Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019)
Abstract
:1. Introduction
2. Data, Methods and Models
2.1. MERRA-2 Data
- Ocean-only reflectances from the Advanced Very High-Resolution Radiometer (AVHRR) instruments (1979–2002)
- Reflectances from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra (2000-present) and Aqua (2002-present)
- AOD from the Multi-angle Imaging SpectroRadiometer (MISR) over the bright desert regions (2000–2014)
- AOD observations from the AErosol RObotic NETwork (AERONET) surface station network (1999–2014).
2.2. MERRA-2 Data Processing
2.3. The FORTH RTM
3. Results
3.1. Global Distribution of MERRA-2 AOD
3.2. Aerosol Direct Radiative Effects
3.2.1. Global Distribution of Aerosol DRE
Anthropogenic Polluted Areas
Natural Desert and Biomass Burning Areas
Areas with Mixed Natural and Anthropogenic Aerosols
Remote Clean Areas
Discussion of the Climatic Role of Aerosol Speciated DREs
3.2.2. Inter-Annual Variability of Aerosol DRE
3.2.2.1. Inter-Annual Variability of Aerosol AOD and DREs
3.2.2.2. Interannual Variability and Changes during the Post 2000 Period
3.2.2.3. Anthropogenic Polluted Areas
3.2.2.4. Natural Desert and Biomass Burning Areas
3.2.2.5. Areas with Combined Natural and Anthropogenic Aerosols
3.2.2.6. Remote Clean Areas
4. Summary and Conclusions
- MERRA-2 successfully reproduces well-known spatiotemporal patterns of globally distributed AOD, for all aerosol types considered in the current study, over source, nearby and downwind areas.
- The global 40-year mean AOD is equal to 0.14, with monthly values mainly ranging from 0.1 to 0.15, rising up to about 0.3 during the great volcanic eruptions of El Chichón and Pinatubo in the 1980s and 1990s, respectively.
- In general, aerosols cause a radiative cooling at the Earth’s surface and at TOA, equivalent to −7.6 and −5.2 Wm−2, respectively, and an atmospheric warming of 2.4 Wm−2. However, the DREs strongly depend on AOD, the aerosol type, and the underlying surface properties, mainly the albedo, thus exhibiting a significant geographic and seasonal variation.
- The worldwide highest surface radiative cooling effect, equal to −39 Wm−2 locally, is found over East and South Asia, and specifically over China, and is attributed primarily to the anthropogenic sulfate particles and black carbon, followed by desert dust.
- Strong surface cooling is also produced by dust aerosols over the Sahara and Arabian deserts, as well as over adjacent ocean regions where dust and carbonaceous aerosols are transported.
- The largest atmospheric warming effect globally, equal to 33.9 Wm−2, is found over the southern and south-western parts of the Sahara, induced by dust. In general, the aerosol surface cooling effect is larger than the corresponding atmospheric warming, yielding an overall planetary cooling, as large as −20.7 Wm−2, but near-cancellation between the DREsurfnet and DREatm can result in a small planetary cooling or even a planetary warming (up to 6.9 Wm−2 locally, over the bright surfaces of the southern Sahara).
- The light-absorbing aerosols, primarily black carbon and secondarily dust, have the strongest radiative forcing efficiency both in the atmosphere and the surface of the Earth.
- The quite large dust AOD, combined with its strong ARFE, result in very pronounced global mean surface and atmospheric radiative effects (DREsurfnet and DREatm equal to −1.98 and 1.15 Wm−2, respectively) which are the largest among all aerosol types.
- Due to their small atmospheric warming and their pronounced surface cooling effects, the scattering sulfate and sea salt aerosols cause the strongest planetary cooling (DRETOA −1.88 and −1.62 Wm−2, respectively).
- The strongly absorbing black carbon is the only aerosol type inducing a planetary warming effect, equal to 0.19 Wm−2.
- The almost purely scattering sea salt and sulfate aerosols have non-negligible atmospheric warming and cooling global effects (DREatm equal to 0.12 and −0.02 Wm−2, respectively), the sign of which is determined by the altitude of the scattering aerosol layer and the presence of other aerosol types.
- The most remarkable feature of the inter-annual variability of MERRA-2 total AOD and DREs is the distinct and relatively long-lasting impact of large-scale volcanic eruptions (El Chichón and Pinatubo in the early 1980s and early 1990s, respectively) through the emitted sulfate particles.
- The decrease in the strongly scattering sulfate aerosols (by the El Chichón and Pinatubo eruptions) after the mid-1990s, led to an increase in the solar atmospheric absorption. In parallel, our results show increasing absorption from dust, organic and black carbon aerosols.
- The volcanic sulfate aerosols associated with the El Chichón and Pinatubo volcanic eruptions substantially decreased the mean global net surface solar radiation in the early 1980s (by up to 6 Wm−2) and the early 1990s (by up to 10 Wm−2). During these eruptions the mean global net SSR decreased due to all aerosols by up to 12 and 14.5 Wm−2, respectively, while the aerosol planetary cooling effect reached values up to about 9.5 and 13 Wm−2.
- The large reduction in sulfur emissions mainly in Europe and North America has been largely counterbalanced by an increase in sulfate aerosol load over India and East Asia, resulting in unchanging sulfate aerosol DREs over the 40-year period (1980–2019).
- A pronounced increase in carbonaceous aerosols was found during the study period, associated with increasing wildfires, which increased the magnitudes of the associated DREs.
- The decadal and inter-annual changes of aerosol AOD and DREs are much more pronounced on a regional basis. Thus, over India the AOD increased by up to 70% from 1980 to 2019, due to enhanced anthropogenic activities (primarily sulfate and secondarily carbonaceous aerosols), leading to a doubling of DREatm (from 5.3 Wm−2 in the 1980s to 11.7 Wm−2 in the 2010s), primarily attributed to black carbon particles.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 1-107-05799-X. [Google Scholar]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.-L. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M. Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef]
- Kristiansen, N.I.; Stohl, A.; Wotawa, G. Atmospheric Removal Times of the Aerosol-Bound Radionuclides 137 Cs and 131 I Measured after the Fukushima Dai-Ichi Nuclear Accident–a Constraint for Air Quality and Climate Models. Atmos. Chem. Phys. 2012, 12, 10759–10769. [Google Scholar] [CrossRef]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4, ISBN 0-521-70596-7. [Google Scholar]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef]
- Aitken, J. Dust, Fogs, and Clouds. Nature 1881, 23, 384–385. [Google Scholar] [CrossRef]
- Köhler, H. The Nucleus in and the Growth of Hygroscopic Droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and the Planetary Albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Coopman, Q.; Riedi, J.; Finch, D.P.; Garrett, T.J. Evidence for Changes in Arctic Cloud Phase Due to Long-range Pollution Transport. Geophys. Res. Lett. 2018, 45, 10709–10718. [Google Scholar] [CrossRef]
- Norgren, M.S.; de Boer, G.; Shupe, M.D. Observed Aerosol Suppression of Cloud Ice in Low-Level Arctic Mixed-Phase Clouds. Atmos. Chem. Phys. 2018, 18, 13345–13361. [Google Scholar] [CrossRef]
- Richardson, T.B.; Forster, P.M.; Andrews, T.; Parker, D.J. Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale. J. Clim. 2016, 29, 583–594. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.K.I.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S. Efficacy of Climate Forcings. J. Geophys. Res. Atmos. 2005, 110, D18. [Google Scholar] [CrossRef]
- Shine, K.P.; Cook, J.; Highwood, E.J.; Joshi, M.M. An Alternative to Radiative Forcing for Estimating the Relative Importance of Climate Change Mechanisms. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative Forcing and Climate Response. J. Geophys. Res. Atmos. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Taylor, J.P.; Johnson, D.W.; Hobbs, P.V.; Ferek, R.J. Effects of Aerosols on Cloud Albedo: Evaluation of Twomey’s Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks. J. Atmos. Sci. 2000, 57, 2684–2695. [Google Scholar] [CrossRef]
- Stjern, C.W.; Samset, B.H.; Myhre, G.; Forster, P.M.; Hodnebrog, Ø.; Andrews, T.; Boucher, O.; Faluvegi, G.; Iversen, T.; Kasoar, M. Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations. J. Geophys. Res. Atmos. 2017, 122, 11462–11481. [Google Scholar] [CrossRef]
- Christopher, S.A.; Jones, T. Satellite-based Assessment of Cloud-free Net Radiative Effect of Dust Aerosols over the Atlantic Ocean. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Özsoy, E. Interactive Dust-radiation Modeling: A Step to Improve Weather Forecasts. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Gkikas, A.; Obiso, V.; Perez Garcia-Pando, C.; Jorba, O.; Hatzianastassiou, N.; Vendrell, L.; Basart, S.; Solomos, S.; Gassó, S.; Baldasano, J.M. Direct Radiative Effects during Intense Mediterranean Desert Dust Outbreaks. Atmos. Chem. Phys. 2018, 18, 8757–8787. [Google Scholar] [CrossRef]
- Gkikas, A.; Giannaros, T.M.; Kotroni, V.; Lagouvardos, K. Assessing the Radiative Impacts of an Extreme Desert Dust Outbreak and the Potential Improvements on Short-Term Weather Forecasts: The Case of February 2015. Atmos. Res. 2019, 226, 152–170. [Google Scholar] [CrossRef]
- Nabat, P.; Somot, S.; Mallet, M.; Michou, M.; Sevault, F.; Driouech, F.; Meloni, D.; Di Sarra, A.; Di Biagio, C.; Formenti, P. Dust Aerosol Radiative Effects during Summer 2012 Simulated with a Coupled Regional Aerosol–Atmosphere–Ocean Model over the Mediterranean. Atmos. Chem. Phys. 2015, 15, 3303–3326. [Google Scholar] [CrossRef]
- Haywood, J.M.; Ramaswamy, V.; Soden, B.J. Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. Science 1999, 283, 1299–1303. [Google Scholar] [CrossRef]
- Haywood, J.M.; Allan, R.P.; Culverwell, I.; Slingo, T.; Milton, S.; Edwards, J.; Clerbaux, N. Can Desert Dust Explain the Outgoing Longwave Radiation Anomaly over the Sahara during July 2003? J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.E.; Berntsen, T.; Berglen, T.F.; Boucher, O.; Chin, M. An AeroCom Initial Assessment–Optical Properties in Aerosol Component Modules of Global Models. Atmos. Chem. Phys. 2006, 6, 1815–1834. [Google Scholar] [CrossRef]
- Schulz, M.; Textor, C.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Dentener, F.; Guibert, S. Radiative Forcing by Aerosols as Derived from the AeroCom Present-Day and Pre-Industrial Simulations. Atmos. Chem. Phys. 2006, 6, 5225–5246. [Google Scholar] [CrossRef]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M. Analysis and Quantification of the Diversities of Aerosol Life Cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef]
- Kacenelenbogen, M.S.; Vaughan, M.A.; Redemann, J.; Young, S.A.; Liu, Z.; Hu, Y.; Omar, A.H.; LeBlanc, S.; Shinozuka, Y.; Livingston, J. Estimations of Global Shortwave Direct Aerosol Radiative Effects above Opaque Water Clouds Using a Combination of A-Train Satellite Sensors. Atmos. Chem. Phys. 2019, 19, 4933–4962. [Google Scholar] [CrossRef]
- Oikawa, E.; Nakajima, T.; Winker, D. An Evaluation of the Shortwave Direct Aerosol Radiative Forcing Using CALIOP and MODIS Observations. J. Geophys. Res. Atmos. 2018, 123, 1211–1233. [Google Scholar] [CrossRef]
- Yorks, J.E.; McGill, M.; Rodier, S.; Vaughan, M.; Hu, Y.; Hlavka, D. Radiative Effects of African Dust and Smoke Observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- De Graaf, M.; Bellouin, N.; Tilstra, L.G.; Haywood, J.; Stammes, P. Aerosol Direct Radiative Effect of Smoke over Clouds over the Southeast Atlantic Ocean from 2006 to 2009. Geophys. Res. Lett. 2014, 41, 7723–7730. [Google Scholar] [CrossRef]
- Peers, F.; Waquet, F.; Cornet, C.; Dubuisson, P.; Ducos, F.; Goloub, P.; Szczap, F.; Tanré, D.; Thieuleux, F. Absorption of Aerosols above Clouds from POLDER/PARASOL Measurements and Estimation of Their Direct Radiative Effect. Atmos. Chem. Phys. 2015, 15, 4179–4196. [Google Scholar] [CrossRef]
- Korras-Carraca, M.B.; Pappas, V.; Hatzianastassiou, N.; Vardavas, I.; Matsoukas, C. Global Vertically Resolved Aerosol Direct Radiation Effect from Three Years of CALIOP Data Using the FORTH Radiation Transfer Model. Atmos. Res. 2019, 224, 138–156. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on MODIS Deep Blue Aerosol Products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Ge, J.M.; Huang, J.P.; Xu, C.P.; Qi, Y.L.; Liu, H.Y. Characteristics of Taklimakan Dust Emission and Distribution: A Satellite and Reanalysis Field Perspective. J. Geophys. Res. Atmos. 2014, 119, 11772–11783. [Google Scholar] [CrossRef]
- Yu, Y.; Kalashnikova, O.V.; Garay, M.J.; Notaro, M. Climatology of Asian Dust Activation and Transport Potential Based on MISR Satellite Observations and Trajectory Analysis. Atmos. Chem. Phys. 2019, 19, 363–378. [Google Scholar] [CrossRef]
- Gkikas, A.; Proestakis, E.; Amiridis, V.; Kazadzis, S.; Di Tomaso, E.; Tsekeri, A.; Marinou, E.; Hatzianastassiou, N.; Pérez García-Pando, C. ModIs Dust AeroSol (MIDAS): A Global Fine-Resolution Dust Optical Depth Data Set. Atmos. Meas. Tech. 2021, 14, 309–334. [Google Scholar] [CrossRef]
- Ma, X.; von Salzen, K.; Li, J. Modelling Sea Salt Aerosol and Its Direct and Indirect Effects on Climate. Atmos. Chem. Phys. 2008, 8, 1311–1327. [Google Scholar] [CrossRef]
- Grini, A.; Myhre, G.; Sundet, J.K.; Isaksen, I.S. Modeling the Annual Cycle of Sea Salt in the Global 3D Model Oslo CTM2: Concentrations, Fluxes, and Radiative Impact. J. Clim. 2002, 15, 1717–1730. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Dobbie, S.; Li, J.; Harvey, R.; Chýlek, P. Sea-Salt Optical Properties and GCM Forcing at Solar Wavelengths. Atmos. Res. 2003, 65, 211–233. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V.; Decremer, D. Observationally Constrained Estimates of Carbonaceous Aerosol Radiative Forcing. Proc. Natl. Acad. Sci. USA 2012, 109, 11624–11629. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano Jr, A.F. Interannual Variability in Global Biomass Burning Emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosciences 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; Van Der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global Burned Area and Biomass Burning Emissions from Small Fires. J. Geophys. Res. Biogeosciences 2012, 117. [Google Scholar] [CrossRef]
- Kinne, S. Aerosol Radiative Effects with MACv2. Atmos. Chem. Phys. 2019, 19, 10919–10959. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Matsoukas, C.; Drakakis, E.; Stackhouse Jr, P.W.; Koepke, P.; Fotiadi, A.; Pavlakis, K.G.; Vardavas, I. The Direct Effect of Aerosols on Solar Radiation Based on Satellite Observations, Reanalysis Datasets, and Spectral Aerosol Optical Properties from Global Aerosol Data Set (GADS). Atmos. Chem. Phys. 2007, 7, 2585–2599. [Google Scholar] [CrossRef]
- Vardavas, I.M.; Carver, J.H. Solar and Terrestrial Parameterizations for Radiative-Convective Models. Planet. Space Sci. 1984, 32, 1307–1325. [Google Scholar] [CrossRef]
- Thorsen, T.J.; Ferrare, R.A.; Kato, S.; Winker, D.M. Aerosol Direct Radiative Effect Sensitivity Analysis. J. Clim. 2020, 33, 6119–6139. [Google Scholar] [CrossRef]
- Matus, A.V.; L’Ecuyer, T.S.; Kay, J.E.; Hannay, C.; Lamarque, J.-F. The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model. J. Clim. 2015, 28, 2986–3003. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-based Aerosol Optical Depth. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-derived Dust Emission Scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Gong, S.L. A Parameterization of Sea-salt Aerosol Source Function for Sub-and Super-micron Particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, Biomass Burning, and Volcanic Emissions of Black Carbon, Organic Carbon, and SO 2 from 1980 to 2010 for Hindcast Model Experiments. Atmos. Chem. Phys. Discuss. 2012, 12, 24895–24954. [Google Scholar]
- Meng, Z.; Yang, P.; Kattawar, G.W.; Bi, L.; Liou, K.N.; Laszlo, I. Single-Scattering Properties of Tri-Axial Ellipsoidal Mineral Dust Aerosols: A Database for Application to Radiative Transfer Calculations. J. Aerosol Sci. 2010, 41, 501–512. [Google Scholar] [CrossRef]
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.; Yang, P.; Kim, K.-M.; Smith, J.A.; Bardeen, C.G. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index. J. Geophys. Res. Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef]
- Matsoukas, C.; Hatzianastassiou, N.; Fotiadi, A.; Pavlakis, K.G.; Vardavas, I. The Effect of Arctic Sea-Ice Extent on the Absorbed (Net) Solar Flux at the Surface, Based on ISCCP-D2 Cloud Data for 1983–2007. Atmos. Chem. Phys. 2010, 10, 777–787. [Google Scholar] [CrossRef]
- Matsoukas, C.; Benas, N.; Hatzianastassiou, N.; Pavlakis, K.G.; Kanakidou, M.; Vardavas, I. Potential Evaporation Trends over Land between 1983–2008: Driven by Radiative Fluxes or Vapour-Pressure Deficit? Atmos. Chem. Phys. 2011, 11, 7601–7616. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I. The Direct Effect of Aerosols on Solar Radiation over the Broader Mediterranean Basin. Atmos. Chem. Phys. 2012, 12, 7165–7185. [Google Scholar] [CrossRef]
- Pyrina, M.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Papadimas, C.D.; Pavlakis, K.G.; Vardavas, I. Cloud Effects on the Solar and Thermal Radiation Budgets of the Mediterranean Basin. Atmos. Res. 2015, 152, 14–28. [Google Scholar] [CrossRef]
- Benas, N.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Mihalopoulos, N.; Vardavas, I. Aerosol Shortwave Direct Radiative Effect and Forcing Based on MODIS Level 2 Data in the Eastern Mediterranean (Crete). Atmos. Chem. Phys. 2011, 11, 12647–12662. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Fotiadi, A.; Matsoukas, C.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Long-Term Global Distribution of Earth’s Shortwave Radiation Budget at the Top of Atmosphere. Atmos. Chem. Phys. 2004, 4, 1217–1235. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Global Distribution of Earth’s Surface Shortwave Radiation Budget. Atmos. Chem. Phys. 2005, 5, 2847–2867. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Papadimas, C.D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I. Recent Regional Surface Solar Radiation Dimming and Brightening Patterns: Inter-Hemispherical Asymmetry and a Dimming in the Southern Hemisphere. Atmos. Sci. Lett. 2012, 13, 43–48. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Ioannidis, E.; Korras-Carraca, M.-B.; Gavrouzou, M.; Papadimas, C.D.; Matsoukas, C.; Benas, N.; Fotiadi, A.; Wild, M.; Vardavas, I. Global Dimming and Brightening Features during the First Decade of the 21st Cntury. Atmosphere 2020, 11, 308. [Google Scholar] [CrossRef]
- Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B. Intercomparison of Shortwave Radiative Transfer Schemes in Global Aerosol Modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [Google Scholar] [CrossRef]
- Gueymard, C.A. The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Willson, R.C. Total Solar Irradiance Trend during Solar Cycles 21 and 22. Science 1997, 277, 1963–1965. [Google Scholar] [CrossRef]
- Joseph, J.H.; Wiscombe, W.J.; Weinman, J.A. The Delta-Eddington Approximation for Radiative Flux Transfer. J. Atmos. Sci. 1976, 33, 2452–2459. [Google Scholar] [CrossRef]
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Korras-Carraca, M.-B.; Mihalopoulos, N. A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005–2019. Remote Sens. 2021, 13, 359. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Kalaitzi, N.; Gavrouzou, M.; Gkikas, A.; Korras-Carraca, M.-B.; Mihalopoulos, N. A Climatological Satellite Assessment of Absorbing Carbonaceous Aerosols on a Global Scale. Atmosphere 2019, 10, 671. [Google Scholar] [CrossRef]
- Prospero, J.M.; Mayol-Bracero, O.L. Understanding the Transport and Impact of African Dust on the Caribbean Basin. Bull. Am. Meteorol. Soc. 2013, 94, 1329–1337. [Google Scholar] [CrossRef]
- Velasco-Merino, C.; Mateos, D.; Toledano, C.; Prospero, J.M.; Molinie, J.; Euphrasie-Clotilde, L.; González, R.; Cachorro, V.E.; Calle, A.; Frutos, A.M. de Impact of Long-Range Transport over the Atlantic Ocean on Saharan Dust Optical and Microphysical Properties Based on AERONET Data. Atmos. Chem. Phys. 2018, 18, 9411–9424. [Google Scholar] [CrossRef]
- Murphy, D.M.; Froyd, K.D.; Bian, H.; Brock, C.A.; Dibb, J.E.; DiGangi, J.P.; Diskin, G.; Dollner, M.; Kupc, A.; Scheuer, E.M. The Distribution of Sea-Salt Aerosol in the Global Troposphere. Atmos. Chem. Phys. 2019, 19, 4093–4104. [Google Scholar] [CrossRef]
- Gliß, J.; Mortier, A.; Schulz, M.; Andrews, E.; Balkanski, Y.; Bauer, S.E.; Benedictow, A.M.; Bian, H.; Checa-Garcia, R.; Chin, M. AeroCom Phase III Multi-Model Evaluation of the Aerosol Life Cycle and Optical Properties Using Ground-and Space-Based Remote Sensing as Well as Surface in Situ Observations. Atmos. Chem. Phys. 2021, 21, 87–128. [Google Scholar] [CrossRef]
- Ridley, D.A.; Heald, C.L.; Kok, J.F.; Zhao, C. An Observationally Constrained Estimate of Global Dust Aerosol Optical Depth. Atmos. Chem. Phys. 2016, 16, 15097–15117. [Google Scholar] [CrossRef]
- Videla, F.C.; Barnaba, F.; Angelini, F.; Cremades, P.; Gobbi, G.P. The Relative Role of Amazonian and Non-Amazonian Fires in Building up the Aerosol Optical Depth in South America: A Five Year Study (2005–2009). Atmos. Res. 2013, 122, 298–309. [Google Scholar] [CrossRef]
- De Graaf, M.; Tilstra, L.G.; Aben, I.; Stammes, P. Satellite Observations of the Seasonal Cycles of Absorbing Aerosols in Africa Related to the Monsoon Rainfall, 1995–2008. Atmos. Environ. 2010, 44, 1274–1283. [Google Scholar] [CrossRef]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.-L.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.N.; Massie, S.T. Satellite-observed Pollution from Southern Hemisphere Biomass Burning. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I. Nine-Year Spatial and Temporal Evolution of Desert Dust Aerosols over South and East Asia as Revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-Dimensional Evolution of Saharan Dust Transport towards Europe Based on a 9-Year EARLINET-Optimized CALIPSO Dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef]
- Haywood, J.M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Katsoulis, B.; Vardavas, I. Sensitivity Analysis of Aerosol Direct Radiative Forcing in Ultraviolet—Visible Wavelengths and Consequences for the Heat Budget. Tellus B Chem. Phys. Meteorol. 2004, 56, 368–381. [Google Scholar]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef]
- Floutsi, A.A.; Korras-Carraca, M.B.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and Trends of Aerosol Optical Depth over the Mediterranean Basin during the Last 12 Years (2002–2014) Based on Collection 006 MODIS-Aqua Data. Sci. Total Environ. 2016, 551, 292–303. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, P.; Ekman, A.M. Aerosols in Current and Future Arctic Climate. Nat. Clim. Chang. 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Ren, L.; Yang, Y.; Wang, H.; Zhang, R.; Wang, P.; Liao, H. Source Attribution of Arctic Black Carbon and Sulfate Aerosols and Associated Arctic Surface Warming during 1980–2018. Atmos. Chem. Phys. 2020, 20, 9067–9085. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, K.I. Effects of Aerosol Optical Properties on Deep Convective Clouds and Radiative Forcing. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z. Contrasting Effects on Deep Convective Clouds by Different Types of Aerosols. Nat. Commun. 2018, 9, 3874. [Google Scholar] [CrossRef]
- Drakoussis, P.; Korras-Carraca, M.-B.; Jethva, H.; Torres, O.; Hatzianastassiou, N. Climatology and Trends of Global Single Scattering Albedo Based on Ozone Monitor System (OMI) Ultraviolet Retrievals, Ioannina, Greece, 2021.
- Pitari, G.; Cionni, I.; Di Genova, G.; Visioni, D.; Gandolfi, I.; Mancini, E. Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species. Atmosphere 2016, 7, 149. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric Effects of the Mt Pinatubo Eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A. Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle as an Analog of Geoengineering. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Provençal, S.; Kishcha, P.; da Silva, A.M.; Elhacham, E.; Alpert, P. AOD Distributions and Trends of Major Aerosol Species over a Selection of the World’s Most Populated Cities Based on the 1st Version of NASA’s MERRA Aerosol Reanalysis. Urban Clim. 2017, 20, 168–191. [Google Scholar] [CrossRef]
- Nabat, P.; Somot, S.; Mallet, M.; Sanchez-Lorenzo, A.; Wild, M. Contribution of Anthropogenic Sulfate Aerosols to the Changing Euro-Mediterranean Climate since 1980. Geophys. Res. Lett. 2014, 41, 5605–5611. [Google Scholar] [CrossRef]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.L. Particulate Sulfate Ion Concentration and SO2 Emission Trends in the United States from the Early 1990s through 2010. Atmos. Chem. Phys. 2012, 12, 10353–10365. [Google Scholar] [CrossRef]
- Chin, M.; Diehl, T.; Tan, Q.; Prospero, J.M.; Kahn, R.A.; Remer, L.A.; Yu, H.; Sayer, A.M.; Bian, H.; Geogdzhayev, I.V.; et al. Multi-Decadal Aerosol Variations from 1980 to 2009: A Perspective from Observations and a Global Model. Atmos. Chem. Phys. 2014, 14, 3657–3690. [Google Scholar] [CrossRef]
- Streets, D.G.; Yu, C.; Wu, Y.; Chin, M.; Zhao, Z.; Hayasaka, T.; Shi, G. Aerosol Trends over China, 1980–2000. Atmos. Res. 2008, 88, 174–182. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Darmenov, A.; Colarco, P.R.; Aquila, V.; Bian, H.; Nowottnick, E.P.; Pan, X.; Smirnov, A. The MERRA-2 Aerosol Assimilation. NASA Tech. Rep. Ser. Glob. Model. Data Assim. 2016, 45. [Google Scholar]
- Griffin, D.; McLinden, C.A.; Dammers, E.; Adams, C.; Stockwell, C.; Warneke, C.; Bourgeois, I.; Peischl, J.; Ryerson, T.B.; Zarzana, K.J.; et al. Biomass Burning Nitrogen Dioxide Emissions Derived from Space with TROPOMI: Methodology and Validation. Atmos. Meas. Tech. Discuss. 2021, 2021, 1–44. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Smith, J.B.; Davidson, D.J.; Diffenbaugh, N.S.; Kinney, P.L.; Kirshen, P.; Kovacs, P.; Villers Ruiz, L. North America. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part B: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liu, M.; Matsui, H. Aerosol Radiative Forcings Induced by Substantial Changes in Anthropogenic Emissions in China from 2008 to 2016. Atmos. Chem. Phys. 2021, 21, 5965–5982. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 1970; Griffin: London, UK, 1975. [Google Scholar]
- Zhao, B.; Jiang, J.H.; Gu, Y.; Diner, D.; Worden, J.; Liou, K.-N.; Su, H.; Xing, J.; Garay, M.; Huang, L. Decadal-Scale Trends in Regional Aerosol Particle Properties and Their Linkage to Emission Changes. Environ. Res. Lett. 2017, 12, 054021. [Google Scholar] [CrossRef]
- Zhao, B.; Zhuang, Q.; Shurpali, N.; Köster, K.; Berninger, F.; Pumpanen, J. North American Boreal Forests Are a Large Carbon Source Due to Wildfires from 1986 to 2016. Sci. Rep. 2021, 11, 7723. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, S.-A.; Salamalikis, V.; Gkikas, A.; Kazadzis, S.; Amiridis, V.; Kazantzidis, A. 15-Year Variability of Desert Dust Optical Depth on Global and Regional Scales. Atmos. Chem. Phys. Discuss. 2021, 1–40. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol Properties, Trends and Classification of Key Types over the Middle East from Satellite-Derived Atmospheric Optical Data. Atmos. Environ. 2021, 246. [Google Scholar] [CrossRef]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol Optical Depth Trend over the Middle East. Atmos. Chem. Phys. 2016, 16, 5063–5073. [Google Scholar] [CrossRef]
- Voss, K.K.; Evan, A.T. A New Satellite-Based Global Climatology of Dust Aerosol Optical Depth. J. Appl. Meteorol. Climatol. 2020, 59, 83–102. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E.; Flamant, C.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Klüser, L.; Sayer, A.M. Intercomparison of Satellite Dust Retrieval Products over the West African Sahara during the Fennec Campaign in June 2011. Remote Sens. Environ. 2013, 136, 99–116. [Google Scholar] [CrossRef]
- Ridley, D.A.; Heald, C.L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Kakouri, A.; Korras-Carraca, M.-B.; Hatzianastassiou, N.; Matsoukas, C.; Gkikas, A.; Kontos, T. Estimation of the Spatio–Temporal Distribution of Wildfires in the Mediterranean Basin with the Use of Remote Sensing Data and Correlation with Biomass Burning Aerosol Load. In Proceedings of the 15th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2021), Ioannina, Greece, 16–19 May 2021. [Google Scholar]
- Ahn, D.H.; Choi, T.; Kim, J.; Park, S.S.; Lee, Y.G.; Kim, S.-J.; Koo, J.-H. Southern Hemisphere Mid-and High-Latitudinal AOD, CO, NO 2, and HCHO: Spatiotemporal Patterns Revealed by Satellite Observations. Prog. Earth Planet. Sci. 2019, 6, 34. [Google Scholar] [CrossRef]
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P. Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere 2020, 11, 84. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Lisok, J.; Xian, P. Simulations of the Effect of Intensive Biomass Burning in July 2015 on Arctic Radiative Budget. Atmos. Environ. 2017, 171, 248–260. [Google Scholar] [CrossRef]
Annual | Winter | Spring | Summer | Autumn | ||
---|---|---|---|---|---|---|
Global | DRE surface | −7.563 | −6.430 | −7.698 | −8.769 | −7.360 |
DRE atmosphere | 2.353 | 1.630 | 2.539 | 2.934 | 2.307 | |
DRE TOA | −5.210 | −4.800 | −5.159 | −5.835 | −5.053 | |
AOD | 0.140 | 0.128 | 0.141 | 0.153 | 0.138 | |
Northern Hemisphere | DRE surface | −9.900 | −7.587 | −11.853 | −12.341 | −7.530 |
DRE atmosphere | 3.516 | 2.561 | 4.675 | 4.387 | 2.313 | |
DRE TOA | −6.384 | −5.025 | −7.177 | −7.954 | −5.216 | |
AOD | 0.178 | 0.163 | 0.199 | 0.195 | 0.154 | |
Southern Hemisphere | DRE surface | −5.242 | −5.397 | −3.453 | −4.826 | −7.197 |
DRE atmosphere | 1.199 | 0.798 | 0.357 | 1.329 | 2.302 | |
DRE TOA | −4.043 | −4.599 | −3.096 | −3.497 | −4.895 | |
AOD | 0.102 | 0.095 | 0.084 | 0.109 | 0.121 | |
Global Land | DRE surface | −10.083 | −7.380 | −10.733 | −13.174 | −9.053 |
DRE atmosphere | 4.804 | 3.337 | 5.282 | 6.285 | 4.308 | |
DRE TOA | −5.279 | −4.044 | −5.451 | −6.889 | −4.745 | |
AOD | 0.177 | 0.152 | 0.186 | 0.204 | 0.167 | |
Global Ocean | DRE surface | −6.430 | −6.014 | −6.329 | −6.802 | −6.580 |
DRE atmosphere | 1.252 | 0.881 | 1.302 | 1.437 | 1.385 | |
DRE TOA | −5.178 | −5.132 | −5.027 | −5.365 | −5.195 | |
AOD | 0.123 | 0.117 | 0.121 | 0.130 | 0.124 | |
Sahara—Arabian Deserts | DRE surface | −18.295 | −10.939 | −21.197 | −25.834 | −15.208 |
DRE atmosphere | 13.376 | 6.923 | 16.404 | 19.746 | 10.430 | |
DRE TOA | −4.919 | −4.015 | −4.793 | −6.088 | −4.778 | |
AOD | 0.335 | 0.218 | 0.367 | 0.456 | 0.297 | |
Southern Africa | DRE surface | −11.476 | −9.113 | −5.233 | −16.677 | −14.878 |
DRE atmosphere | 6.247 | 3.711 | 1.708 | 10.719 | 8.851 | |
DRE TOA | −5.228 | −5.402 | −3.525 | −5.958 | −6.027 | |
AOD | 0.164 | 0.144 | 0.099 | 0.220 | 0.194 | |
India | DRE surface | −17.743 | −14.735 | −22.323 | −19.789 | −14.123 |
DRE atmosphere | 8.430 | 7.705 | 11.347 | 8.208 | 6.461 | |
DRE TOA | −9.313 | −7.031 | −10.976 | −11.582 | −7.662 | |
AOD | 0.277 | 0.228 | 0.311 | 0.331 | 0.238 | |
East Asia | DRE surface | −19.811 | −15.662 | −26.990 | −20.725 | −15.868 |
DRE atmosphere | 8.729 | 6.946 | 12.739 | 8.628 | 6.604 | |
DRE TOA | −11.082 | −8.716 | −14.251 | −12.098 | −9.264 | |
AOD | 0.336 | 0.312 | 0.405 | 0.333 | 0.293 | |
Mediterranean | DRE surface | −11.881 | −6.034 | −15.804 | −16.281 | −9.406 |
DRE atmosphere | 4.503 | 1.606 | 6.457 | 6.799 | 3.148 | |
DRE TOA | −7.379 | −4.428 | −9.347 | −9.482 | −6.258 | |
AOD | 0.203 | 0.147 | 0.240 | 0.241 | 0.182 |
AOD | Direct Radiative Effects (DRE) | Aerosol Radiative Forcing Efficiency (ARFE) | ||||||
---|---|---|---|---|---|---|---|---|
Aerosol Type | Surface | Atmosphere | TOA | Surface | Atmosphere | TOA | ||
Sulfate | 0.049 | −1.86 | −0.02 | −1.88 | −38.00 | −0.40 | −38.39 | |
Dust | 0.027 | −1.98 | 1.15 | −0.83 | −72.93 | 42.21 | −30.72 | |
Sea Salt | 0.039 | −1.74 | 0.12 | −1.62 | −44.11 | 2.94 | −41.17 | |
Organic Carbon | 0.019 | −0.91 | 0.18 | −0.73 | −47.11 | 9.17 | −37.94 | |
Black Carbon | 0.005 | −0.72 | 0.92 | 0.19 | −143.05 | 181.24 | 38.19 | |
Total | 0.140 | −7.56 | 2.35 | −5.21 | −54.04 | 16.82 | −37.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korras-Carraca, M.-B.; Gkikas, A.; Matsoukas, C.; Hatzianastassiou, N. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere 2021, 12, 1254. https://doi.org/10.3390/atmos12101254
Korras-Carraca M-B, Gkikas A, Matsoukas C, Hatzianastassiou N. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere. 2021; 12(10):1254. https://doi.org/10.3390/atmos12101254
Chicago/Turabian StyleKorras-Carraca, Marios-Bruno, Antonis Gkikas, Christos Matsoukas, and Nikolaos Hatzianastassiou. 2021. "Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019)" Atmosphere 12, no. 10: 1254. https://doi.org/10.3390/atmos12101254
APA StyleKorras-Carraca, M. -B., Gkikas, A., Matsoukas, C., & Hatzianastassiou, N. (2021). Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere, 12(10), 1254. https://doi.org/10.3390/atmos12101254