Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing
Abstract
:1. Introduction
2. General Formulation of Chemical Transport Models
3. Parameterization of Subgrid-Scale Processes into Large-Scale Models: General Formulation
3.1. Treatment of Mixing
3.2. Treatment of Chemistry
3.3. Modeling Subgrid Reaction Rates
3.3.1. Generation of the Data-Set
3.3.2. Reconstruction of Plume Parameters
4. Parameterization of Subgrid-Scale Processes into Large-Scale Models: Single-Scalar Formulation
4.1. Treatment of Mixing
4.2. Treatment of Chemistry
Consistency Check
5. Application and Verification of the Method
5.1. Ideal Chemistry
5.2. Chemistry
6. Discussions and Conclusions
Funding
Conflicts of Interest
References
- Paoli, R.; Shariff, K. Contrail modeling and simulation. Annu. Rev. Fluid Mech. 2016, 48, 393–427. [Google Scholar] [CrossRef] [Green Version]
- Paoli, R.; Thouron, O.; Cariolle, D.; Garcia, M.; Escobar, J. Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: Effects of atmospheric turbulence and radiative transfer. Meteorol. Z. 2017, 26, 597–620. [Google Scholar] [CrossRef]
- Song, C.H.; Chen, G.; Hanna, S.R.; Crawford, J.; Davis, D.D. Dispersion and chemical evolution of ship plumes in the marine boundary layer: Investigation of O3/NOx/HOx chemistry. J. Geophys. Res. 2003, 108, 4143. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Müller, J.F.; Granier, C. Atmospheric impact of NOx emissions by subsonic aircraft. J. Geophys. Res. 1996, 101, 1423–1428. [Google Scholar] [CrossRef]
- Meijer, E.W.; van Velthoven, P.F.J.; Wauben, W.M.F.; Beck, J.P.; Velders, G.J.M. The effect of the conversion of the nitrogen oxides in aircraft exhaust plumes in global models. Geophys. Res. Lett. 1997, 24, 3013–3016. [Google Scholar] [CrossRef]
- Kraabøl, A.G.; Flatøy, F.; Stordal, F. Impact of NOx emissions from subsonic aircraft: Inclusion of plume processes in a three-dimensional modeling covering Europe, North America and North Atlantic. J. Geophys. Res. 2000, 105, 3573–3582. [Google Scholar] [CrossRef]
- Kraabøl, A.G.; Berntsen, T.K.; Sundet, J.K.; Stordal, F. Impacts of NOx emissions from subsonic aircraft in a global three-dimensional chemistry transport model including plume processes. J. Geophys. Res. 2002, 107, 4655–4667. [Google Scholar] [CrossRef]
- Paoli, R.; Cariolle, D.; Sausen, R. Review of effective emissions modeling and computation. Geosci. Model Dev. 2011, 4, 643–677. [Google Scholar] [CrossRef] [Green Version]
- Petry, H.; Hendricks, J.; Möllhoff, M.; Lippert, E.; Meier, A.; Sausen, R. Chemical conversion of subsonic aircraft emissions in the dispersing plume: Calculation of effective emission indices. J. Geophy. Res. 1998, 103, 5759–5772. [Google Scholar] [CrossRef]
- Meijer, E.W. Modeling the Impact of Subsonic Aviation on the Composition of the Atmosphere. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Kraabøl, A.G.; Konopka, P.; Stordal, F.; Schlager, H. Modelling chemistry in aircraft plumes 1: Comparison with observations and evaluation of a layered approach. Atmos. Environ. 2000, 34, 3939–3950. [Google Scholar] [CrossRef] [Green Version]
- Kraabøl, A.G.; Stordal, F. Modelling chemistry in aircraft plumes 2: The chemical conversion of NOx to reservoir species under different conditions. Atmos. Environ. 2000, 34, 3951–3962. [Google Scholar] [CrossRef]
- Karol, I.; Ozolin, Y.E.; Kiselev, A.A.; Rozanov, E.V. Plume Transformation Index (PTI) of the subsonic aircraft exhausts and their dependence on the external conditions. Geophys. Res. Lett. 2000, 27, 373–376. [Google Scholar] [CrossRef]
- Meilinger, S.K.; Ka¨rcher, B.; Peter, T. Microphysics and heterogeneous chemistry in aircraft plumes-high sensitivity on local meteorology and atmospheric composition. Atmos. Chem. Phys. 2005, 5, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Cariolle, D.; Caro, D.; Paoli, R.; Hauglustaine, D.; Cuenot, B.; Cozic, A.; Paugam, R. Parameterization of plume chemistry into large scale atmospheric models: Application to aircraft NOx emissions. J. Geophys. Res. 2009, 114, D19302. [Google Scholar] [CrossRef]
- Huszar, P.; Cariolle, D.; Paoli, R.; Halenka, T.; Belda, M.; Schlager, H.; Miksovsky, J.; Pisoft, P. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmos. Chem. Phys. 2010, 10, 6645–6660. [Google Scholar] [CrossRef] [Green Version]
- Gressent, A.; Sauvage, B.; Cariolle, D.; Evans, M.; Leriche, M.; Mari, C.; Thouret, V. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemic al transport model. Atmos. Chem. Phys. 2016, 16, 5867–5889. [Google Scholar] [CrossRef] [Green Version]
- Seigneur, C.; Tesche, T.W.; Roth, P.M.; Liu, M.K. On the treatment of point source emissions in urban air quality modeling. Atmos. Environ. 1983, 17, 1655–1676. [Google Scholar] [CrossRef]
- Karamchandani, P.; Santos, L.; Sykes, I.; Zhang, Y.; Tonne, C.; Seigneur, C. Development and Evaluation of a State-of-the-Science Reactive Plume Model. Environ. Sci. Technol. 2000, 34, 870–880. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Villermaux, J.; Devillon, J.C. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In Proceedings of the Second International Symposium on Chemical Reaction Engineering, Amsterdam, The Netherlands, 2–4 May 1972. [Google Scholar]
- Dopazo, C.; O’Brien, E.E. An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1974, 1, 1239–1266. [Google Scholar] [CrossRef]
- Schlager, H.; Konopka, P.; Schulte, P.; Schumann, U.; Ziereis, H.; Arnold, F.; Klemm, M.; Hagen, D.; Whitefield, P.; Ovarlez, J. In situ observations of air traffic emission signatures in the North Atlantic flight corridor. J. Geophys. Res. 1997, 102, 10739–10750. [Google Scholar] [CrossRef] [Green Version]
- Paoli, R.; Hélie, J.; Poinsot, T. Contrail formation in aircraft wakes. J. Fluid Mech. 2004, 502, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Paoli, R.; Vancassel, X.; Garnier, F.; Mirabel, P. Large-eddy simulation of a turbulent jet and a vortex sheet interaction: Particle formation and evolution in the near-field of an aircraft wake. Meteorol. Z. 2008, 17, 131–144. [Google Scholar] [CrossRef]
- Paoli, R.; Nybelen, L.; Picot, J.; Cariolle, D. Effects of jet/vortex interaction on contrail formation in supersaturated conditions. Phys. Fluids 2013, 25, 053305. [Google Scholar] [CrossRef]
- Eswaran, V.; Pope, S.B. An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 1988, 16, 257–278. [Google Scholar] [CrossRef]
- Paoli, R.; Shariff, K. Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci. 2009, 66, 723–740. [Google Scholar] [CrossRef]
- Stockwell, W.R. Effects of turbulence on gas-phase atmospheric chemistry: Calculation of the relationship between time scales for diffusion and chemical reactions. Meteorol. Atmos. Phys. 1995, 57, 159–171. [Google Scholar] [CrossRef]
- Vilà-Guerau de Arellano, J.; Dosio, A.; Vinuesa, J.F.; Holtsag, A.A.M.; Galmarini, S. The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorol. Atmos. Phys. 2004, 87, 23–28. [Google Scholar] [CrossRef]
- Gerz, T.; Dürbeck, T.; Konopka, P. Transport and effective diffusion of aircraft emissions. J. Geophys. Res. 1998, 103, 25905–25914. [Google Scholar] [CrossRef] [Green Version]
- Schumann, U. Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ. 1989, 23, 1713–1729. [Google Scholar] [CrossRef] [Green Version]
- Sander, S.P.; Friedl, R.R.; Golden, D.M.; Kurylo, M.J.; Moortgat, G.K.; Keller-Rudek, H.; Wine, P.H.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evalutaion Number 15; Tec. Rep. Publ. 06-2; JPL, NASA: Pasadena, CA, USA, 2006. [Google Scholar]
- Garnier, F.; Baudoin, C.; Woods, P.; Louisnard, N. Engine Emission alteration in the near field of an aircraft. Atmos. Environ. 1997, 31, 1767–1781. [Google Scholar] [CrossRef]
- Chosson, F.; Paoli, R.; Cuenot, B. Ship plume dispersion rates in convective boundary layers for chemistry models. Atmos. Chem. Phys. 2008, 8, 4841–4853. [Google Scholar] [CrossRef] [Green Version]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa Publishers: Albuquerque, NM, USA, 1998. [Google Scholar]
Run | |||||||
---|---|---|---|---|---|---|---|
I1 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 0.1 |
I2 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 1 |
I3 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 10 |
Run | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | 0 | 0 | 4.2 | ||||||||
N2 | 0 | 0 | 8.4 | ||||||||
N3 | 0 | 0 | 13.5 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoli, R. Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing. Atmosphere 2020, 11, 863. https://doi.org/10.3390/atmos11080863
Paoli R. Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing. Atmosphere. 2020; 11(8):863. https://doi.org/10.3390/atmos11080863
Chicago/Turabian StylePaoli, Roberto. 2020. "Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing" Atmosphere 11, no. 8: 863. https://doi.org/10.3390/atmos11080863
APA StylePaoli, R. (2020). Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing. Atmosphere, 11(8), 863. https://doi.org/10.3390/atmos11080863