Smog Pollution, Environmental Uncertainty, and Operating Investment
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. The Institutional Background of Smog Pollution in China
2.2. Environmental Uncertainty under the Influence of Smog Pollution
2.2.1. Effect on Employees
2.2.2. Pressure from the Public/Government
2.3. Operating Investment under the Influence of Smog Pollution
3. Research Design
3.1. Model
3.2. Data
4. Empirical Results
4.1. Descriptive Statistics
4.2. Descriptive Statistics
4.3. Regression Results
5. Discussion
5.1. Bootstrap Test
5.2. The Revision of Accounting Standards in China
5.3. The Mediation Effect Test of Earnings Management
6. Discussion and Conclusions
6.1. Research Conclusions
6.2. Research Implications
6.3. Research Deficiencies and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Ambient (Outdoor) Air Quality and Health. Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 7 May 2016).
- Chen, X.; Shao, S.; Tian, Z.; Xie, Z.; Yin, P. Impact of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Wang, C.; Cai, J.; Chen, R.; Shi, J.; Yang, C.; Li, H.; Lin, H.; Meng, X.; Liu, C.; Niu, Y.; et al. Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara). Environ. Pollut. 2017, 225, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Levy, T.; Yagil, J. Air pollution and stock returns in the US. J. Econ. Psychol. 2011, 32, 374–383. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Li, B. Tackling air pollution in China—What do we learn from the great smog of 1950s in London. Sustainability 2014, 6, 5322–5338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Bloom, N. The impact of uncertainty shocks. Econometrica 2009, 77, 623–685. [Google Scholar]
- Julio, B.; Yook, Y. Political uncertainty and corporate investment cycles. J. Financ. 2012, 67, 45–83. [Google Scholar] [CrossRef]
- Pástor, L.; Veronesi, P. Uncertainty about government policy and stock prices. J. Financ. 2012, 67, 1219–1264. [Google Scholar] [CrossRef]
- Pástor, L.; Veronesi, P. Political uncertainty and risk premia. J. Financ. Econ. 2013, 110, 520–545. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wang, Y.; Chen, J.; Huisingh, D. Preventing smog crises in China and globally. J. Clean. Prod. 2016, 112, 1261–1271. [Google Scholar] [CrossRef]
- Allaby, M. Fog, Smog, and Poisoned Rain; Infobase Publishing: New York, NY, USA, 2003. [Google Scholar]
- Boffey, P.M. Smog: Los Angeles running hard, standing still. Science 1968, 161, 990–992. [Google Scholar] [CrossRef]
- Foster, V.; Hahn, R.W. Designing more efficient markets: Lessons from Los Angeles smog control. J. Law Econ. 1995, 38, 19–48. [Google Scholar] [CrossRef]
- Sati, A.P.; Mohan, M. Analysis of air pollution during a severe smog episode of November 2012 and the Diwali Festival over Delhi, India. Int. J. Remote. Sens. 2014, 35, 6940–6954. [Google Scholar] [CrossRef]
- Zhang, J.J.; Samet, J.M. Chinese haze versus Western smog: Lessons learned. J. Thorac. Dis. 2015, 7, 3–13. [Google Scholar]
- National Development and Reform Commission of the People’s Republic of China. Analysis of the Situation of Energy Saving and Emission Reduction in the First Half of 2013. Available online: http://www.ndrc.gov.cn/fzgggz/hjbh/hjjsjyxsh/201307/t20130710_549556.html (accessed on 23 July 2016).
- Yang, S.; Shi, L. Public perception of smog: A case study in Ningbo City, China. J. Air Waste Manag. Assoc. 2017, 67, 219–230. [Google Scholar] [CrossRef]
- Pan, X.; Li, G.; Gao, T. Dangerous Breathing—Health Hazard and Economic Loss Assessment of PM2.5; China Environmental Science Press: Beijing, China, 2012. [Google Scholar]
- Nel, A. Atmosphere. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Greenstone, M.; Sunstein, C.R. Particulate matter matters. Science 2014, 344, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shao, L.; Hi, Z.S.; Chen, J.; Yang, L.; Yuan, Q.; Wang, W. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. J. Geophys. Res. Atmos. 2014, 119, 1044–1059. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Prevot, A.S. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment of the People’s Republic of China. The State Council Issues Action Plan on Prevention and Control of Air Pollution Introducing Ten Measures to Improve Air Quality. Available online: http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm (accessed on 12 September 2013).
- Zhang, J.P.; Zhu, T.; Zhang, Q.H.; Li, C.C.; Shu, H.L.; Ying, Y.; Dai, Z.P.; Wang, X.; Liu, X.Y.; Liang, A.M.; et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys. 2012, 12, 5031–5053. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Wang, Y.; He, H.; Liu, J.; Wang, X.; Zhu, T.; Ge, M.; Zhou, J.; Tang, G.; Ma, J. Haze insights and mitigation in China: An overview. J. Environ. Sci. 2014, 26, 2–12. [Google Scholar] [CrossRef]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: An index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Chen, L.; Wang, Z.; Ma, P.; Tao, J.; Jia, S. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations. Atmos. Environ. 2014, 82, 183–192. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Q.; Huo, H.; Lin, J.; Liu, Z.; Wang, H.; Guan, D.; He, K. Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports. Appl. Energy 2016, 184, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, Z. A modeling study of severe winter haze events in Beijing and its neighboring regions. Atmos. Res. 2016, 170, 87–97. [Google Scholar] [CrossRef]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Hoek, G. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [Google Scholar] [CrossRef]
- Zijlema, W.L.; Stolk, R.P.; Rosmalen, J.G. Response to “Air pollution and depressed mood: Consistency of association: Air pollution and cardiovascular mortality: Caution for meta-analysis”. Int. J. Hyg. Environ. Health 2016, 219, 478–479. [Google Scholar] [CrossRef]
- Lim, Y.H.; Kim, H.; Kim, J.H.; Bae, S.; Park, H.Y.; Hong, Y.C. Air pollution and symptoms of depression in elderly adults. Environ. Health Perspect. 2012, 120, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.; Choi, Y.J.; Suh, M.; Sohn, J.; Kim, H.; Cho, S.K.; Ha, K.H.; Kim, C.; Shin, D.C. Air pollution as a risk factor for depressive episode in patients with cardiovascular disease, diabetes mellitus, or asthma. J. Affec. Disord. 2014, 157, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guo, P.; Zeng, Y. The impact of haze on the availability of company debt financing: Evidence for sustainability of Chinese listed companies. Sustainability 2019, 11, 806. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, X.; Zeng, Y. The impact of air pollution on government subsidies obtained by Chinese listed companies. Ekoloji 2019, 28, 1947–1954. [Google Scholar]
- Li, B.; Shi, S.; Zeng, Y. The impact of haze pollution on firm-level TFP in China: Test of a mediation model of labor productivity. Sustainability 2020, 12, 8446. [Google Scholar] [CrossRef]
- Li, B.; He, M.; Gao, F.; Zeng, Y. The impact of air pollution on corporate cash holdings. Borsa Istanbul Rev. 2021, 21, S90–S98. [Google Scholar] [CrossRef]
- Li, B.; Peng, M.; Zeng, Y. Air pollution, state ownership and firm value loss. Ekoloji 2018, 27, 1167–1174. [Google Scholar]
- Peng, M.; Zeng, Y.; Yang, D.C.; Li, B. The role of smog in firm valuation. Emerg. Market. Financ. Trade 2021, forthcoming. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Y.; Zhang, T.; Liu, Y. The impact of smog pollution on audit quality: Evidence from China. Atmosphere 2021, 12, 1015. [Google Scholar] [CrossRef]
- Duncan, R.B. Characteristics of organizational environments and perceived environmental uncertainty. Admin. Sci. Q. 1972, 17, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Brief, A.P.; Weiss, H.M. Organizational behavior: Affect in the workplace. Ann. Rev. Psychol. 2002, 53, 279–307. [Google Scholar] [CrossRef] [PubMed]
- Shalley, C.E.; Zhou, J.; Oldham, G.R. The effects of personal and contextual characteristics on creativity: Where should we go from here? J. Manag. 2004, 30, 933–958. [Google Scholar] [CrossRef] [Green Version]
- George, J.M.; Zhou, J. Dual tuning in a supportive context: Joint contributions of positive mood, negative mood, and supervisory behaviors to employee creativity. Acad. Manag. J. 2007, 50, 605–622. [Google Scholar] [CrossRef]
- Spector, P.E.; Bauer, J.A.; Fox, S. Measurement artifacts in the assessment of counterproductive work behavior and organizational citizenship behavior: Do we know what we think we know? J. Appl. Psychol. 2010, 95, 781–790. [Google Scholar] [CrossRef]
- Weiss, H.M.; Cropanzano, R. Affective events theory: A theoretical discussion of the structure, causes and consequences of affective experiences at work. Res. Org. Behav. 1996, 18, 1–74. [Google Scholar]
- Wynne, R.; De Broeck, V.; Vandenbroek, K.; Leka, S.; Jain, A.; Houtman, I.; McDaid, D.; Park, A.L. Promoting Mental Health in the Workplace: Guidance to Implementing a Comprehensive Approach; Directorate-General for Employment, Social Affairs and Inclusion: Luxembourg, 2014. [Google Scholar]
- Plaisier, I.; Beekman, A.T.; De Graaf, R.; Smit, J.H.; Van Dyck, R.; Penninx, B.W. Work functioning in persons with depressive and anxiety disorders: The role of specific psychopathological characteristics. J. Affect. Disord. 2010, 125, 198–206. [Google Scholar] [CrossRef]
- Chang, T.; Zivin, J.G.; Gross, T.; Neidell, M. Particulate pollution and the productivity of pear packers. Am. Econ. J. Econ. Policy 2016, 8, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, J.; Chen, L.; Chen, X.; Sun, G.; Zhong, N.; Kan, H.; Lu, W. Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China. Environ. Sci. Pollut. Res. 2014, 21, 4236–4244. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, F.; Heinzerling, L. Pricing the priceless: Cost-benefit analysis of environmental protection. Univ. Pa Law Rev. 2002, 150, 1553–1584. [Google Scholar] [CrossRef] [Green Version]
- State Council of the People’s Republic of China. People’s Republic of China Environmental Protection Tax Law Implementation Regulations; Government Printing Office: Beijing, China, 2018.
- Arif, S.; Marshall, N.; Yohn, T.L. Understanding the relation between accruals and volatility: A real options-based investment approach. J. Account. Econ. 2016, 62, 65–86. [Google Scholar] [CrossRef]
- Mcdonald, R.; Siegel, D. The value of waiting to invest. Q. J. Econ. 1986, 101, 707–727. [Google Scholar] [CrossRef]
- Ingersoll, J.; Ross, S.A. Waiting to invest: Investment and uncertainty. J. Bus. 1992, 65, 1–29. [Google Scholar] [CrossRef]
- Grenadier, S.; Malenko, A. A Bayesian approach to real options: The case of distinguishing between temporary and permanent shocks. J. Financ. 2010, 65, 1949–1986. [Google Scholar] [CrossRef]
- Qian, Y. A theory of shortage in socialist economies based on the “soft budget constraint”. Am. Econ. Rev. 1994, 84, 145–156. [Google Scholar]
- Lin, J.Y.; Cai, F.; Li, Z. Competition, policy burdens, and state-owned enterprise reform. Am. Econ. Rev. 1998, 88, 422–427. [Google Scholar]
- Heath, J.; Norman, W. Stakeholder theory, corporate governance and public management: What can the history of state-run enterprises teach us in the post-Enron era? J. Bus. Ethics 2004, 53, 247–265. [Google Scholar] [CrossRef]
- Dewenter, K.L.; Malatesta, P.H. State-owned and privately-owned firms: An empirical analysis of profitability, leverage, and labor intensity. Am. Econ. Rev. 2001, 91, 320–334. [Google Scholar] [CrossRef]
- Cunningham, P.H. State-owned enterprises: Pursuing responsibility in corporate social responsibility. Manag. Comm. Q. 2011, 25, 718–724. [Google Scholar] [CrossRef]
- Zif, J. Managerial strategic behavior in state-owned enterprises—Business and political orientations. Manag. Sci. 1981, 27, 1326–1339. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Meth. 2007, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Comm. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and truths about mediation analysis. J. Cons. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Fritz, M.S.; MacKinnon, D.P. Required sample size to detect the mediated effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, D.P.; Lockwood, C.M.; Hoffman, J.M.; West, S.G.; Sheets, V. A comparison of methods to test mediation and other intervening variable effects. Psychol. Meth. 2002, 7, 83–104. [Google Scholar] [CrossRef]
- Sobel, M.E. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol. Meth. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Zhang, X.F. Accruals, investment, and the accrual anomaly. Account. Rev. 2007, 82, 1333–1363. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Zhang, X. The q-theory approach to understanding the accrual anomaly. J. Account. Res. 2010, 48, 177–224. [Google Scholar] [CrossRef]
- Allen, E.J.; Larson, C.R.; Sloan, R.G. Accrual reversals, earnings and stock returns. J. Account. Econ. 2013, 56, 113–129. [Google Scholar] [CrossRef]
- Arif, S.; Lee, C. Aggregate investment and investor sentiment. Rev. Financ. Stud. 2014, 27, 3241–3279. [Google Scholar] [CrossRef]
- Ghosh, D.; Olsen, L. Environmental uncertainty and managers’ use of discretionary accruals. Account. Org. Soc. 2009, 34, 188–205. [Google Scholar] [CrossRef]
- Bergh, D.D.; Lawless, M.L. Portfolio restructuring and limits to hierarchical governance: The effects of environmental uncertainty and diversification strategy. Org. Sci. 1998, 9, 87–102. [Google Scholar] [CrossRef]
- Dess, G.G.; Beard, D.L. Dimensions of organizational task environments. Admin. Sci. Q. 1984, 29, 52–73. [Google Scholar] [CrossRef]
- Dechow, P. Accounting earnings and cash flows as measures of firm performance: The role of accounting accruals. J. Account. Econ. 1994, 18, 3–42. [Google Scholar] [CrossRef]
- Dechow, P.; Sloan, R.; Sweeney, A. Detecting earnings management. Account. Rev. 1995, 70, 193–225. [Google Scholar]
- MacKinnon, D.P. Introduction to Statistical Mediation Analysis; Taylor and Francis Group/Lawrence Erlbaum Associates: New York, NY, USA, 2008. [Google Scholar]
- MacKinnon, D.P.; Lockwood, C.M.; Williams, J. Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivar. Behav. Res. 2004, 39, 99–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Meth. 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.B.; MacKinnon, D.P.; Tein, J.Y. Tests of the three-path mediated effect. Org. Res. Meth. 2008, 11, 241–269. [Google Scholar] [CrossRef]
- Preacher, K.J.; Rucker, D.D.; Hayes, A.F. Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivar. Behav. Res. 2007, 42, 185–227. [Google Scholar] [CrossRef]
Variable | Meaning | Definition of Variable |
---|---|---|
Dependent variable | ||
OI | Operating investment | Accruals of company i from the financial statement in year |
Mediating variable | ||
Un | Environmental uncertainty | The coefficient of variation for sales of company i after removing industry effects in year t |
Independent variable | ||
PM2.5 | Smog | Average annual PM2.5 concentration data at the location of company i in year t |
Grouping variable | ||
SOE | State ownership | A dummy variable equal to 1 if company i is state-owned, and 0 otherwise |
Control variables | ||
Size | Company scale | The log value of total assets of company i at the end of year t |
Lev | Leverage | The debt-to-assets ratio of company i at the end of year t |
BTM | Book-to market ratio | The ratio of equity to market value of company i at the end of year t |
ROA | Return on assets | The result of dividing net income by total assets of company i at the end of year t |
Growth | Sales growth | The result of dividing the difference in sales of year t minus sales of year t − 1 by the sales of year t − 1 of company i |
DA | Earnings management | The level of accrual-based earnings management calculated using the modified Jones model [83] |
Auditty | Audit opinion | A dummy variable equal to 1 if company i receives a modified audit opinion in year t, and 0 otherwise |
Classification | Cities | ||||
---|---|---|---|---|---|
Beijing-Tianjin-Hebei Region | Beijing | Tianjin | Shijiazhuang | Tangshan | Qinhuangdao |
Handan | Xingtai | Baoding | Zhangjiakou | Chengde | |
Cangzhou | Langfang | Hengshui | |||
Yangtze River Delta region | Shanghai | Nanjing | Wuxi | Xuzhou | Changzhou |
Suzhou | Nantong | Lianyungang | Huai’an | Yancheng | |
Yangzhou | Zhenjiang | Taizhou | Suqian | Hangzhou | |
Ningbo | Wenzhou | Jiaxing | Huzhou | Shaoxing | |
Jinhua | Quzhou | Zhoushan | Taaizhou | Lishui | |
Pearl River Delta region | Guangzhou | Shenzhen | Zhuhai | Foshan | Jiangmen |
Zhaoqing | Huizhou | Dongguan | Zhongshan | ||
Other provincial capital cities and important cities | Taiyuan | Hohhot | Shenyang | Dalian | Changchun |
Harbin | Hefei | Fuzhou | Xiamen | Nanchang | |
Jinan | Qingdao | Zhengzhou | Wuhan | Changsha | |
Nanning | Haikou | Chongqing | Chengdu | Guiyang | |
Kunming | Lhasa | Xi’an | Lanzhou | Xining | |
Yinchuan | Urumqi |
Items | Observations |
---|---|
Total company-year observations available in CSMAR for 2013–2017 | 15,744 |
Less: Observations of B shares | (535) |
Companies in the financial industry | (831) |
Observations without air-quality monitoring data | (4083) |
Observations with missing data to calculate variables | (3203) |
Final sample | 7092 |
Panel A: Descriptive Statistics for the Whole Sample | ||||||
---|---|---|---|---|---|---|
Variables | N | Mean | Median | Std. Dev. | Min | Max |
OI | 7092 | −0.181 | −0.029 | 4.110 | −109.193 | 190.456 |
Un | 7092 | 0.948 | 0.242 | 3.236 | 0.000 | 79.338 |
PM2.5 | 7092 | 56.099 | 52.960 | 20.818 | 20.083 | 160.070 |
SOE | 7092 | 0.348 | 0 | 0.476 | 0 | 1 |
Size | 7092 | 22.322 | 22.161 | 1.266 | 15.577 | 27.469 |
Lev | 7092 | 0.437 | 0.428 | 0.236 | −0.195 | 8.612 |
BTM | 7092 | 0.881 | 0.558 | 0.992 | 0.003 | 12.100 |
ROA | 7092 | 0.058 | 0.042 | 1.293 | −3.960 | 108.366 |
Growth | 7092 | 0.847 | 0.000 | 3.192 | −0.961 | 22.899 |
DA | 7092 | 0.015 | 0.015 | 0.327 | −8.100 | 4.100 |
Auditty | 7092 | 0.033 | 0 | 0.179 | 0 | 1 |
Variables | OI | Un | PM2.5 | SOE | Size | Lev | BTM | ROA | Growth | DA | Auditty |
---|---|---|---|---|---|---|---|---|---|---|---|
OI | 1 | ||||||||||
Un | −0.292 *** | 1 | |||||||||
PM2.5 | −0.028 ** | 0.042 *** | 1 | ||||||||
SOE | −0.043 *** | 0.172 *** | 0.112 *** | 1 | |||||||
Size | −0.099 *** | 0.458 *** | 0.006 | 0.359 *** | 1 | ||||||
Lev | −0.039 *** | 0.193 *** | 0.033 *** | 0.242 *** | 0.468 *** | 1 | |||||
BTM | −0.048 *** | 0.335 *** | 0.083 *** | 0.335 *** | 0.645 *** | 0.510 *** | 1 | ||||
ROA | 0.001 | −0.003 | 0.008 | −0.009 | −0.063 *** | −0.018 | −0.011 | 1 | |||
Growth | 0.033 *** | 0.006 | −0.008 | 0.004 | 0.030 ** | 0.032 *** | 0.050 *** | −0.001 | 1 | ||
DA | 0.469 *** | −0.316 *** | 0.004 | −0.012 | −0.119 *** | −0.021* | −0.077 *** | −0.008 | 0.000 | 1 | |
Auditty | 0.006 | −0.003 | −0.016 | −0.002 | −0.053 *** | 0.075 *** | −0.014 | 0.064 *** | 0.053 *** | 0.008 | 1 |
Variables | VIF | 1/VIF |
---|---|---|
Size | 2.27 | 0.440 |
BTM | 2 | 0.500 |
Lev | 1.45 | 0.690 |
Un | 1.4 | 0.713 |
SOE | 1.19 | 0.837 |
PM2.5 | 1.18 | 0.850 |
DA | 1.12 | 0.894 |
Auditty | 1.03 | 0.973 |
Growth | 1.02 | 0.979 |
ROA | 1.01 | 0.989 |
Mean VIF | 1.3 |
DV | Whole Sample | SOE | NSOE | ||||||
---|---|---|---|---|---|---|---|---|---|
OI | Un | OI | OI | Un | OI | OI | Un | OI | |
Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | |
PM2.5 | −0.006 *** | 0.004 ** | −0.006 ** | −0.014 ** | 0.009 ** | −0.012 ** | −0.001 | 0.001 | −0.001 |
(−2.89) | (2.26) | (−2.55) | (−2.53) | (2.03) | (−2.19) | (−0.75) | (0.90) | (−0.73) | |
Un | −0.221 *** | −0.253 *** | −0.019 | ||||||
(−14.27) | (−9.44) | (−1.00) | |||||||
SOE | −0.234 ** | 0.047 | −0.224 ** | ||||||
(−2.37) | (0.63) | (−2.30) | |||||||
Size | −0.161 *** | 1.042 *** | 0.070 | −0.250 ** | 1.582 *** | 0.150 | −0.064 ** | 0.697 *** | −0.051 |
(−3.32) | (28.46) | (1.38) | (−2.17) | (18.54) | (1.24) | (−2.12) | (28.89) | (−1.56) | |
Lev | −0.342 | −0.566 *** | −0.467 ** | 0.350 | −0.993 ** | 0.099 | −0.597 *** | 0.119 | −0.595 *** |
(−1.59) | (−3.42) | (−2.16) | (0.52) | (−1.99) | (0.15) | (−5.01) | (1.25) | (−4.99) | |
BTM | 0.149 ** | 0.229 *** | 0.200 *** | 0.138 | 0.144 | 0.174 | 0.108 ** | 0.014 | 0.109** |
(2.43) | (4.97) | (3.31) | (1.10) | (1.55) | (1.41) | (2.18) | (0.35) | (2.19) | |
ROA | 0.000 | 0.000 * | 0.000 | −0.250 | 0.159 | −0.210 | 0.000 | 0.000 ** | 0.000 |
(0.064 | (1.30) | (0.35) | (−0.43) | (0.37) | (−0.36) | (0.18) | (2.51) | (0.22) | |
Growth | −0.010 | 0.006 | −0.009 | −0.025 | 0.017 | −0.021 | 0.006 | 0.001 | 0.006 |
(−0.73) | (0.61) | (−0.64) | (−0.73) | (0.69) | (−0.61) | (0.80) | (0.10) | (0.80) | |
DA | 5.857 *** | −2.609 *** | 5.280 *** | 6.286 *** | −2.544 *** | 5.642 *** | 3.785 *** | −2.115 *** | 3.746 *** |
(44.13) | (−26.01) | (38.55) | (27.28) | (−14.93) | (23.86) | (25.77) | (−18.13) | (24.64) | |
Auditty | −0.026 | 0.453 ** | 0.075 | −0.021 | 0.932 * | 0.214 | 0.073 | 0.121 | 0.074 |
(−0.11) | (2.46) | (0.31) | (−0.03) | (1.95) | (0.34) | (0.52) | (1.10) | (0.54) | |
Control year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control location | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 7092 | 7092 | 7092 | 2469 | 2469 | 2469 | 4623 | 4623 | 4623 |
F | 172.79 | 237.91 | 179.73 | 74.64 | 91.31 | 78.29 | 64.31 | 179.54 | 59.03 |
Prob > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Adj. R2 | 0.2252 | 0.2862 | 0.2468 | 0.2471 | 0.2870 | 0.2732 | 0.1309 | 0.2982 | 0.1309 |
Sobel test | −0.001 ** (z = −2.23) | −0.002 ** (z = −1.99) | −0.000 (z = −0.67) | ||||||
a | 0.004 ** (z = 2.26) | 0.009 ** (z = 2.03) | 0.001 (z = 0.90) | ||||||
b | −0.221 *** (z = −14.27) | −0.253 *** (z = −9.44) | −0.019 (z = −1.00) | ||||||
Indirect effect | −0.001 ** (z = −2.23) | −0.002 ** (z = −1.99) | −0.000 (z = −0.67) | ||||||
Direct effect | −0.006 ** (z = −2.55) | −0.012 ** (z = −2.19) | −0.001 (z = −0.73) | ||||||
Total effect | −0.006 *** (z = −2.89) | −0.014 ** (z = 2.53) | −0.001 (z = −0.75) |
Bootstrap | Whole Sample | SOE | NSOE |
---|---|---|---|
Indirect effect | −0.001 | −0.002 | −0.000 |
95% CI | [−0.002, −0.000] (P) | [−0.020, 0.020] (P) | [−0.000, 0.000] (P) |
[−0.002, −0.001] (BC) | [−0.242, −0.007] (BC) | [−0.000, −0.000] (BC) | |
Direct effect | −0.006 | −0.012 | −0.001 |
95% CI | [−0.010, −0.001] (P) | [−0.078, 0.065] (P) | [−0.005, 0.004] (P) |
[−0.015, −0.008] (BC) | [−0.194, −0.038] (BC) | [−0.008, −0.003] (BC) | |
Total effect | −0.006 | −0.014 | −0.001 |
95% CI | [−0.011, −0.002] (P) | [−0.100, 0.083] (P) | [−0.005, 0.004] (P) |
[−0.016, −0.009] (BC) | [−0.208, −0.045] (BC) | [−0.008, −0.003] (BC) | |
(P) Percentile Confidence Interval | |||
(BC) Bias-Corrected Confidence Interval |
DV | Whole Sample | SOE | NSOE | ||||||
---|---|---|---|---|---|---|---|---|---|
OI | Un | OI | OI | Un | OI | OI | Un | OI | |
Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | |
PM2.5 | −0.006 ** | 0.005 ** | −0.005 * | −0.016 ** | 0.010 * | −0.013 * | 0.000 | 0.001 | 0.000 |
(−2.29) | (2.35) | (−1.90) | (−2.16) | (1.89) | (−1.82) | (0.07) | (1.14) | (0.09) | |
Un | −0.244 *** | −0.278 *** | −0.026 | ||||||
(−13.75) | (−9.02) | (−1.24) | |||||||
SOE | −0.271 ** | 0.093 | −0.248 ** | ||||||
(−2.29) | (1.07) | (−2.13) | |||||||
Size | −0.153 *** | 1.070 *** | 0.107 * | −0.219 | 1.636 *** | 0.236 | −0.055 ** | 0.682 *** | −0.037 |
(−2.59) | (24.71) | (1.75) | (−1.53) | (15.89) | (1.58) | (−1.51) | (24.37) | (−0.95) | |
Lev | −0.421 | −0.636 *** | −0.575 * | 0.249 | −0.740 | 0.043 | −0.753 *** | 0.163 | −0.749 *** |
(−1.37) | (−2.83) | (−1.90) | (0.30) | (−1.24) | (0.05) | (−4.25) | (1.21) | (−4.22) | |
BTM | 0.141 | 0.196 *** | 0.189 ** | 0.144 | −0.003 | 0.143 | 0.080 | 0.097 * | 0.083 |
(1.63) | (3.10) | (2.22) | (0.80) | (−0.03) | (0.81) | (1.19) | (1.90) | (1.23) | |
ROA | −0.017 | −0.000 | −0.017 | −0.206 | 0.149 | −0.165 | −0.013 | −0.003 | −0.013 |
(−0.48) | (−0.00) | (−0.49) | (−0.32) | (0.32) | (−0.26) | (−0.80) | (−0.28) | (−0.80) | |
Growth | 0.003 *** | −0.001 | 0.002 *** | 0.000 | −0.001 | 0.000 | 0.005 *** | −0.000 | 0.005 *** |
(2.78) | (−0.88) | (2.67) | (0.17) | (−0.44) | (0.09) | (7.72) | (−0.73) | (7.71) | |
DA | 5.956 *** | −2.802 *** | 5.274 *** | 6.409 *** | −2.734 *** | 5.648 *** | 3.829 *** | −2.268 *** | 3.769 *** |
(39.86) | (−25.66) | (33.98) | (24.33) | (−14.43) | (20.80) | (23.55) | (−18.30) | (22.23) | |
Auditty | −0.049 | 0.347 | 0.035 | −0.069 | 0.678 | 0.119 | 0.150 | 0.084 | 0.152 |
(−0.17) | (1.61) | (0.12) | (−0.09) | (1.17) | (0.15) | (0.91) | (0.67) | (0.93) | |
Control year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control location | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 5789 | 5789 | 5789 | 1968 | 1968 | 1968 | 3821 | 3821 | 3821 |
F | 142.33 | 194.92 | 150.20 | 59.65 | 71.31 | 63.72 | 57.90 | 156.29 | 53.21 |
Prob > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Adj. R2 | 0.2266 | 0.2868 | 0.2510 | 0.2470 | 0.2822 | 0.2767 | 0.1408 | 0.3090 | 0.1409 |
Sobel test | −0.001 ** (z = −2.31) | −0.003 * (z = −1.85) | −0.000 (z = −0.84) | ||||||
a | 0.005 ** (z = 2.35) | 0.010 ** (z = 1.89) | 0.001 (z = 1.14) | ||||||
b | −0.244 *** (z = −13.75) | −0.278 *** (z = −9.02) | −0.026 (z = −1.24) | ||||||
Indirect effect | −0.001 ** (z = −2.31) | −0.003 * (z = −1.84) | −0.000 (z = −0.84) | ||||||
Direct effect | −0.005 * (z = −1.90) | −0.013 * (z = −1.82) | 0.000 (z = 0.09) | ||||||
Total effect | −0.006 ** (z = −2.29) | −0.016 ** (z = 2.16) | 0.000 (z = 0.07) |
DV | Whole Sample | SOE | NSOE | ||||||
---|---|---|---|---|---|---|---|---|---|
OI | DA | OI | OI | DA | OI | OI | DA | OI | |
Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | Coef. | |
PM2.5 | −0.005 * | 0.000 | −0.006 *** | −0.013 * | 0.000 | −0.014 ** | −0.000 | 0.000 | −0.001 |
(−1.95) | (1.25) | (−2.85) | (−1.93) | (0.59) | (−2.53) | (−0.35) | (0.73) | (−0.65) | |
DA | 5.854 *** | 6.281 *** | 3.819 *** | ||||||
(44.14) | (27.26) | (26.18) | |||||||
SOE | −0.093 | 0.023 *** | −0.229 ** | ||||||
(−0.84) | (2.63) | (−2.32) | |||||||
Size | −0.381 *** | −0.037 *** | −0.163 *** | −0.757 *** | −0.080 *** | −0.254 ** | −0.086 *** | −0.006 * | −0.065 ** |
(−7.00) | (−8.62) | (−3.37) | (−5.83) | (−8.04) | (−2.21) | (−2.67) | (−1.84) | (−2.15) | |
Lev | 0.020 | 0.063 *** | −0.350 | 0.711 | 0.062 | 0.323 | −0.480 *** | 0.030 ** | −0.593 *** |
(0.08) | (3.22) | (−1.60) | (0.92) | (1.04) | (0.48) | (−3.78) | (2.49) | (−5.01) | |
BTM | 0.105 | −0.006 | 0.143 ** | 0.219 | 0.013 | 0.140 | 0.038 | −0.015 *** | 0.095 * |
(1.53) | (−1.17) | (2.33) | (1.53) | (1.14) | (1.11) | (0.72) | (−2.99) | (1.93) | |
ROA | −0.000 | −0.000 | 0.000 | 0.402 | 0.104 ** | −0.249 | −0.000 | −0.000 | 0.000 |
(−0.60) | (−1.41) | (0.06) | (0.60) | (2.02) | (−0.42) | (−0.39) | (−1.59) | (0.19) | |
Growth | 0.003 *** | 0.000 | 0.003 *** | 0.001 | 0.000 | 0.000 | 0.004 *** | −0.000 * | 0.005 *** |
(2.77) | (0.27) | (2.99) | (0.53) | (0.69) | (0.22) | (6.93) | (−1.76) | (8.10) | |
Auditty | −0.100 | −0.004 | −0.076 | −0.148 | −0.016 | −0.045 | 0.087 | 0.005 | 0.070 |
(−0.36) | (−0.19) | (−0.31) | (−0.20) | (−0.29) | (−0.07) | (0.59) | (0.33) | (0.51) | |
Control year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control location | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 7092 | 7092 | 7092 | 2469 | 2469 | 2469 | 4623 | 4623 | 4623 |
F | 9.66 | 13.02 | 173.69 | 5.95 | 10.90 | 74.58 | 8.44 | 3.31 | 71.12 |
Prob > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Adj. R2 | 0.0133 | 0.0183 | 0.2262 | 0.0197 | 0.0386 | 0.2470 | 0.0158 | 0.0050 | 0.1430 |
Sobel test | 0.001 (z = 1.25) | 0.002 (z = 0.59) | 0.000 (z = 0.73) | ||||||
a | 0.000 (z = 1.25) | 0.000 (z = 0.59) | 0.000 (z = 0.73) | ||||||
b | 5.854 *** (z = 44.14) | 6.281 *** (z = 27.26) | 3.819 *** (z = 26.18) | ||||||
Indirect effect | 0.001 (z = 1.25) | 0.002 (z = 0.59) | 0.000 (z = 0.73) | ||||||
Direct effect | −0.006 *** (z = −2.85) | −0.014 ** (z = −2.53) | −0.001 (z = −0.65) | ||||||
Total effect | −0.005 * (z = −1.95) | −0.013 * (z = −1.93) | −0.000 (z = −0.35) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Shi, H.; Yang, D.C.; Peng, M. Smog Pollution, Environmental Uncertainty, and Operating Investment. Atmosphere 2021, 12, 1378. https://doi.org/10.3390/atmos12111378
Li B, Shi H, Yang DC, Peng M. Smog Pollution, Environmental Uncertainty, and Operating Investment. Atmosphere. 2021; 12(11):1378. https://doi.org/10.3390/atmos12111378
Chicago/Turabian StyleLi, Bin, Hanxuan Shi, David C. Yang, and Muze Peng. 2021. "Smog Pollution, Environmental Uncertainty, and Operating Investment" Atmosphere 12, no. 11: 1378. https://doi.org/10.3390/atmos12111378
APA StyleLi, B., Shi, H., Yang, D. C., & Peng, M. (2021). Smog Pollution, Environmental Uncertainty, and Operating Investment. Atmosphere, 12(11), 1378. https://doi.org/10.3390/atmos12111378