Spatio-Temporal Variations in the Temperature and Precipitation Extremes in Yangtze River Basin, China during 1961–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Definition of Extreme Temperature and Precipitation Indices
2.3.2. Trend Analysis of Extreme Temperature and Precipitation Indices
2.3.3. Correlation Analysis of Climate Indices and Extreme Temperature/Precipitation
3. Results
3.1. Temporal Variations in Extreme Temperature and Precipitation
3.1.1. Variations in Extreme Temperature Events
3.1.2. Variations in Extreme Precipitation Events
3.2. Spatial Trends in Extreme Temperature and Precipitation
3.2.1. Trends in Extreme Temperature Events
3.2.2. Trends in Extreme Precipitation Events
3.3. Relationships between Extreme Precipitation/Temperature and Climate Indices
3.3.1. Correlation between Regional Extreme Precipitation/Temperature and Climate Indices
3.3.2. Spatial Distribution of Correlation between Extreme Precipitation/Temperature and Climate Indices
4. Discussion
4.1. Changes in Extreme Temperature and Precipitation in the YRB during 1961 to 2020
4.2. Impact of Oceanic and Atmospheric Circulations on Extreme Temperature and Precipitation in the YRB during 1961 to 2020
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Kanji, S.; Wang, L. The impact of rainfall and temperature variation on diarrheal prevalence in Sub-Saharan Africa. Appl. Geogr. 2012, 33, 63–72. [Google Scholar] [CrossRef]
- Vogt, D.J.; Vogt, K.A.; Gmur, S.J.; Scullion, J.J.; Suntana, A.S.; Daryanto, S.; Sigurðardóttir, R. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Environ. Res. 2016, 144, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Katz, R.W.; Brown, B.G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 1992, 21, 289–302. [Google Scholar] [CrossRef]
- Gutowski, W.J.; Willis, S.S.; Patton, J.C.; Schwedler, B.R.J.; Arritt, R.W.; Takle, E.S. Changes in extreme, cold-season synoptic precipitation events under global warming. Geophys. Res. Lett. 2008, 35, L20710. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jiang, Z.; Zhang, X.; Li, L.; Sun, Y. Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Sci. Bull. 2018, 63, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Mutiibwa, D.; Vavrus, S.J.; McAfee, S.A.; Albright, T.P. Recent spatiotemporal patterns in temperature extremes across conterminous United States. J. Geophys. Res. Atmos. 2015, 120, 7378–7392. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temper-ature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, Z.; Wang, F.; Du, H.; Zong, S. Comparative analysis of the extreme temperature event change over Northeast China and Hokkaido, Japan from 1951 to 2011. Theor. Appl. Climatol. 2016, 124, 375–384. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Hong, W.; Sun, F.; Liu, W. The dependence of daily and hourly precipitation extremes on temperature and atmospheric hu-midity over China. J. Clim. 2018, 31, 8931–8944. [Google Scholar]
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Xiong, J.; Ye, C.; Cheng, W.; Guo, L.; Zhou, C.; Zhang, X. The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province. Sustainability 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and pre-cipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Zwiers, F.; Alexander, L.V.; Donat, M.; Tung, Y.-S. Attribution of extreme temperature changes during 1951–2010. Clim. Dynam. 2016, 46, 1769–1782. [Google Scholar] [CrossRef]
- García-Cueto, O.R.; Cavazos, M.T.; De Grau, P.; Santillán-Soto, N. Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions. Theor. Appl. Climatol. 2014, 116, 211–225. [Google Scholar] [CrossRef]
- Wang, Q.X.; Wang, M.B.; Fan, X.H.; Zhang, F.; Zhu, S.Z.; Zhao, T.L. Trends of temperature and precipitation extremes in the Loess Plateau Region of China, 1961–2010. Theor. Appl. Climatol. 2017, 129, 949–963. [Google Scholar] [CrossRef]
- Pan, Y.-Z.; Wang, J.-A.; Gong, D.-Y. Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor. Appl. Climatol. 2004, 77, 25–37. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ. 2019, 663, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ren, G. Change in extreme temperature event frequency over mainland China, 1961−2008. Clim. Res. 2011, 50, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, T. Increasing impacts from extreme precipitation on population over China with global warming. Sci. Bull. 2020, 65, 243–252. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale at-mospheric circulation during 1961–2003. Clim. Dynam. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Wang, Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Wang, J.; Du, H.; Wen, K. Changes in the temperature and precipitation extremes in China during 1961–2015. Quat. Int. 2019, 527, 64–78. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Wang, X.J.; Zhi, R.; Feng, G.L. Regional characteristics of temperature changes in China during the past 58 years and its probable correlation with abrupt temperature change. Acta Phys. Sin. 2009, 58, 4342–4353. [Google Scholar]
- Wan, S.Q.; Gu, C.H.; Kang, J.P.; Zou, J.X.; Hu, Y.L.; Xu, S.S.; Wan, S.Q. Monthly extreme high temperature response to atmospheric oscillation in China. Acta Phys. Sin. 2010, 59, 676–682. [Google Scholar]
- Pascual, A.; Valero, F.; Martín, M.L.; García-Legaz, C. Spanish Extreme Winds and Their Relationships with Atlantic Large-Scale Atmospheric Patterns. Am. J. Clim. Chang. 2013, 2, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhang, X.; Zheng, F.; Wang, B. Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Glob. Planet. Chang. 2015, 124, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.-F.; Wang, Z.; Liu, C. Spatial and temporal variability of daily temperature during 1961–2010 in the Yangtze River Basin, China. Quat. Int. 2012, 304, 33–42. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Zhang, Z.; Chen, Y.D.; Liu, C.-L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, T. Characteristics and Changes of Extreme Precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers Basins, China. J. Clim. 2011, 24, 3781–3795. [Google Scholar] [CrossRef]
- Su, B.; Gemmer, M.; Jiang, T. Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quat. Int. 2008, 186, 22–31. [Google Scholar] [CrossRef]
- Guo, J.; Guo, S.; Li, Y.; Chen, H.; Li, T. Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 459–475. [Google Scholar] [CrossRef]
- Yue, Y.; Yan, D.; Yue, Q.; Ji, G.; Wang, Z. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos. Res. 2021, 264, 105828. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Xu, C.-Y.; Xu, Y.; Jiang, T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J. Hydrol. 2006, 324, 255–265. [Google Scholar] [CrossRef]
- Guo, J.; Chen, H.; Xu, C.Y.; Guo, S.; Guo, J. Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling. Stoch. Environ. Res. Risk Assess. 2012, 26, 157–176. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Hörmann, G.; Fohrer, N.; Xiong, M.; Su, B.; Li, X. Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quat. Int. 2012, 282, 5–13. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the asso-ciation with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, D.; Yi, Y.; Lei, Z.; Chen, J.; Yang, W. Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quat. Int. 2008, 186, 32–42. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, S.; Cao, L.; Cai, X.; Zhang, K.; Xu, Y.; Xu, W. Changes in extreme climate events in eastern China during 1960–2013: A case study of the Huaihe River Basin. Quat. Int. 2015, 380–381, 22–34. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Yin, J.; Yan, D.; Yang, Z.; Yuan, Z.; Wang, H.; Shi, X. Research on Historical and Future Spatial-Temporal Variability of Precipitation in China. Adv. Meteorol. 2016, 2016, 9137201. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.J.; Chen, J.; Wang, Y.Q.; Yin, J. EVI Indicated Spatial-Temporal Variations in Vegetation and Their Responses to Climatic and Anthropogenic Factors in the Chinese Mainland Since 2000s. J. Environ. Inform. 2021. [Google Scholar] [CrossRef]
- Sui, Y.; Jiang, D.; Tian, Z. Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theor. Appl. Climatol. 2013, 113, 599–610. [Google Scholar] [CrossRef]
- Granero, M.A.S.; Segovia, J.E.T.; Pérez, J.G. Some comments on Hurst exponent and the long memory processes on capital markets. Phys. A 2008, 387, 5543–5551. [Google Scholar] [CrossRef]
- Bhatia, N.; Singh, V.P.; Lee, K. Variability of extreme precipitation over Texas and its relation with climatic cycles. Theor. Appl. Climatol. 2019, 138, 449–467. [Google Scholar] [CrossRef]
- Sun, J.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Fang, G.; Qi, H.; Zhou, L.; Gao, Y. Changes of temperature and precipitation extremes in China: Past and future. Theor. Appl. Climatol. 2016, 126, 369–383. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F. Spatiotemporal trends of temperature and precipitation extremes across contrasting climatic zones of China during 1956–2015. Theor. Appl. Climatol. 2019, 138, 1877–1897. [Google Scholar] [CrossRef]
- Liu, D.; Dong, A.X.; Deng, Z. Impact of climate warming on agriculture in Northwest China. J. Nat. Resour. 2005, 20, 119–125. [Google Scholar]
- Yang, X.-G.; Liu, Z.-J.; Chen, F. The Possible Effect of Climate Warming on Northern Limits of Cropping System and Crop Yield in China. Agric. Sci. China 2011, 10, 585–594. [Google Scholar] [CrossRef]
- Shi, S.; Li, J.; Shi, J.; Zhao, Y.; Huang, G. Three centuries of winter temperature change on the southeastern Tibetan Plateau and its relationship with the Atlantic Multidecadal Oscillation. Clim. Dyn. 2017, 49, 1305–1319. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Z.; Peng, D.; Wu, G. Influences of the North Atlantic Oscillation on extreme temperature during the cold period in China. Int. J. Climatol. 2019, 39, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Sun, Y.; Wan, H.; Zhang, X.; Yin, H. Anthropogenic influence on the frequency of extreme temperatures in China. Geophys. Res. Lett. 2016, 43, 6511–6518. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Wang, H. Effects of anthropogenic activity emerging as intensified extreme precipitation over China. J. Geophys. Res. Atmos. 2017, 122, 6899–6914. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Z.; Wang, Z.; Cao, S.; Yang, Y.; Qu, X.; Zhao, W. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Quat. Int. 2021, 592, 80–96. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S.; Zhu, J. Arctic oscillation influence on daily temperature variance in winter over China. Chin. Sci. Bull. 2004, 49, 637–642. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Shi, N. Influence of the spring Arctic oscillation on midsummer surface air temperature over the Yangtze River valley. Chin. J. Atmos. Sci. 2015, 39, 1049–1058. [Google Scholar]
- Zhong, Y.; Lei, L.; Liu, Y.; Hao, Y.; Zou, C.; Zhan, H. The influence of large-scale climate phenomena on precipitation in the Ordos Basin, China. Theor. Appl. Climatol. 2017, 130, 791–805. [Google Scholar] [CrossRef]
- Kerr, R.A. A North Atlantic Climate Pacemaker for the Centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Dong, B.; Ding, H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett. 2006, 33, L24701. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Bates, G.T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv. Atmos. Sci. 2007, 24, 126–135. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Luo, D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res. Atmos. 2009, 114, D02112. [Google Scholar] [CrossRef]
- Lu, R.; Dong, B. Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation. Adv. Atmos. Sci. 2008, 25, 723–736. [Google Scholar] [CrossRef]
- Yu, L.; Gao, Y.; Wang, H.; Guo, D.; Li, S. The responses of East Asian Summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced freshwater input simulation. Chin. Sci. Bull. 2009, 54, 4724–4732. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, S.L.; Luo, D.; Fu, J. Nonlinearity in the Asian Monsoonal Climate Response to Atlantic Multidecadal Oscillation. Period. Ocean Univ. China 2010, 40, 19–26. [Google Scholar]
- Li, S.; Wang, Y.; Gao, Y. A review of the researches on the Atlantic multi-decadal oscillation (AMO) and its climate influence. Trans. Atmos. Sci. 2009, 32, 458–465. [Google Scholar]
- Yan, L.; Wang, P.; Guan, Z.; Yang, X. The teleconnection of sea surface temperature and its relation with China winter temperature. Sci. Meteorol. Sin. 2008, 28, 133–138. (In Chinese) [Google Scholar]
Abbreviation | Definition | Units |
---|---|---|
TXx | Maximum value of daily maximum temperature | °C |
TXn | Minimum value of daily maximum temperature | °C |
TNx | Maximum value of daily minimum temperature | °C |
TNn | Minimum value of daily minimum temperature | °C |
DTR | Daily temperature range: mean difference between daily maximum temperature and daily minimum temperature | °C |
SDII | Simple daily intensity index | mm |
Rx1day | Annual maximum 1-day precipitation | mm |
Rx5day | Annual maximum 5-day precipitation | mm |
R99p | Annual total precipitation when daily precipitation > 99th percentile | mm |
PRCPTOT | Annual total precipitation in wet days (RR ≥ 1 mm) | mm |
H | Future Trend |
---|---|
0.65 < H ≤ 1 | Strong continuity |
0.50 < H ≤ 0.65 | Weak continuity |
0.35 < H ≤ 0.50 | Weak anti-continuity |
0 < H ≤ 0.35 | Strong anti-continuity |
Extreme Temperature Indices | H Values | Future Trend | Extreme Precipitation Indices | H Values | Future Trend |
---|---|---|---|---|---|
TXx | 0.765 | Strong continuity | SDII | 0.527 | Weak continuity |
TXn | 0.678 | Strong continuity | Rx1day | 0.718 | Strong continuity |
TNx | 0.878 | Strong continuity | Rx5day | 0.558 | Weak continuity |
TNn | 0.781 | Strong continuity | R99p | 0.692 | Strong continuity |
DTR | 0.657 | Strong continuity | PRCPTOT | 0.476 | Weak anti-continuity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Yin, J.; Wei, M.; Yuan, Y. Spatio-Temporal Variations in the Temperature and Precipitation Extremes in Yangtze River Basin, China during 1961–2020. Atmosphere 2021, 12, 1423. https://doi.org/10.3390/atmos12111423
Yuan Z, Yin J, Wei M, Yuan Y. Spatio-Temporal Variations in the Temperature and Precipitation Extremes in Yangtze River Basin, China during 1961–2020. Atmosphere. 2021; 12(11):1423. https://doi.org/10.3390/atmos12111423
Chicago/Turabian StyleYuan, Zhe, Jun Yin, Mengru Wei, and Yong Yuan. 2021. "Spatio-Temporal Variations in the Temperature and Precipitation Extremes in Yangtze River Basin, China during 1961–2020" Atmosphere 12, no. 11: 1423. https://doi.org/10.3390/atmos12111423
APA StyleYuan, Z., Yin, J., Wei, M., & Yuan, Y. (2021). Spatio-Temporal Variations in the Temperature and Precipitation Extremes in Yangtze River Basin, China during 1961–2020. Atmosphere, 12(11), 1423. https://doi.org/10.3390/atmos12111423