Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Results
3.1. Significance Tests
3.2. Links and Degrees
3.3. Important Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Sang, Y. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. Int. J. Disaster Risk Reduct. 2017, 25, 60–71. [Google Scholar] [CrossRef]
- Wei, L.; Hu, K.; Hu, X. Rainfall occurrence and its relation to flood damage in China from 2000 to 2015. J. Mt. Sci. 2018, 15, 2492–2504. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.; Chen, D.; Li, L.; Liu, X.; Cui, H. Tracing changes in atmospheric moisture supply to the drying Southwest China. Atmos. Chem. Phys. Discuss. 2017, 17, 10383–10393. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Liu, J.; Zhang, S.-Q.; Chen, W.-X.; Yang, S.-Q. Observed Climate Changes in Southwest China during 1961–2010. Adv. Clim. Chang. Res. 2013, 4, 30–40. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhou, W. Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv. Atmos. Sci. 2014, 31, 1035–1050. [Google Scholar] [CrossRef]
- Qin, N.; Chen, X.; Fu, G.; Zhai, J.; Xue, X. Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Process. 2010, 24, 3733–3744. [Google Scholar] [CrossRef]
- Shi, P.; Wu, M.; Qu, S.; Jiang, P.; Qiao, X.; Chen, X.; Zhou, M.; Zhang, Z. Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China. Water Resour. Manag. 2015, 29, 3941–3955. [Google Scholar] [CrossRef]
- Zhang, R. Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China. Adv. Atmos. Sci. 2001, 18, 1005–1017. [Google Scholar] [CrossRef]
- Qian, W.; Kang, H.-S.; Lee, D.K. Distribution of seasonal rainfall in the East Asian monsoon region. Theor. Appl. Clim. 2002, 73, 151–168. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhou, W.; Huang, G. Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Clim. Dyn. 2015, 45, 2527–2539. [Google Scholar] [CrossRef]
- Wang, L.; Huang, G.; Chen, W.; Zhou, W.; Wang, W. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool. Clim. Dyn. 2018, 51, 3111–3123. [Google Scholar] [CrossRef]
- Xia, Y.; Guan, Z.Y.; Long, Y. Relationships between convective activity in the Maritime Continent and precipitation anomalies in Southwest China during boreal summer. Clim. Dyn. 2020, 54, 973–986. [Google Scholar] [CrossRef]
- Jiang, X.; Shu, J.; Wang, X.; Hu, X.; Wu, Q. The Roles of Convection over the Western Maritime Continent and the Philippine Sea in Interannual Variability of Summer Rainfall over Southwest China. J. Hydrometeo. 2017, 18, 2043–2056. [Google Scholar] [CrossRef]
- Steinhaeuser, K.; Chawla, N.V.; Ganguly, A.R. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min. 2011, 4, 497–511. [Google Scholar] [CrossRef]
- Barabã¡si, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.W.; Hu, G.K.; Chen, X.S.; Chen, W.; Liu, W.Q. Study of the shear-rate dependence of granular friction based on community detection. Sci. China-Phys. Mech. Astron. 2019, 62, 40511. [Google Scholar] [CrossRef]
- Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. Complex networks in climate dynamics. Eur. Phys. J. Spéc. Top. 2009, 174, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Liess, S.; Kumar, A.; Snyder, P.K.; Kawale, J.; Steinhaeuser, K.; Semazzi, F.H.M.; Ganguly, A.R.; Samatova, N.F.; Kumar, V. Different Modes of Variability over the Tasman Sea: Implications for Regional Climate*. J. Clim. 2014, 27, 8466–8486. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Gozolchiani, A.; Ashkenazy, Y.; Havlin, S. Teleconnection Paths via Climate Network Direct Link Detection. Phys. Rev. Lett. 2015, 115, 268501. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.F.; Meng, J.; Ludescher, J.; Chen, X.S.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2020. [Google Scholar] [CrossRef] [PubMed]
- Boers, N.; Bookhagen, B.; Marwan, N.; Kurths, J.; Marengo, J.A. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophys. Res. Lett. 2013, 40, 4386–4392. [Google Scholar] [CrossRef] [Green Version]
- Tsonnis, A.A.; Swanson, K.L. Topology and Predictability of El Niño and La Niña Networks. Phys. Rev. Lett. 2008, 100, 228502. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, K.; Gozolchiani, A.; Havlin, S. Climate Networks around the Globe are Significantly Affected by El Niño. Phys. Rev. Lett. 2008, 100, 228501. [Google Scholar] [CrossRef] [PubMed]
- Guez, O.; Gozolchiani, A.; Berezin, Y.; Wang, Y.; Havlin, S. Global climate network evolves with North Atlantic Oscillation phases: Coupling to Southern Pacific Ocean. EPL Europhys. Lett. 2013, 103, 68006. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.H.; Yuan, N.M.; Fu, Z.T. Percolation Phase Transition of Surface Air Temperature Networks under Attacks of Attacks of El Niño/La Niña. Sci. Rep. 2016, 6, 26779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.Q.; Zhou, L.; Zhi, R.; Feng, G.L. Analysis of Dynamical Statistical Characteristics of Temperature Correlation Networks of 1-30D Scales. Acta Phys. Sin. 2008, 57, 5351–5360. [Google Scholar] [CrossRef]
- Barreiro, M.; Marti, A.C.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 013101. [Google Scholar] [CrossRef] [Green Version]
- Steinhaeuser, K.; Ganguly, A.R.; Chawla, N.V. Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim. Dyn. 2012, 39, 889–895. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Fan, J.F.; Li, X.T.; Liu, W.Q.; Chen, X.S. Evolution mechanism of principal modes in climate dynamics. New J. Phys. 2020, 22, 093077. [Google Scholar] [CrossRef]
- Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Very early warning of next El Niño. Proc. Natl. Acad. Sci. USA 2014, 111, 2064–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Fan, J.F.; Ludescher, J.; Agarwal, A.; Chen, X.S.; Bunde, A.; Kurths, J.; Schellnhuber, H.J. Complexity based approach for El Niño magnitude forecasting before the “spring predictability barrier”. Proc. Natl. Acad. Sci. USA 2020, 117, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Fan, J.; Chen, X.; Ashkenazy, Y.; Havlin, S. Significant Impact of Rossby Waves on Air Pollution Detected by Network Analysis. Geophys. Res. Lett. 2019, 46, 12476–12485. [Google Scholar] [CrossRef] [Green Version]
- Boers, N.; Goswami, B.; Rheinwalt, A.; Bookhagen, B.; Hoskins, B.; Kurths, J. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nat. Cell Biol. 2019, 566, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Boers, N.; Bookhagen, B.; Barbosa, H.M.J.; Marwan, N.; Kurths, J.; Marengo, J.A. Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Fan, J.F.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA 2017, 114, 7543–7548. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Fan, J.F.; Ashkenazy, Y.; Havlin, S. Percolation framework to describe El Niño conditions. Chaos 2017, 27, 035807. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Fan, J.; Havlin, S.; Chen, X. Correlation and scaling behaviors of fine particulate matter (PM 2.5 ) concentration in China. EPL Europhys. Lett. 2018, 122, 58003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zhang, X.; Li, Y.; Chen, J. Remotely modulated tropical-North Pacific ocean–atmosphere interactions by the South Asian high. Atmos. Res. 2009, 94, 45–60. [Google Scholar] [CrossRef]
- Feng, J.; Chen, W. Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases. Adv. Atmos. Sci. 2014, 31, 344–354. [Google Scholar] [CrossRef]
- Zhang, R.H.; Min, Q.Y.; Su, J.Z. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China-Earth Sci. 2017, 60, 1124–1132. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Feng, G.L.; Dogar, M.M.; Huang, G. The possible physical mechanism for the EAP-SR co-action. Clim. Dyn. 2018, 51, 1499–1516. [Google Scholar] [CrossRef] [Green Version]
- Kug, J.-S.; Kang, I.-S. Interactive Feedback between ENSO and the Indian Ocean. J. Clim. 2006, 19, 1784–1801. [Google Scholar] [CrossRef]
- Wang, L.; Wu, R. In-phase transition from the winter monsoon to the summer monsoon over East Asia: Role of the Indian Ocean. J. Geophys. Res. Space Phys. 2012, 117, 11112. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Lu, R.; Hu, J.; Wang, H. Spring Indian Ocean-western Pacific SST contrast and the East Asian summer rainfall anomaly. Adv. Atmos. Sci. 2013, 30, 1560–1568. [Google Scholar] [CrossRef]
- Li, W.M.; Ren, H.C.; Zuo, J.Q.; Ren, H.L. Early summer southern China rainfall variability and its oceanic drivers. Clim. Dyn. 2018, 50, 4691–4705. [Google Scholar] [CrossRef] [Green Version]
DJF | MAM | JJA | SON | |
---|---|---|---|---|
0.059 | 0.087 | 0.072 | 0.041 | |
0.1130.013 | 0.1140.014 | 0.1110.011 | 0.1090.009 | |
0.064 | 0.051 | 0.046 | 0.043 | |
−0.1130.012 | −0.1160.014 | −0.1120.12 | −0.1090.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, P.; Liu, W.; Zhang, Y.; Gong, Z. Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China. Atmosphere 2021, 12, 101. https://doi.org/10.3390/atmos12010101
Qiao P, Liu W, Zhang Y, Gong Z. Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China. Atmosphere. 2021; 12(1):101. https://doi.org/10.3390/atmos12010101
Chicago/Turabian StyleQiao, Panjie, Wenqi Liu, Yongwen Zhang, and Zhiqiang Gong. 2021. "Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China" Atmosphere 12, no. 1: 101. https://doi.org/10.3390/atmos12010101
APA StyleQiao, P., Liu, W., Zhang, Y., & Gong, Z. (2021). Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China. Atmosphere, 12(1), 101. https://doi.org/10.3390/atmos12010101