Trace Element Concentrations Measured in a Biomonitor (Tree Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for Exploiting the Potential of Public Health Data
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, C.A., III; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W., Jr. Particulate Air-Pollution as a Predictor of Mortality in a Prospective-Study of Us Adults. Am J Respir Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project. Technical Report. 2013. Available online: http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf (accessed on 16 July 2020).
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Pope, C.A.; Lefler, J.S.; Ezzati, M.; Higbee, J.D.; Marshall, J.U.; Kim, S.Y.; Bechle, M.; Gilliat, K.S.; Vernon, S.E.; Robinson, A.L.; et al. Mortality Risk and Fine Particulate Air Pollution in a Large, Representative Cohort of US Adults. Environ. Health Perspect. 2019, 127, 077007. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, S.; Jiao, A.; Yang, X.; Yun, J.; Wang, Y.; Xue, X.; Chu, Y.; Liu, F.; Liu, Y.; et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ. Pollut. 2017, 227, 596–605. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Y.; Gao, Y.; Tian, Y. Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: An updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. 2019, 26, 13963–13983. [Google Scholar] [CrossRef]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Plana-Ripoll, O.; Antonsen, S.; Brandt, J.; Geels, C.; Landecker, H.; Sullivan, P.F.; Pedersen, C.B.; Rzhetsky, A. Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark. PLoS Biol. 2019, 17, e3000353. [Google Scholar] [CrossRef]
- Gu, H.; Yan, W.; Elahi, E.; Cao, Y. Air pollution risks human mental health: An implication of two-stages least squares estimation of interaction effects. Environ. Sci. Pollut. Res. Int. 2020, 27, 2036–2043. [Google Scholar] [CrossRef]
- Su, W.; Wu, X.; Geng, X.; Zhao, X.; Liu, Q.; Liu, T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health 2019, 19, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Li, Y.; Chen, Q.; Jiang, Y.; Chu, C.; Ding, Y.; Yu, Y.; Fan, Y.; Shi, J.; Luo, Y.; et al. The relationship between air quality and respiratory pathogens among children in Suzhou City. Ital. J. Pediatr. 2019, 45, 123. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Sun, J.; Qian, Z.; Mei, S.; Li, Y.; Lu, Y.; McMillin, S.E.; Lin, H.; Lang, L. Modification by seasonal influenza and season on the association between ambient air pollution and child respiratory diseases in Shenzhen, China. Atmos. Environ. 2020, 234, 117621. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Costabile, F. Does air pollution influence COVID-19 outbreaks? Atmosphere 2020, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- SIMA, Italian Society of Environmental Medicine. Position Paper Particulate Matter and COVID-19. Available online: http://www.simaonlus.it/wpsima/wp-content/uploads/2020/03/COVID_19_position-paper_ENG.pdf (accessed on 16 July 2020).
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Diseases. World Health Organization. 2016. Available online: https://www.who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 16 July 2020).
- Schwarze, P.E.; Ovrevik, J.; Lag, M.; Refsnes, M.; Nafstad, P.; Hetland, R.B.; Dybing, E. Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Hum. Exp. Toxicol. 2006, 25, 559–579. [Google Scholar] [CrossRef]
- Rohr, A.C.; Wyzga, R.E. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 2012, 62, 130–152. [Google Scholar] [CrossRef]
- Dongarrà, G.; Tamburo, E.; Varrica, D. Dust, Metals and Metalloids in the Environment: From Air to Hair. In Medical Geochemistry: Geological Materials and Health; Censi, P., Darrah, T., Erel, Y., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 127–148. [Google Scholar] [CrossRef]
- Drava, G.; Brignole, D.; Giordani, P.; Minganti, V. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark. Atmos. Environ. 2016, 144, 370–375. [Google Scholar] [CrossRef]
- Minganti, V.; Drava, G. Tree bark as a bioindicator of the presence of scandium, yttrium and lanthanum in urban environments. Chemosphere 2018, 193, 847–851. [Google Scholar] [CrossRef]
- Minganti, V.; Drava, G.; Giordani, P.; Malaspina, P.; Modenesi, P. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark. Environ. Sci. Pollut. Res. 2016, 23, 12467–12473. [Google Scholar] [CrossRef]
- Badaloni, C.; Cesaroni, G.; Cerza, F.; Davoli, M.; Brunekreef, B.; Forastiere, F. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environ. Int. 2017, 109, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Maesano, C.N.; Morel, G.; Matynia, A.; Ratsombath, N.; Bonnety, J.; Legros, G.; Da Costa, P.; Prud’homme, J.; Annesi-Maesano, I. Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci. Total Environ. 2020, 698, 134257. [Google Scholar] [CrossRef] [PubMed]
- Cucu-Man, S.M.; Steinnes, E. Analysis of selected biomonitors to evaluate the suitability for their complementary use in monitoring trace element atmospheric deposition. Environ. Monit. Assess. 2013, 185, 7775–7791. [Google Scholar] [CrossRef] [PubMed]
- Minganti, V.; Drava, G.; De Pellegrini, R.; Anselmo, M.; Modenesi, P.; Malaspina, P.; Giordani, P. The bark of holm oak (Quercus ilex, L.) for airborne Cr(VI) monitoring. Chemosphere 2015, 119, 1361–1364. [Google Scholar] [CrossRef] [PubMed]
- ISTAT. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 16 July 2020).
- ECHI—European Core Health Indicators. Available online: https://ec.europa.eu/health/indicators/echi/list_en (accessed on 16 July 2020).
- PASSI. The Italian Behavioral Risk Factor Surveillance System. Available online: https://www.epicentro.iss.it/passi/en/english (accessed on 16 July 2020).
- A.Li.Sa. Stato di Salute dei Liguri—2018. Available online: https://www.alisa.liguria.it/index.php?option=com_content&view=article&id=1035&Itemid=447 (accessed on 16 July 2020).
- Russo, A.; Gennaro, V. Referto Epidemiologico del Comune di Genova—Analisi Standardizzata per età del Complesso della Mortalità Specifica per Genere Nelle 25 Circoscrizioni del Comune di Genova (2009–2017). Available online: http://robertotraversi.it/wp-content/uploads/2019/05/2019-04-08-Mortalit%C3%A0-Genova-gruppo-M5S-commissione-ambiente-A.Russo-V.Gennaro-def.pdf (accessed on 16 July 2020).
- Russo, A.; Gennaro, V. Referto Epidemiologico della Regione Liguria Comune di Genova—Analisi Standardizzata per età del Complesso della Mortalità Specifica per Genere ed anno di Calendario nei Comuni delle Liguria. Available online: http://robertotraversi.it/wp-content/uploads/2019/05/Mortalit%C3%A0-in-Liguria-commissione-ambiente-2019-02-19.pdf (accessed on 16 July 2020).
- A.Li.Sa. Available online: http://www.alisa.liguria.it/images/documenti/PSL/DM_ASL_DSS_UNICO_2018/atlas.html?select2=11 (accessed on 16 July 2020).
- Jeffery, C.; Ozonoff, A.; Pagano, M. The effect of spatial aggregation on performance when mapping a risk of disease. Int. J. Health Geogr. 2014, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Truong, A.S.; Stein, A. A hierarchically adaptable spatial regression model to link aggregated health data and environmental data. Spat. Stat. 2018, 23, 36–51. [Google Scholar] [CrossRef]
- Isakson, J.; Persson, T.A.; Selin Lindgren, E. Identification and assessment of ship emissions and their effects in the harbour of Göteborg, Sweden. Atmos. Environ. 2001, 35, 3659–3666. [Google Scholar] [CrossRef]
- Alastuey, A.; Moreno, N.; Querol, X.; Viana, M.; Artíñano, B.; Luaces, J.A.; Basora, J.; Guerra, A. Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmos. Environ. 2007, 41, 6366–6378. [Google Scholar] [CrossRef]
- Bell, M.L.; Ebisu, K.; Peng, R.D.; Samet, J.M.; Dominici, F. Hospital admissions and chemical composition of fine particle air pollution. Am. J. Respir. Crit. Care Med. 2009, 179, 1115–1120. [Google Scholar] [CrossRef]
- Tian, L.W.; Ho, K.F.; Louie, P.K.K.; Qiu, H.; Pun, V.C.; Kan, H.D.; Yu, I.T.S.; Wong, T.W. Shipping emissions associated with increased cardiovascular hospitalizations. Atmos. Environ. 2013, 74, 320–325. [Google Scholar] [CrossRef]
- García-Florentino, C.; Maguregui, M.; Morillas, H.; Marcaida, I.; Salcedo, I.; Madariaga, J.M. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution. Sci. Total Environ. 2018, 626, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Chan, C.C.; Brown, M.T. Application of field-portable-XRF for the determination of trace elements in deciduous leaves from a mine-impacted region. Chemosphere 2018, 209, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Rincheval, M.; Cohen, D.R.; Hemmings, F.A. Biogeochemical mapping of metal contamination from mine tailings using field-portable XRF. Sci. Total Environ. 2019, 662, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Castanheiro, A.; Samson, R.; De Wael, K. Magnetic- and particle-based techniques to investigate metal deposition on urban green. Sci. Total Environ. 2016, 571, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Brignole, D.; Drava, G.; Minganti, V.; Giordani, P.; Samson, R.; Vieira, J.; Pinho, P.; Branquinho, C. Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon (Portugal). Chemosphere 2018, 195, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Marié, D.C.; Chaparro, M.A.E.; Lavornia, J.M.; Sinito, A.M.; Miranda, A.G.C.; Gargiulo, J.D.; Chaparro, M.A.E.; Böhnel, H.N. Atmospheric pollution assessed by in situ measurement of magnetic susceptibility on lichens. Ecol. Indic. 2018, 95, 831–840. [Google Scholar] [CrossRef]
- Winkler, A.; Caricchi, C.; Guidotti, M.; Owczarek, M.; Macrì, P.; Nazzari, M.; Amoroso, A.; Di Giosa, A.; Listrani, S. Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy. Sci. Total Environ. 2019, 690, 1355–1368. [Google Scholar] [CrossRef]
- Winkler, A.; Contardo, T.; Vannini, A.; Sorbo, S.; Basile, A.; Loppi, S. Magnetic emissions from brake wear are the major source of airborne particulate matter bioaccumulated by lichens exposed in Milan (Italy). Appl. Sci. 2020, 10, 2073. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drava, G.; Ailuno, G.; Minganti, V. Trace Element Concentrations Measured in a Biomonitor (Tree Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for Exploiting the Potential of Public Health Data. Atmosphere 2020, 11, 783. https://doi.org/10.3390/atmos11080783
Drava G, Ailuno G, Minganti V. Trace Element Concentrations Measured in a Biomonitor (Tree Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for Exploiting the Potential of Public Health Data. Atmosphere. 2020; 11(8):783. https://doi.org/10.3390/atmos11080783
Chicago/Turabian StyleDrava, Giuliana, Giorgia Ailuno, and Vincenzo Minganti. 2020. "Trace Element Concentrations Measured in a Biomonitor (Tree Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for Exploiting the Potential of Public Health Data" Atmosphere 11, no. 8: 783. https://doi.org/10.3390/atmos11080783
APA StyleDrava, G., Ailuno, G., & Minganti, V. (2020). Trace Element Concentrations Measured in a Biomonitor (Tree Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for Exploiting the Potential of Public Health Data. Atmosphere, 11(8), 783. https://doi.org/10.3390/atmos11080783