Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus On Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analyzed Literature
2.2. Approach Adopted for Literature Data Analysis and Classification
- Biogas emissions
- Landfill leachate emissions
- Emissions related to the disposal of fresh waste (“fresh waste emissions”)
- Emissions from the temporarily covered landfill surface
- Emissions from the permanently covered landfill surface
2.3. Pollutants Concentrations
2.4. Threshold Limit Values (TLV)
2.5. Risk Evaluation
3. Results and Discussion
3.1. Chemical Characterization
3.1.1. Biogas Emissions
3.1.2. Landfill Leachate
3.1.3. Surface Emissions
Fresh Waste Emissions
Temporarily Covered Landfill Surface Emissions
Permanently Covered Landfill Surface Emissions
3.2. HI Evaluation and Definition of Minimum Dilution Value
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Capelli, L.; Sironi, S.; Del Rosso, R.; Magnano, E. Evaluation of landfill surface emissions. Chem. Eng. Trans. 2014, 40, 187–192. [Google Scholar] [CrossRef]
- Environmental Alliances Pty Ltd. (ENVALL). Odour Assessment of Proposed Landfill; Prepared for Vancouver Waste Services by ENVALL Environmental Alliances Pty Lt; August 2018. Available online: https://www.der.wa.gov.au/images/documents/our-work/licences-and-works-approvals/Applications/L7344_App_D_-_Odour_Assessment.pdf (accessed on 11 October 2021).
- Mustafa, M.F.; Liu, Y.; Duan, Z.; Guo, H.; Xu, S.; Wang, H.; Lu, W. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater. 2017, 327, 35–43. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Odour emission factors for assessment and prediction of Italian MSW landfills odour impact. Atmos. Environ. 2005, 39, 5387–5394. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Liu, S.; Li, W.; Yan, L.; Shu, M.; Zhao, P.; Zhou, P.; Cao, W. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China. Chemosphere 2018, 202, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mckendry, P.; Looney, J.H.; McKenzie, A. Odour Risk at Landfill Sites: Main Report Managing; MSE Ltd & Viridis, 2002. Available online: https://www.researchgate.net/publication/325103363_Managing_Odour_Risk_at_Landfill_Sites_Main_Report (accessed on 11 October 2021).
- Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R. Waste management health risk assessment: A case study of a solid waste landfill in South Italy. Waste Manag. 2010, 30, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Findikakis, A.N.; Leckie, J.O. Environmental impacts of solid waste landfilling. J. Environ. Manag. 1997, 50, 1–25. [Google Scholar] [CrossRef]
- Naddeo, V.; Zarra, T.; Oliva, G.; Chiavola, A.; Vivarelli, A. Environmental odour impact assessment of landfill expansion scenarios: Case study of Borgo Montello (Italy). Chem. Eng. Trans. 2016, 54, 73–78. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Il Grande, M. A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058. [Google Scholar] [CrossRef]
- Diaz, C.I.C.; Capelli, L.; Arias, R.; Salas Seoane, R.A.N. Analysis of Existing Regulation in Odour Pollution, Odour Impact Criteria 1; D-NOSES: Barcelona, Spain, 2019; H2020-SwafS-23-2017-789315. [Google Scholar]
- Hayes, J.E.; Stevenson, R.J.; Stuetz, R.M. The impact of malodour on communities: A review of assessment techniques. Sci. Total Environ. 2014, 500–501, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Rappert, S.; Müller, R. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag. 2005, 25, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and Overview of the Odour Regulations Worldwide. Atmosphere 2021, 12, 206. [Google Scholar] [CrossRef]
- Bax, C.; Sironi, S.; Capelli, L. How Can Odors Be Measured? An Overview of Methods and Their Applications. Atmosphere 2020, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Dravnieks, A.; Jarke, F. Odor threshold measurement by dynamic olfactometry: Significant operational variables. J. Air Pollut. Control. Assoc. 1980, 30, 1284–1289. [Google Scholar] [CrossRef] [Green Version]
- Standard EN 13725:2003. Ambient Air—Determination of Odour Concentration by Dynamic Olfactometry; CEN: Brussels, Belgium, 2003. [Google Scholar]
- Hamoda, M.F. Air Pollutants Emissions from Waste Treatment and Disposal Facilities. J. Environ. Sci. Health Part A 2006, 41, 77–85. [Google Scholar] [CrossRef]
- Sucker, K.; Both, R.; Winneke, G. Review of adverse health effects of odours in field studies. Water Sci. Technol. 2009, 59, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Eitzer, B.D. Emissions of Volatile Organic Chemicals from Municipal Solid Waste Composting Facilities. Environ. Sci. Technol. 1995, 29, 896–902. [Google Scholar] [CrossRef] [PubMed]
- pr EN 13725:2018. Air Quality—Determination of Odour Concentration by Dynamic Olfactometry and Odour Emission Rate from Stationary by Sources—Complementary Element; CEN: Brussels, Belgium, 2018. [Google Scholar]
- Polvara, E.; Invernizzi, M.; Sironi, S. Occupational Safety for Panellists Involved in Dynamic Olfactometry: A Comparison of Available Risk Assessment Models. Chem. Eng. Trans. 2021, 85, 91–96. [Google Scholar] [CrossRef]
- Davoli, E.; Zuccato, E.; Bianchi, G.; Palmiotto, M.; Il Grande, M.; Bonati, S.; Rossi, A.N. Dynamic Olfactometry and Potential Sample Toxicity. Guidelines for a Safe Occupational Health Approach. Chem. Eng. Trans. 2012, 30, 7–12. [Google Scholar] [CrossRef]
- Polvara, E.; Capelli, L.M.T.; Sironi, S. Non-carcinogenic occupational exposure risk related to foundry emissions: Focus on the workers involved in olfactometric assessments. J. Environ. Sci. Heal. Part. A Toxic/Hazardous Subst. Environ. Eng. 2021, 56, 646–659. [Google Scholar] [CrossRef]
- Bleam, W.F. Risk Assessment. In Soil and Environmental Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 409–447. [Google Scholar]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.T.; Senthilnathan, J.; Nagendra, S.M.S. Emerging perspectives on VOC emissions from landfill sites: Impact on tropospheric chemistry and local air quality. Process. Saf. Environ. Prot. 2019, 121, 143–154. [Google Scholar] [CrossRef]
- Hanson, J.; Yesiller, N. Estimation and Comparison of Methane, Nitrous Oxide, and Trace Volatile Organic Compound Emissions and Gas Collection System Efficiencies in California Landfills; Prepared for: The California Air Resources Board and The California Department of Resources Recycling and Recovery; 2020. Available online: https://ww2.arb.ca.gov/sites/default/files/2020-06/CalPoly%20LFG%20Flux%20and%20Collection%20Efficiencies%203-30-2020.pdf (accessed on 11 October 2021).
- Sadowska-Rociek, A.M.; Kurdziel, E.; Szczepaniec-Cieciak, C.; Riesenmey, H.; Vaillant, M.; Batton-Hubert, K.P. Analysis of odorous compounds at municipal landfill sites. Waste Manag. Res. 2009, 27, 966–975. [Google Scholar] [CrossRef]
- Manheim, D.C.; Yeşiller, N.; Hanson, J.L. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data. J. Indian Inst. Sci. 2021, 101, 1–33. [Google Scholar] [CrossRef]
- Duan, Z.; Scheutz, C.; Kjeldsen, P. Trace gas emissions from municipal solid waste landfills: A review. Waste Manag. 2021, 119, 39–62. [Google Scholar] [CrossRef]
- Scheutz, C.; Bogner, J.; Chanton, J.P.; Blake, D.; Morcet, M.; Aran, C.; Kjeldsen, P. Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste Manag. 2008, 28, 1892–1908. [Google Scholar] [CrossRef] [Green Version]
- Termonia, A.; Termonia, M. Characterisation and on-site monitoring of odorous organic compounds in the environment of a landfill site. Int. J. Environ. Anal. Chem. 1999, 73, 43–57. [Google Scholar] [CrossRef]
- Davoli, E.; Gangai, M.L.; Morselli, L.; Tonelli, D. Characterisation of odorants emissions from landfills by SPME and GC/MS. Chemosphere 2003, 51, 357–368. [Google Scholar] [CrossRef]
- Ying, D.; Chuanyu, C.; Bin, H.; Yueen, X.; Xuejuan, Z.; Yingxu, C.; Weixiang, W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Manag. 2012, 32, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Gallego, E.; Roca, F.J.; Perales, J.F.; Sánchez, G.; Esplugas, P. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD-GC/MS. Waste Manag. 2012, 32, 2469–2481. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Choi, Y.; Jeon, E.; Sunwoo, Y. Characterization of malodorous sulfur compounds in landfill gas. Atmos. Environ. 2005, 39, 1103–1112. [Google Scholar] [CrossRef]
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1122, 222–229. [Google Scholar] [CrossRef]
- Carriero, G.; Neri, L.; Famulari, D.; Di Lonardo, S.; Piscitelli, D.; Manco, A.; Esposito, A.; Chirico, A.; Facini, O.; Finardi, S.; et al. Composition and emission of VOC from biogas produced by illegally managed waste landfills in Giugliano (Campania, Italy) and potential impact on the local population. Sci. Total Environ. 2018, 640–641, 377–386. [Google Scholar] [CrossRef]
- Schweigkofler, M.; Niessner, R. Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ. Sci. Technol. 1999, 33, 3680–3685. [Google Scholar] [CrossRef]
- Kim, K.H. Emissions of reduced sulfur compounds (RSC) as a landfill gas (LFG): A comparative study of young and old landfill facilities. Atmos. Environ. 2006, 40, 6567–6578. [Google Scholar] [CrossRef]
- Fang, J.J.; Yang, N.; Cen, D.Y.; Shao, L.M.; He, P.J. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, B.; Orzi, V.; Artola, A.; Font, X.; Davoli, E.; Sanchez, A.; Adani, F. Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol. 2011, 102, 4638–4645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, E.; Perales, J.F.; Roca, F.J.; Guardino, X. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber. Sci. Total Environ. 2014, 470–471, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Lu, W.; Li, D.; Wang, H. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China. Atmos. Environ. 2014, 88, 230–238. [Google Scholar] [CrossRef]
- Rodríguez-Navas, C.; Forteza, R.; Cerdà, V. Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation. Chemosphere 2012, 89, 1426–1436. [Google Scholar] [CrossRef]
- Parker, T.; Dottridge, J.; Kelly, S. Investigation of the Composition and Emissions of Trace Components in Landfill Gas; Environment Agency: Bristol, UK, 2002; p. 146. [Google Scholar]
- Durmusoglu, E.; Taspinar, F.; Karademir, A. Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 2010, 176, 870–877. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, Z.; Zhu, S.; Lou, Z.; Zhu, N.; Feng, L. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ. 2019, 649, 1038–1044. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; del Rosso, R. Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors 2013, 13, 938–955. [Google Scholar] [CrossRef] [Green Version]
- Vaverková, M.D. Landfill impacts on the environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- ACGIH®. ACGIH® Threshold Limit Values (TLVs®) and Biological Exposure Indices (BEIs®); ACGIH®: Cincinnati, OH, USA, 2020; ISBN 9781607260288. [Google Scholar]
- Ryker, S.J. Chemical Mixtures in Potable Water in the U.S. In Comprehensive Water Quality and Purification; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 267–277. ISBN 9780123821836. [Google Scholar]
- U.S. EPA. Human Health Risk Assessment Protocol Chapter 7: Characterizing Risk and Hazard; U.S. Environmental Protection Agency: Washington, DC, USA, 2005; pp. 1–16.
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 4, 181. [Google Scholar] [CrossRef]
- Hoddinott, K.B.; Lee, A.P. The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 2000, 41, 77–84. [Google Scholar] [CrossRef]
- Yimrungruang, D.; Cheevaporn, V.; Boonphakdee, T.; Watchalayann, P. Characterization and Health Risk Assessment of Volatile Organic Compounds in Gas Service Station Workers. Environ. Asia 2008, 2, 21–29. [Google Scholar] [CrossRef]
- Barnes, D.G.; Dourson, M.; Dourson, M.; Preuss, P.; Barnes, D.G.; Bellin, J.; Derosa, C.; Engler, R.; Erdreich, L.; Farber, T.; et al. Reference dose (RfD): Description and use in health risk assessments. Regul. Toxicol. Pharmacol. 1988, 8, 471–486. [Google Scholar] [CrossRef]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Davoli, E.; Zuccato, E.; Bianchi, G.; Il Grande, M.; Bonati, S.; Rossi, A.N.; Porporato, C.; Pereno, M.; Soldati, S. Dynamic olfactometry and sample toxicity. a case study for a MSW incinerator odour assessment project. Chem. Eng. Trans. 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Lucernoni, F.; Capelli, L.; Sironi, S. Odour sampling on passive area sources: Principles and methods. Chem. Eng. Trans. 2016, 54, 55–60. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S. Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ. 2018, 191, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Capanema, M.A.; Cabana, H.; Cabral, A.R. Reduction of odours in pilot-scale landfill biocovers. Waste Manag. 2014, 34, 770–779. [Google Scholar] [CrossRef]
- Sarkar, U.; Hobbs, S.E. Landfill odour: Assessment of emissions by the flux footprint method. Environ. Model. Softw. 2003, 18, 155–163. [Google Scholar] [CrossRef]
- Nagata, Y. Measurement of Odor Threshold by Triangle Odor Bag Method. Odor Meas. Rev. 2003, 118, 118–127. [Google Scholar]
Compound | CAS Number | CMAX [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] | No. of Values | HQ |
---|---|---|---|---|---|---|
Hydrogen sulphide | 7783-06-4 | 5.14E + 03 | 1 | 5 | 28 | 5140 |
Chloroethene | 75-01-4 | 3.40E + 01 | 1 | 18 | 34 | |
Methanethiol | 74-93-1 | 7.12E + 00 | 0.5 | 32 | 14.2 | |
Toluene | 108-88-3 | 2.53E + 02 | 20 | 77 | 12.7 | |
Benzene | 71-43-2 | 3.72E + 00 | 0.5 | 2.5 | 76 | 7.43 |
Carbon disulphide | 75-15-0 | 5.35E + 00 | 1 | 39 | 5.35 | |
2,4-Dimethylheptane | 2213-23-2 | 6.33E - 01 | 200 | 4 | 3.17 | |
Trichloroethene | 79-01-6 | 2.83E + 01 | 10 | 25 | 21 | 2.83 |
Styrene | 100-42-5 | 2.28E + 01 | 10 | 20 | 26 | 2.28 |
Dimethyl sulphide | 75-18-3 | 2.26E + 01 | 10 | 41 | 2.26 | |
Trimethylbenzene | 25551-13-7 | 3.80E +01 | 25 | 2 | 1.52 | |
Tetrachloroethene | 127-18-4 | 3.67E + 01 | 25 | 100 | 24 | 1.47 |
1,1-Dichloroethane | 75-34-3 | 1.09E + 02 | 100 | 18 | 1.09 | |
o-Xylene | 95-47-6 | 9.83E + 01 | 100 | 150 | 54 | 0.98 |
P-Xylene | 106-42-3 | 9.18E + 01 | 100 | 150 | 54 | 0.92 |
α- Pinene | 80-56-8 | 1.59E + 01 | 20 | 19 | 0.79 | |
Ethylbenzene | 100-41-4 | 1.37E + 01 | 20 | 64 | 0.68 | |
Tetrachloromethane | 56-23-5 | 3.34E + 00 | 5 | 10 | 9 | 0.67 |
Dimethyl disulphide | 624-92-0 | 2.77E − 01 | 0.5 | 37 | 0.55 | |
Dichloromethane | 75-09-2 | 2.45E + 01 | 50 | 23 | 0.49 |
Compound | CAS Number | CMAX [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] | No. of Values | HQ |
---|---|---|---|---|---|---|
Hydrogen sulphide | 7783-06-4 | 3.50E − 01 | 1 | 5 | 3 | 0.35 |
Ammonia | 7664-41-7 | 5.77E + 00 | 25 | 35 | 3 | 0.23 |
Dimethyl disulphide | 624-92-0 | 7.70E − 02 | 0.5 | 4 | 0.15 | |
Acetic acid | 64-19-7 | 1.13E + 00 | 10 | 15 | 5 | 0.113 |
Benzene | 71-43-2 | 5.63E − 02 | 0.5 | 2.5 | 12 | 0.113 |
Formaldehyde | 50-00-0 | 1.09E − 02 | 0.1 | 0.3 | 2 | 0.109 |
Ethylbenzene | 100-41-4 | 1.45E + 00 | 20 | 12 | 0.073 | |
Hexamethylcyclotrisiloxane | 541-05-9 | 2.20E − 02 | 0.3 | 4 | 0.067 | |
Decamethylcyclopentasiloxane | 541-02-6 | 6.36E − 01 | 10 | 4 | 0.064 | |
Acrolein | 107-02-8 | 6.30E − 03 | 0.1 | 4 | 0.063 | |
Octamethylcyclotetrasiloxane | 556-67-2 | 5.75E − 01 | 10 | 15 | 4 | 0.058 |
α- Pinene | 80-56-8 | 7.90E − 01 | 20 | 7 | 0.040 | |
Toluene | 108-88-3 | 6.90E − 01 | 20 | 15 | 0.035 | |
1,2,4-Trimethylbenzene | 95-63-6 | 1.83E − 01 | 25 | 1 | 0.0073 | |
Styrene | 100-42-5 | 6.58E − 02 | 10 | 20 | 2 | 0.0066 |
Dimethylamine | 124-40-3 | 3.26E − 02 | 5 | 15 | 2 | 0.0065 |
Aniline | 62-53-3 | 9.80E − 03 | 2 | 2 | 0.0049 | |
Carbon disulphide | 75-15-0 | 3.20E − 03 | 1 | 4 | 0.0032 | |
Methanethiol | 74-93-1 | 1.25E − 03 | 0.5 | 4 | 0.0025 | |
Propionic acid | 79-09-4 | 2.21E − 02 | 10 | 4 | 0.0022 |
Compound | CAS Number | Sampling Method | CMAX [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] | No. of Values | HQ |
---|---|---|---|---|---|---|---|
Hydrogen sulphide | 7783-06-4 | Ambient Air | 6.22E − 01 | 1 | 5 | 22 | 0.62 |
Ammonia | 7664-41-7 | Ambient Air | 5.69E + 00 | 25 | 35 | 6 | 0.23 |
Acetic acid | 64-19-7 | Ambient Air | 2.09E + 00 | 10 | 15 | 5 | 0.21 |
Formaldehyde | 50-00-0 | Ambient Air | 1.87E − 02 | 0.1 | 0.3 | 2 | 0.19 |
Benzene | 71-43-2 | Ambient Air | 6.89E − 02 | 0.5 | 2.5 | 34 | 0.14 |
Acrolein | 107-02-8 | Ambient Air | 9.70E − 03 | 0.1 | 4 | 0.10 | |
Methanethiol | 74-93-1 | Ambient Air | 3.95E − 02 | 0.5 | 15 | 0.08 | |
Dimethyl disulphide | 624-92-0 | Ambient Air | 3.92E − 02 | 0.5 | 27 | 0.08 | |
Hexachlorobutadiene | 87-68-3 | Ambient Air | 9.00E − 04 | 0.02 | 2 | 0.05 | |
Carbon disulphide | 75-15-0 | Ambient Air | 3.63E − 02 | 1 | 26 | 0.04 | |
Ethylbenzene | 100-41-4 | Ambient Air | 1.43E − 01 | 20 | 33 | 0.0072 | |
1,3,5-Trimethylbenzene | 108-67-8 | Ambient Air | 1.81E − 01 | 25 | 3 | 0.0071 | |
Dimethylamine | 124-40-3 | Ambient Air | 2.80E − 02 | 5 | 15 | 2 | 0.006 |
Styrene | 100-42-5 | Ambient Air | 5.05E − 02 | 10 | 20 | 18 | 0.0051 |
Diethyl sulphide | 352-93-2 | Ambient Air | 4.53E − 02 | 10 | 11 | 0.0045 | |
Dimethyl sulphide | 75-18-3 | Ambient Air | 4.01E − 02 | 10 | 21 | 0.0040 | |
Crotonaldehyde | 4170-30-3 | Flux | 1.16E − 03 | 0.3 | 1 | 0.0039 | |
1,4-Dichlorobenzene | 106-46-7 | Ambient Air | 2.36E − 02 | 10 | 24 | 0.0024 | |
Toluene | 108-88-3 | Ambient Air | 3.83E − 02 | 20 | 34 | 0.0019 | |
Propionic acid | 79-09-4 | Ambient Air | 1.54E − 02 | 10 | 4 | 0.0015 |
Compound | CAS Number | Sampling Method | CMAX [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] | No. of Values | HQ |
---|---|---|---|---|---|---|---|
Hydrogen sulphide | 7783-06-4 | Flux | 5.74E − 01 | 1 | 5 | 1 | 0.57 |
Crotonaldehyde | 4170-30-3 | Flux | 9.06E − 03 | 0.3 | 5 | 0.03 | |
Ammonia | 7664-41-7 | Flux | 4.31E − 01 | 25 | 35 | 1 | 0.02 |
Acrolein | 107-02-8 | Flux | 1.16E − 03 | 0.1 | 4 | 0.012 | |
Benzene | 71-43-2 | Flux | 3.76E − 03 | 0.5 | 2.5 | 5 | 0.008 |
Formic acid | 64-18-6 | Flux | 2.32E − 02 | 5 | 10 | 3 | 0.005 |
Furfural | 98-01-1 | Flux | 4.53E − 04 | 0.2 | 1 | 0.0023 | |
Carbon disulphide | 75-15-0 | Flux | 1.62E − 03 | 1 | 5 | 0.0016 | |
Trichloroethene | 79-01-6 | Flux | 1.17E − 02 | 10 | 25 | 4 | 0.0012 |
Butanol | 71-36-3 | Flux | 1.96E − 02 | 20 | 1 | 0.0010 | |
Propanal | 123-38-6 | Flux | 1.62E − 02 | 20 | 4 | 0.0008 | |
Toluene | 108-88-3 | Flux | 1.56E − 02 | 20 | 6 | 0.0008 | |
Phenol | 108-95-2 | Flux | 2.43E − 03 | 5 | 1 | 0.0005 | |
Styrene | 100-42-5 | Flux | 3.39E − 03 | 10 | 20 | 4 | 0.0003 |
Tetrachloromethane | 56-23-5 | Flux | 1.17E − 03 | 5 | 10 | 1 | 0.00024 |
Acetic acid | 64-19-7 | Flux | 2.17E − 03 | 10 | 15 | 3 | 0.00022 |
Propanone | 67-64-1 | Flux | 5.34E − 02 | 250 | 500 | 5 | 0.00021 |
Phthalic anhydride | 85-44-9 | Ambient Air | 1.60E − 04 | 1 | 1 | 0.00016 | |
Trichloromethane | 67-66-3 | Flux | 1.36E − 03 | 10 | 1 | 0.00014 | |
Diethyl phthalate | 84-66-2 | Ambient Air | 7.00E − 05 | 0.55 | 1 | 0.00013 |
Compound | CAS Number | Sampling Method | CMAX [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] | No. of Values | HQ |
---|---|---|---|---|---|---|---|
Toluene | 108-88-3 | Flux | 2.47E + 01 | 20 | 34 | 1.2 | |
Hydrogen sulphide | 7783-06-4 | Flux | 5.74E − 01 | 1 | 5 | 2 | 0.6 |
Ammonia | 7664-41-7 | Ambient Air | 5.43E + 00 | 25 | 35 | 2 | 0.22 |
Benzene | 71-43-2 | Ambient Air | 8.45E − 02 | 0.5 | 2.5 | 27 | 0.17 |
Crotonaldehyde | 4170-30-3 | Flux | 1.07E − 02 | 0.3 | 8 | 0.04 | |
Acetic acid | 64-19-7 | Flux | 3.39E − 01 | 10 | 15 | 17 | 0.03 |
α- Pinene | 80-56-8 | Ambient Air | 2.63E − 01 | 20 | 9 | 0.013 | |
β- Pinene | 127-91-3 | Ambient Air | 1.59E − 01 | 20 | 9 | 0.0079 | |
Ethylbenzene | 100-41-4 | Ambient Air | 1.57E − 01 | 20 | 34 | 0.0078 | |
p-Xylene | 106-42-3 | Ambient Air | 3.39E − 01 | 100 | 150 | 12 | 0.0034 |
Phenol | 108-95-2 | Flux | 1.67E − 02 | 5 | 16 | 0.0033 | |
Carbon disulphide | 75-15-0 | Flux | 2.42E − 03 | 1 | 17 | 0.0024 | |
Cyclohexanone | 108-94-1 | Flux | 2.54E − 02 | 20 | 50 | 17 | 0.0013 |
Butanol | 71-36-3 | Flux | 1.70E − 02 | 20 | 1 | 0.00085 | |
Tetrachloromethane | 56-23-5 | Flux | 4.22E − 03 | 5 | 10 | 1 | 0.00084 |
2-Methylnaphthalene | 91-57-6 | Flux | 3.89E − 04 | 0.5 | 15 | 0.00078 | |
Ethanol | 64-17-5 | Ambient Air | 7.24E − 01 | 1000 | 18 | 0.00072 | |
Acrolein | 107-02-8 | Ambient Air | 6.98E − 05 | 0.1 | 4 | 0.00070 | |
Propanone | 67-64-1 | Flux | 1.09E − 01 | 250 | 500 | 21 | 0.0004 |
Landfill Emission Sources | HI Values |
---|---|
Biogas | 5237 |
Leachate | 1.51 |
Fresh waste | 1.78 |
Temporarily covered landfill surface | 0.66 |
Permanently covered landfill surface | 2.31 |
OT [ppm] | TLV-TWA [ppm] | TLV-STEL [ppm] |
---|---|---|
0.00041 | 1 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polvara, E.; Essna ashari, B.; Capelli, L.; Sironi, S. Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus On Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions. Atmosphere 2021, 12, 1325. https://doi.org/10.3390/atmos12101325
Polvara E, Essna ashari B, Capelli L, Sironi S. Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus On Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions. Atmosphere. 2021; 12(10):1325. https://doi.org/10.3390/atmos12101325
Chicago/Turabian StylePolvara, Elisa, Baharak Essna ashari, Laura Capelli, and Selena Sironi. 2021. "Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus On Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions" Atmosphere 12, no. 10: 1325. https://doi.org/10.3390/atmos12101325
APA StylePolvara, E., Essna ashari, B., Capelli, L., & Sironi, S. (2021). Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus On Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions. Atmosphere, 12(10), 1325. https://doi.org/10.3390/atmos12101325