S.G.; Isaac, G.A.; Korolev, A.V.; Strapp, J.W. Assessing cloud-phase conditions. J. Appl. Meteorol. 2001, 40, 1967–1983. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Hsieh, T.; Freer, M.; Mascio, J.; Jewett, B.F. The characterization of ice hydrometeor gamma size distributions as volumes in N0–λ–μ phase space: Implications for Microphysical Process Modeling. J. Atmos. Sci. 2015, 72, 892–909. [Google Scholar] [CrossRef]
- Hallett, J. Measurement in the Atmosphere. In Handbook of Weather, Climate, and Water; Potter, T.D., Colman, B.R., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 711–720. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Schmitt, C.; Bansemer, A. Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0 ° to −86 °C. J. Atmos. Sci. 2013, 70, 4123–4154. [Google Scholar] [CrossRef]
- Flatau, P.J.; Draine, B.T. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Tyynelä, J.; Leinonen, J.; Moisseev, D.; Nousiainen, T. Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models. J. Atmos. Ocean. Technol. 2011, 28, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, J.; Szyrmer, W. Radar signatures of snowflake riming: A modeling study. Earth Space Sci. 2015, 2, 346–358. [Google Scholar] [CrossRef]
- Leroy, D.; Fontaine, E.; Schwarzenboeck, A.; Strapp, J.W.; Korolev, A.; McFarquhar, G.; Dupuy, R.; Gourbeyre, C.; Lilie, L.; Protat, A.; et al. Ice Crystal Sizes in High Ice Water Content Clouds. Part II: Statistics of Mass Diameter Percentiles in Tropical Convection Observed during the HAIC/HIWC Project. J. Atmos. Ocean. Technol. 2017, 34, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, C.G.; Heymsfield, A.J. The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci. 2010, 67, 1605–1616. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; McFarquhar, G.M.; Nesbitt, S.W.; Chase, R.J.; Poellot, M.R.; Wang, H. Dependence of Mass–Dimensional Relationships on Median Mass Diameter. Atmosphere 2020, 11, 756. https://doi.org/10.3390/atmos11070756
Ding S, McFarquhar GM, Nesbitt SW, Chase RJ, Poellot MR, Wang H. Dependence of Mass–Dimensional Relationships on Median Mass Diameter. Atmosphere. 2020; 11(7):756. https://doi.org/10.3390/atmos11070756
Chicago/Turabian StyleDing, Saisai, Greg M. McFarquhar, Stephen W. Nesbitt, Randy J. Chase, Michael R. Poellot, and Hongqing Wang. 2020. "Dependence of Mass–Dimensional Relationships on Median Mass Diameter" Atmosphere 11, no. 7: 756. https://doi.org/10.3390/atmos11070756
APA StyleDing, S., McFarquhar, G. M., Nesbitt, S. W., Chase, R. J., Poellot, M. R., & Wang, H. (2020). Dependence of Mass–Dimensional Relationships on Median Mass Diameter. Atmosphere, 11(7), 756. https://doi.org/10.3390/atmos11070756