Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone
Abstract
:1. Introduction
2. Data
3. Weather Analysis
3.1. Synoptic Scale Analysis
3.2. Mesoscale Analysis
4. Objective Diagnostic of the Medicane Formation and Evolution
5. Dynamic Analysis
5.1. First Phase
5.2. Second Phase
5.3. Third Phase
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emanuel, K. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Businger, S.; Reed, R.J. Cyclogenesis in Cold Air Masses. Weather Forecast. 1989, 4, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.; Giorgi, F.; Coppola, E. Mediterranean warm-core cyclones in a warmer world. Clim. Dyn. 2014, 42, 1053–1066. [Google Scholar] [CrossRef]
- Vara, A.; Gutiérrez-Fernández, J.; González-Alemán, J.J.; Gaertner, M.Á. Characterization of medicanes with a minimal number of geopotential levels. Int. J. Climatol. 2021, 41, 3300–3316. [Google Scholar] [CrossRef]
- Nastos, P.T.; Karavana Papadimou, K.; Matsangouras, I.T. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Craig, G.C.; Ballard, S.P. The hurricane-like Mediterranean cyclone of January 1995. Meteorol. Appl. 2000, 7, 261–279. [Google Scholar] [CrossRef]
- Homar, V.; Romero, R.; Stensrud, D.J.; Ramis, C.; Alonso, S. Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors. Q. J. R. Meteorol. Soc. 2003, 129, 1469–1490. [Google Scholar] [CrossRef] [Green Version]
- Moscatello, A.; Miglietta, M.M.; Rotunno, R. Numerical Analysis of a Mediterranean “Hurricane” over Southeastern Italy. Mon. Weather Rev. 2008, 136, 4373–4397. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Carrió, D.S.; Homar, V.; Jansa, A.; Romero, R.; Picornell, M.A. Tropicalization process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study. Atmos. Res. 2017, 197, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Flaounas, E.; Gray, S.L.; Teubler, F. A process-based anatomy of Mediterranean cyclones: From baroclinic lows to tropical-like systems. Weather Clim. Dynam. 2021, 2, 255–279. [Google Scholar] [CrossRef]
- Flaounas, E.; Raveh-Rubin, S.; Wernli, H.; Drobinski, P.; Bastin, S. The dynamical structure of intense Mediterranean cyclones. Clim. Dyn. 2015, 44, 2411–2427. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather Clim. Dyn. 2020, 1, 597–615. [Google Scholar] [CrossRef]
- Mazza, E.; Ulbrich, U.; Klein, R. The Tropical Transition of the October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion Event. Mon. Weather Rev. 2017, 145, 2575–2595. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Keyser, D. Fronts, jet streams and the tropopause. In Extratropical Cyclones: The Erik Palmén Memorial Volume; Newton, C.W., Holopainen, E.O., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 167–191. [Google Scholar] [CrossRef]
- Schultz, D.M.; Vaughan, G. Occluded Fronts and the Occlusion Process: A Fresh Look at Conventional Wisdom. Bull. Am. Meteorol. Soc. 2011, 92, 443–466. [Google Scholar] [CrossRef]
- Browning, K.A. Organization of clouds and precipitation in extratropical cyclones. In Extratropical Cyclones: The Erik Palmén Memorial Volume; Newton, C.W., Holopainen, E.O., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 129–153. [Google Scholar] [CrossRef]
- Joos, H.; Wernli, H. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Q. J. R. Meteorol. Soc. 2012, 138, 407–418. [Google Scholar] [CrossRef]
- Wernli, H.; Joos, H.; Boettcher, M.; Madonna, E.; Pfahl, S. Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part II: Moisture Origin and Relevance for Precipitation. J. Clim. 2014, 27, 27–40. [Google Scholar] [CrossRef]
- Bader, M.J.; Forbes, G.S.; Grant, J.R.; Lilley, R.B.E.; Waters, A. Images in Weather Forecasting. A Practical Guide for Interpreting Satellite and Radar Imagery; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Binder, H.; Boettcher, M.; Joos, H.; Wernli, H. The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter. J. Atmos. Sci. 2016, 73, 3997–4020. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.-P.; Simmonds, I. Explosive Cyclone Development in the Southern Hemisphere and a Comparison with Northern Hemisphere Events. Mon. Weather Rev. 2002, 130, 2188–2209. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Flocas, H.A.; Hatzaki, M.; Keay, K.; Simmonds, I.; Mavroudis, A. On the dynamics of a case study of explosive cyclogenesis in the Mediterranean. Meteorol. Atmos. Phys. 2015, 127, 49–73. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Avgoustoglou, E.N.; Flocas, H.A.; Hatzaki, M.; Skrimizeas, P.; Keay, K. Assessment of the role of sea surface fluxes on eastern Mediterranean explosive cyclogenesis with the aid of the limited-area model COSMO.GR. Atmos. Res. 2018, 208, 132–147. [Google Scholar] [CrossRef]
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Prezerakos, N.G.; Flocas, H.A. The role of a developing upper diffluent trough in surface cyclogenesis over central Mediterranean. Meteorol. Z. 1997, 6, 108–119. [Google Scholar] [CrossRef]
- Prezerakos, N.G.; Flocas, H.A.; Michaelides, S.C. Upper-tropospheric downstream development leading to surface cyclogenesis in the central Mediterranean. Meteorol. Appl. 1999, 6, 313–322. [Google Scholar] [CrossRef]
- Capaldo, M.; Conte, M.; Finizio, C.; Todisco, G. A Detailed Analysis of a Severe Storm in the Central Mediterranean—The Case of the Trapani Flood. Riv. Di Meteorol. Aeronaut. 1980, 40, 183–199. [Google Scholar]
- Roebber, P.J. On the Statistical Analysis of Cyclone Deepening Rates. Mon. Weather Rev. 1989, 117, 2293–2298. [Google Scholar] [CrossRef]
- Hart, R.E. A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Matsangouras, I.T.; Tegoulias, I.; Kotsopoulos, S.; Karacostas, T.S.; Nastos, P.T. Numerical Study of the Medicane of November 2014; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 115–121. [Google Scholar]
- Mylonas, M.; Douvis, K.; Polychroni, I.; Politi, N.; Nastos, P. Analysis of a Mediterranean Tropical-Like Cyclone. Sensitivity to WRF Parameterizations and Horizontal Resolution. Atmosphere 2019, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Chaboureau, J.P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc. 2012, 138, 596–611. [Google Scholar] [CrossRef]
- Trenberth, K.E. On the Interpretation of the Diagnostic Quasi-Geostrophic Omega Equation. Mon. Weather Rev. 1978, 106, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Draghici, I.; Davies, H.C. A new look at the ω-equation. Q. J. R. Meteorol. Soc. 1978, 104, 31–38. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Hoskins, B.J. Frontal Cyclogenesis. J. Atmos. Sci. 1990, 47, 2317–2336. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Emanuel, K.A. Observational Evidence for the Influence of Surface Heat Fluxes on Rapid Maritime Cyclogenesis. Mon. Weather Rev. 1988, 116, 2649–2659. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N. Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern. Mon. Weather Rev. 1980, 108, 1498–1509. [Google Scholar] [CrossRef]
- Schultz, D.M. Reexamining the Cold Conveyor Belt. Mon. Weather Rev. 2001, 129, 2205–2225. [Google Scholar] [CrossRef]
- Browning, K.A. Conceptual Models of Precipitation Systems. Weather Forecast. 1986, 1, 23–41. [Google Scholar] [CrossRef]
- Semple, A.T. A review and unification of conceptual models of cyclogenesis. Meteorol. Appl. 2003, 10, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.L.; Dacre, H.F. Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Q. J. R. Meteorol. Soc. 2006, 132, 1119–1137. [Google Scholar] [CrossRef] [Green Version]
- Prezerakos, N.G.; Flocas, H.A. The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteorol. Appl. 2007, 3, 101–111. [Google Scholar] [CrossRef]
- Kurz, M. Training Guidelines of the German Meteorological Service; German Meteorological Service: Offenbach am Main, Germany, 1998. [Google Scholar]
Parameter | Layer (hPa) | 27/06 | 27/12 | 27/18 | 28/00 | 28/06 | 28/12 | 28/18 | 29/00 | 29/06 | 29/12 | 29/18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 600–900 | −2.7 | −37.7 | 1.9 | 2.3 | 5.2 | 7.0 | 13.0 | 12.0 | 14.0 | 15.0 | 11.0 |
300–600 | −141.8 | −143.8 | −65.9 | −17.8 | 43.4 | 50.5 | 41.6 | 34.6 | 46.9 | 64.3 | 48.5 | |
600–900 | −44.4 | −25.6 | −4.1 | 86.8 | 95.8 | 32.6 | 24.0 | −5.5 | 44.3 | 10.7 | −3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouroutzoglou, J.; Samos, I.; Flocas, H.A.; Hatzaki, M.; Lamaris, C.; Mamara, A.; Emmannouil, A. Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone. Atmosphere 2021, 12, 1438. https://doi.org/10.3390/atmos12111438
Kouroutzoglou J, Samos I, Flocas HA, Hatzaki M, Lamaris C, Mamara A, Emmannouil A. Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone. Atmosphere. 2021; 12(11):1438. https://doi.org/10.3390/atmos12111438
Chicago/Turabian StyleKouroutzoglou, John, Ioannis Samos, Helena A. Flocas, Maria Hatzaki, Christos Lamaris, Anna Mamara, and Antonios Emmannouil. 2021. "Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone" Atmosphere 12, no. 11: 1438. https://doi.org/10.3390/atmos12111438
APA StyleKouroutzoglou, J., Samos, I., Flocas, H. A., Hatzaki, M., Lamaris, C., Mamara, A., & Emmannouil, A. (2021). Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone. Atmosphere, 12(11), 1438. https://doi.org/10.3390/atmos12111438