Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Oceanic and Atmospheric Background Conditions
3.2. Atmospheric Responses to MOEs in Winter and Summer
3.2.1. Surface Wind Speed
3.2.2. Sea Level Pressure
3.2.3. Clouds and Precipitation
3.2.4. Sensitivities of Atmospheric Responses
4. Discussion and Conclusions
- (1)
- The MOEs in the STCC region can affect the atmosphere, particularly surface wind speed, MABL stability, clouds and precipitation. In the investigated period, the phase differences between the SSTA maximum/minimum and MOEs’ centers in winter were greater than those in summer, which led to similar distributions of turbulent flux anomalies, MABL stability anomalies, specific humidity anomalies and ω anomalies. Furthermore, the SWSAs and convective precipitation anomalies near the MOEs displayed dipolar distributions on both sides of the MOEs in winter and unipolar distributions in the center of MOEs in summer.
- (2)
- In winter, both the vertical mixing mechanism and the pressure adjustment mechanism play a role in the atmospheric responses to MOEs, and the SLP anomalies intensities induced by the MOEs can reach up to 2 Pa. In summer, the vertical mixing mechanism is dominant, and the role of the pressure adjustment mechanism is not large.
- (3)
- Due to the more unstable MABL and the weak influences of the pressure adjustment mechanism in summer, the response sensitivities of surface wind speeds to MOEs are over 40% higher than those in winter. There is more abundant moisture in the MABL, which mainly has ascending motion and more unstable stratification in summer. Therefore, the MABL has better conditions for clouds and convective precipitation. Thus, the responses of clouds and convective precipitations to MOEs are more sensitive.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qiu, B.; Chen, S. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. J. Phys. Oceanogr. 2005, 35, 458–473. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Dufour, C.O.; Griffies, S.M.; de Souza, G.F.; Frenger, I.; Morrison, A.K.; Palter, J.B.; Sarmiento, J.L.; Galbraith, E.D.; Dunne, J.P.; Anderson, W.G. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 2015, 45, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Small, R.D.; de Szoeke, S.P.; Xie, S.; O’neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Ocean. 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Mitchell, T.; Deser, C. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Clim. 1989, 2, 1492–1499. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Clim. 2003, 16, 2340–2354. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Park, K.A.; Cornillon, P.; Codiga, D.L. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Byrne, D.; Papritz, L.; Frenger, I.; Münnich, M.; Gruber, N. Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci. 2015, 72, 1872–1890. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jia, Y.; Liu, Q. Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr. 2017, 73, 295–307. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Xie, S.P.; Chen, Y.; Liu, H. Effects of a Cold Ocean Eddy on Local Atmospheric Boundary Layer Near the Kuroshio Extension: In Situ Observations and Model Experiments. J. Geophys. Res. Atmos. 2019, 124, 5779–5790. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.-P.; Xie, S.-P.; Norris, J.R.; Sun, J.-X.; Jiang, Y.-X. Observed Variations of the Atmospheric Boundary Layer and Stratocumulus over a Warm Eddy in the Kuroshio Extension. Mon. Weather. Rev. 2019, 147, 1581–1591. [Google Scholar] [CrossRef]
- Shan, H.; Dong, C. Atmospheric responses to oceanic mesoscale eddies based on an idealized model. Int. J. Climatol. 2019, 39, 1665–1683. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Klein, P.; Sasaki, H.; Sasai, Y. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr. 2014, 44, 3079–3098. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Xie, S.-P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Xu, H.; Xu, M.; Xie, S.-P.; Wang, Y. Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Clim. 2011, 24, 4959–4972. [Google Scholar] [CrossRef]
- Chow, C.H.; Liu, Q. Eddy-advective effects on the temperature and wind speed of the sea surface in the Northwest Pacific Subtropical Countercurrent area from satellite observations. Int. J. Remote. Sens. 2013, 34, 600–612. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, H.; Ma, J. Air–sea relationship associated with mesoscale oceanic eddies over the subtropical North Pacific in summer. Chin. J. Atmos. Sci. 2018, 42, 1191–1207. (In Chinese) [Google Scholar] [CrossRef]
- Lin, I.; Wu, C.-C.; Emanuel, K.A.; Lee, I.-H.; Wu, C.-R.; Pun, I.-F. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather. Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lee, C.-Y.; Lin, I. The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci. 2007, 64, 3562–3578. [Google Scholar] [CrossRef]
- Lin, I.; Chou, M.-D.; Wu, C.-C. The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling. TAO Terr. Atmos. Ocean. Sci. 2011, 22, 6. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.; Black, P.; Centurioni, L.; Chang, Y.-T.; Chen, S.; Foster, R.; Graber, H.; Harr, P.; Hormann, V.; Lien, R.-C. Impact of typhoons on the ocean in the Pacific. Bull. Am. Meteorol. Soc. 2014, 95, 1405–1418. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.-Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. Ocean. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Tomita, H.; Hihara, T.; Kako, S.I.; Kubota, M.; Kutsuwada, K. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr. 2019, 75, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Nonaka, M.; Xie, S.-P. Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Clim. 2003, 16, 1404–1413. [Google Scholar] [CrossRef]
- Small, R.J.; Xie, S.P.; Hafner, J. Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Wood, R.; Bretherton, C.S. On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Clim. 2006, 19, 6425–6432. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Sun, S.; Fang, Y.; Liu, B. Coupling between SST and wind speed over mesoscale eddies in the South China Sea. Ocean. Dyn. 2016, 66, 1467–1474. [Google Scholar] [CrossRef]
- Sabu, P.; George, J.V.; Anilkumar, N.; Chacko, R.; Valsala, V.; Achuthankutty, C. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 152–161. [Google Scholar] [CrossRef]
- Xie, S.-P. Satellite observations of cool ocean–atmosphere interaction. Bull. Am. Meteorol. Soc. 2004, 85, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Greatbatch, R.J. Surface eddy diffusivity for heat in a model of the northwest Atlantic Ocean. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Leyba, I.M.; Saraceno, M.; Solman, S.A. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Clim. Dyn. 2017, 49, 2491–2501. [Google Scholar] [CrossRef]
- Lambaerts, J.; Lapeyre, G.; Plougonven, R.; Klein, P. Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos. 2013, 118, 9611–9621. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; Xie, S.-P.; Wang, Y. Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Clim. 2003, 16, 3723–3741. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xu, H.; Dong, C. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 31563. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
Variables | STCC | KE | ||
---|---|---|---|---|
Winter | Summer | Winter | Summer | |
J-OFURO SHFAs (W m−2 °C−1) | 10.77 | 6.35 | 15.48 | 5.86 |
CFSR SHFAs (W m−2 °C−1) | 8.62 | 4.37 | 16.70 | 5.59 |
J-OFURO LHFAs (W m−2 °C−1) | 32.99 | 27.78 | 22.76 | 13.68 |
CFSR LHFAs (W m−2 °C−1) | 39.87 | 36.34 | 41.74 | 26.68 |
CCMP SWSAs (m s−1 °C−1) | 0.20 | 0.32 | / | |
NOAA/NCDC SWSAs (m s−1 °C−1) | / | 0.31 | 0.21 | |
CFSR SWSAs (m s−1 °C−1) | 0.17 | 0.24 | 0.22 | 0.13 |
TMI SWSAs (m s−1 °C−1) | 0.30 | 0.54 | 0.38 (annual mean) | |
TMI CLWAs (mm °C−1) | 1.02 × 10−2 | 1.38 × 10−2 | 0.73 × 10−2 (annual mean) | |
CFSR CLWAs (1 × 10−6 mm °C−1) | 5.29 | 6.75 | / | |
TMI TPAs (mm day−1 °C−1) | 0.44 | 0.50 | 0.68 (annual mean) | |
CFSR TPAs (1 × 10−6 kg m−2 s−1 °C−1) | 6.90 | 24.75 | / | |
CFSR CPAs (1 × 10−6 kg m−2 s−1 °C−1) | 6.25 | 30.39 | / | |
CFSR SLPAs (Pa °C−1) | −3.72 | -0.82 | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zhang, S.; Nowotarski, C.J.; Jiang, Y. Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region. Atmosphere 2020, 11, 816. https://doi.org/10.3390/atmos11080816
Sun J, Zhang S, Nowotarski CJ, Jiang Y. Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region. Atmosphere. 2020; 11(8):816. https://doi.org/10.3390/atmos11080816
Chicago/Turabian StyleSun, Jianxiang, Suping Zhang, Christopher J. Nowotarski, and Yuxi Jiang. 2020. "Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region" Atmosphere 11, no. 8: 816. https://doi.org/10.3390/atmos11080816
APA StyleSun, J., Zhang, S., Nowotarski, C. J., & Jiang, Y. (2020). Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region. Atmosphere, 11(8), 816. https://doi.org/10.3390/atmos11080816