Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site
2.1.1. Padang City
2.1.2. Muaro Jambi Regency
2.1.3. Pekanbaru City
2.2. Sampling Methods
2.3. Sampling Procedure
2.4. Analysis of Carbonaceous Components
2.5. Backward Trajectory and Hotspots
3. Result and Discussion
3.1. Status of PM Concentration
3.2. PM and Carbonaceous Component Affected by Season and Location
3.3. Influence of Peatland Fires and Air Mass Transportation during the Dry Season
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weichenthal, S.; Lavigne, E.; Traub, A.; Umbrio, D.; You, H.; Pollitt, K.; Shin, T.; Kulka, R.; Stieb, D.M.; Korsiak, J.; et al. Association of Sulfur, Transition Metals, and the Oxidative Potential of Outdoor PM2.5 with Acute Cardiovascular Events: A Case-Crossover Study of Canadian Adults. Environ. Health Perspect. 2021, 129, 107005. [Google Scholar] [CrossRef] [PubMed]
- Sommar, J.N.; Hvidtfeldt, U.A.; Geels, C.; Frohn, L.M.; Brandt, J.; Christensen, J.H.; Raaschou-Nielsen, O.; Forsberg, B. Long-Term Residential Exposure to Particulate Matter and Its Components, Nitrogen Dioxide and Ozone-A Northern Sweden Cohort Study on Mortality. Int. J. Environ. Res. Public Health 2021, 18, 8476. [Google Scholar] [CrossRef]
- Pongpiachan, S. Incremental lifetime cancer risk of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) before and after the wildland fire episode. Aerosol Air Qual. Res. 2016, 16, 2907–2919. [Google Scholar] [CrossRef] [Green Version]
- Doherty, R.M.; Heal, M.R.; O’Connor, F.M. Climate change impacts on human health over Europe through its effect on air quality. Environ. Health 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koplitz, S.N.; Mickley, L.J.; Marlier, M.E.; Buonocore, J.J.; Kim, P.S.; Liu, T.; Sulprizio, M.P.; DeFries, R.S.; Jacob, D.J.; Schwartz, J.; et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 2016, 11, 94023. [Google Scholar] [CrossRef]
- Tham, J.; Sarkar, S.; Jia, S.; Reid, J.; Mishra, S.; Sudiana, I.M.; Swarup, S.; Ong, C.; Yu, L. Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators. Environ. Pollut. 2019, 248, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Betha, R.; Pradani, M.; Lestari, P.; Joshi, U.M.; Reid, J.S.; Balasubramanian, R. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 2013, 122, 571–578. [Google Scholar] [CrossRef]
- Huijnen, V.; Wooster, M.J.; Kaiser, J.W.; Gaveau, D.L.A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 2016, 6, 26886. [Google Scholar] [CrossRef] [Green Version]
- Quah, E.; Varkkey, H.M. The political economy of transboundary pollution: Mitigation of forest fires and haze in Southeast Asia. Asian Community-Its Concepts Prospect. 2013, 23, 323–358. (In Japanese) [Google Scholar]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Justice, C. Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ. Pollut. 2014, 195, 245–256. [Google Scholar] [CrossRef]
- Sheldon, T.; Sankaran, C. The Impact of Indonesian Forest Fires on Singaporean Pollution and Health. Am. Econ. Rev. 2017, 107, 526–529. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Suttinun, O.; Wang, Q.; Cao, J. Long-range transboundary atmospheric transport of polycyclic aromatic hydrocarbons, carbonaceous compositions, and water-soluble ionic species in southern Thailand. Aerosol Air Qual. Res. 2020, 20, 1591–1606. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Kim, K.H.; Sekiguchi, K.; Furuuchi, M.; Sakamoto, K. Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos. Environ. 2011, 45, 1581–1590. [Google Scholar] [CrossRef]
- Chen, S.C.; Hsu, S.C.; Tsai, C.J.; Chou, C.C.K.; Lin, N.H.; Lee, C.T.; Roam, G.D.; Pui, D.Y.H. Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia. Atmos. Environ. 2013, 78, 154–162. [Google Scholar] [CrossRef]
- National Research Council (NRC). Research Priorities for Airborne Particulate Matter I, Immediate Priorities and a Long-Range Research Portfolio; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Lammers, A.; Janssen, N.; Boere, A.; Berger, M.; Longo, C.; Vijverberg, S.; Neerincx, A.H.; Zee, A.H.; Cassee, F. Effects of short-term exposures to ultrafine particles near an airport in healthy subjects. Environ. Int. 2020, 141, 105779. [Google Scholar] [CrossRef]
- He, R.; Gerlofs-Nijland, M.; Boere, J.; Fokkens, P.; Leseman, D.; Janssen, N.; Cassee, F. Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air-liquid interface. Toxicol. In Vitro 2020, 68, 104950. [Google Scholar] [CrossRef]
- Umezawa, M.; Onoda, A.; Takeda, K. Developmental Toxicity of Nanoparticles on the Brain. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2017, 137, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of nanoparticles emitted from burning of biomass fuels. J. Environ. Sci. 2014, 26, 10. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Qual. Atmos. Health 2016, 9, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Bachtiar, V.S.; Ruslinda, Y.; Wangsa, D.; Kurniawan, E. Mapping of PM 10 Concentrations and Metal Source Identifications in Air Ambient at Surrounding Area of Padang Cement Factory. J. Environ. Sci. Technol. 2016, 9, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Badan Pusat Statistik (BPS-Statistics of Padang City), Padang City in Figure; BPS: Padang, Indonesia, 2018.
- Badan Pusat Statistik (BPS-Statistics of Muaro Jambi Regency), Muaro Jambi in Figure; BPS: Muaro Jambi, Indonesia, 2018.
- Badan Pusat Statistik (BPS-Statistics of Pekanbaru City), Pekanbaru City in Figure; BPS: Pekanbaru, Indonesia, 2018.
- Furuuchi, M.; Eryu, K.; Nagura, M.; Hata, M.; Kato, T.; Tajima, N.; Sekiguchi, K.; Ehara, K.; Seto, T.; Otani, Y. Development and performance evaluation of air sampler with inertial filter for nanoparticle sampling. Aerosol. Air. Qual. Res. 2010, 10, 185–192. [Google Scholar] [CrossRef]
- MOEJ (Ministry of Environment of Japan). Chapter 4. Carbonaceous Component Analysis Method 483 (Thermal Optical Reflectance Method), 3rd ed.; Fine Particles (PM2.5) Component 484 Measurement Manual; Ministry of Environment: Tokyo, Japan, 2019. Available online: https://www.env.go.jp/air/osen/pm/ca/manual.html (accessed on 18 August 2020). (In Japanese)
- Arp, H.P.H.; Schwarzenbach, R.P.; Goss, K.U. Equilibrium sorption of gaseous organic chemicals to fiber filters used for aerosol studies. Atmos. Environ. 2007, 41, 8241–8252. [Google Scholar] [CrossRef]
- Otani, Y.; Eryu, K.; Furuuchi, M.; Tajima, N.; Tekasakul, P. Inertial Classification of Nanoparticles with Fibrous Filters. Aerosol. Air. Qual. Res. 2007, 7, 343–352. [Google Scholar] [CrossRef]
- Badan Meteorologi, Klimatologi, dan Geofisika. BMKG- Meteorologhy, Climatologhy, and Geophysics Agency of Indonesia. Data Online, Pusat Data Base 2019, Indonesia. Available online: https://www.bmkg.go.id/?lang=EN (accessed on 20 August 2019).
- Han, Y.; Cao, J.; Chow, J.C.; Watson, J.G. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 2007, 69, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Lee, S.C.; Cao, J.J.; Ho, K.F.; An, Z.S. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos. Environ. 2009, 43, 6066–6073. [Google Scholar] [CrossRef]
- Budiwati, T.; Setyawati, W.; Aries, T.D. Chemical Characteristics of Rainwater in Sumatra, Indonesia, during 2001–2010. Int. J. Atmos. Sci. 2016, 10, 1155. [Google Scholar]
- Air Resource Laboratory (ALR). The Air Resource Laboratory (HYSPLIP 4). 2019. Available online: https://ready.arl.noaa.gov/HYSPLIT.php (accessed on 10 August 2019).
- Murao, N. Air Quality Model-6. Trajectory Analysis. J. Soc. Atmos. Environ. Jpn. 2011, 46, A61–A67. [Google Scholar]
- FIRMS. 2019. Available online: https://firms.modaps.eosdis.nasa.gov/download/list.php (accessed on 15 August 2019).
- Thuy, N.; Dung, N.; Sekiguchi, K.; Ly, B.; Hien, N.; Yamaguchi, R. Mass Concentrations and Carbonaceous Compositions of PM0.1, PM2.5, and PM10 at Urban Locations of Hanoi, Vietnam. Aerosol. Air. Qual. Res. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Hongtieab, S.; Hata, M.; Matsuki, A.; Yoshikawa, F.; Furuuchi, M. Characteristics Comparison of Ambient Nano-Particles in Asian Cities. Proceeding in JAAST; Osaka Prefectural University: Sakai, Japan, 2016. [Google Scholar]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau province Sumatra smoke haze event on regional air pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G.B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D.V. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 2016, 6, 37074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminingrum. Forest Fire Contest: The Case of Forest Fire Policy Design in Indonesia. Master’s Thesis, Erasmus University, Rotterdam, The Netherlands, 2017. [Google Scholar]
- Jikalahari. Catatan Akhir Tahun 2018: Hutan Binasa, Banjir Melanda; Jikalahari: Pekanbaru, Indonesia, 2018. (In Bahasa) [Google Scholar]
- Saputra, E. Beyond Fires and Deforestation: Tackling Land Subsidence in Peatland Areas, a Case Study from Riau and Indonesia. Land 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- ASMC. 2019. Available online: http://asmc.asean.org/asmc-haze-hotspot-monthly-new#Hotspot (accessed on 15 August 2019).
- Anwar, A.; Juneng, L.; Othman, M.R.; Latif, M.T. Correlation between hotspots and air quality in Pekanbaru, Riau, Indonesia in 2006–2007. Sains Malay. 2010, 39, 169–174. [Google Scholar]
- Gaveau, D.L.A.; Salim, M.A.; Hergoualc’H, K.; Locatelli, B.; Sloan, S.; Wooster, M.; Marlier, M.E.; Molidena, E.; Yaen, H.; DeFries, R.; et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 2014, 4, 6112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallarés, S.; Gómez, E.T.; Martínez-Poveda, Á.; Jordán, M.M. Distribution Levels of Particulate Matter Fractions (<2.5 μm, 2.5–10 μm and >10 μm) at Seven Primary Schools in a European Ceramic Cluster. Int. J. Environ. Res. Public Health 2021, 18, 4922. [Google Scholar] [CrossRef]
- Nway, N.; Aung, W.; Pan-Nu-Yi, E.; Thant, Z.; Yagishita, M.; Ishigaki, Y.; Suzuki, T.; Nakajima, D.; Win-Shwe, T.; Mar, O. Seasonal and regional variation of particulate matter dispersion in Yangon City and Taunggyi City, Myanmar. IOP Con. Ser. Earth Environ. Sci. 2020, 496, 012003. [Google Scholar] [CrossRef]
- Bousiotis, D.; Dall´osto, M.; Beddows, D.; Pope, F.; Harrison, R. Analysis of New Particle Formation (NPF) Events at Nearby Rural, Urban Background and Urban Roadside Sites. Atmos. Chem. Phys. 2019, 19, 5679–5694. [Google Scholar] [CrossRef] [Green Version]
- Badan Meteorologi, Klimatologi, dan Geofisika (BMKG- Meteorologhy, Climatologhy, and Geophysics Agency of Indonesia). Prakiraan Musim Hujan dan Kemarau di Indonesia 2015/2016. 2015. Indonesia. Available online: https://www.bmkg.go.id/berita/?p=prakiraan-musim-hujan-20152016-di-indonesia&tag=klimatologi&lang=ID (accessed on 20 August 2020).
- Permadi, D.A.; Kim Oanh, N.T. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmos. Environ. 2013, 78, 250–258. [Google Scholar] [CrossRef]
- Fujii, Y.; Iriana, W.; Oda, M.; Puriwigati, A.; Tohno, S.; Lestari, P.; Mizohata, A.; Huboyo, H.S. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ. 2014, 87, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, H.; Noguchi, I.; Putra, E.I.; Yulianti, N.; Vadrevu, K. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ. Pollut. 2015, 195, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Putri, R.M.; Amin, M.; Suciari, T.F.; Al Fattah Faisal, M.; Auliani, R.; Ikemori, F.; Wada, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Site-specific variation in mass concentrationand chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia. Atmos. Pol. Res. 2021, 12, 101062. [Google Scholar] [CrossRef]
- Kim, K.H.; Sekiguchi, K.; Kudo, S.; Sakamoto, K. Characteristics of atmospheric elemental carbon (char and soot) in ultrafine and fine particles in a roadside environment, Japan. Aerosol. Air. Qual. Res. 2011, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
Location | Season | Date | Sample (n) | Temperature (°C) | Humidity (%) | Precipitation (mm) | Sunlight (Hour) | Wind Direction |
---|---|---|---|---|---|---|---|---|
Padang | Rainy | 8–13 March | 5 | 26.53 ± 0.76 | 89.00 ± 4.04 | 11.2 ± 17.95 | 5.13 ± 2.13 | N |
Dry | 17–29 August | 8 | 26.92 ± 0.92 | 75.46 ± 5.71 | 7.5 ± 4.94 | 6.01 ± 3.84 | N | |
Jambi | Rainy | 14–19 March | 5 | 27.35 ± 0.75 | 83.00 ± 4.10 | 4.1 ± 6.22 | 5.32 ± 2.73 | N, NE |
Dry | 17–24 August | 8 | 27.80 ± 0.85 | 78.00 ± 4.44 | 0.4 ± 1.06 | 6.84 ± 2.04 | SE | |
Pekanbaru | Rainy | 20–25 March | 5 | 27.28 ± 0.83 | 80.33 ± 5.99 | 10.0 ± 17.55 | 5.72 ± 2.91 | N |
Dry | 17–26 August | 8 | 27.86 ± 0.94 | 78.30 ± 4.95 | 1.8 ± 4.72 | 4.46 ± 2.18 | S, N |
Location | Season | Size (µm) | OC (µg/m3) | EC (µg/m3) | TC (µg/m3) | Soot-EC (µg/m3) | OC/EC (-) | Mass (µg/m3) | TC/Mass (-) | Soot-EC/TC (-) |
---|---|---|---|---|---|---|---|---|---|---|
Padang | Rainy | <0.1 | 2.82 | 0.34 | 3.16 | 0.24 | 8.19 | 5.36 | 0.59 | 0.08 |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 2.17 | N/A | N/A | ||
0.5–1 | 1.70 | 0.22 | 1.92 | 0.15 | 7.68 | 6.15 | 0.31 | 0.08 | ||
1–2.5 | 3.08 | 0.34 | 3.42 | 0.09 | 9.02 | 6.73 | 0.51 | 0.03 | ||
2.5–10 | 8.34 | 0.91 | 9.25 | 0.14 | 9.13 | 13.44 | 0.69 | 0.02 | ||
>10 | 0.53 | 0.08 | 0.62 | 0.02 | 6.42 | 2.13 | 0.29 | 0.04 | ||
Dry | <0.1 | 1.57 | 0.25 | 1.82 | 0.16 | 6.34 | 5.57 | 0.33 | 0.09 | |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 0.77 | N/A | N/A | ||
0.5–1 | 1.03 | 0.53 | 1.56 | 0.23 | 1.93 | 6.56 | 0.24 | 0.15 | ||
1–2.5 | 1.58 | 0.43 | 2.01 | 0.12 | 3.69 | 8.69 | 0.23 | 0.06 | ||
2.5–10 | 1.59 | 0.44 | 2.04 | 0.10 | 3.60 | 10.36 | 0.20 | 0.05 | ||
>10 | 0.19 | 0.05 | 0.24 | 0.01 | 4.10 | 3.92 | 0.06 | 0.06 | ||
Jambi | Rainy | <0.1 | 2.40 | 0.59 | 3.00 | 0.40 | 4.05 | 9.20 | 0.33 | 0.13 |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 3.47 | N/A | N/A | ||
0.5–1 | 3.28 | 1.17 | 4.46 | 0.47 | 2.81 | 12.45 | 0.36 | 0.11 | ||
1–2.5 | 2.15 | 0.59 | 2.74 | 0.16 | 3.66 | 9.09 | 0.30 | 0.06 | ||
2.5–10 | 2.86 | 0.70 | 3.56 | 0.13 | 4.07 | 14.09 | 0.25 | 0.04 | ||
>10 | 0.18 | 0.08 | 0.26 | 0.02 | 2.42 | 6.05 | 0.04 | 0.09 | ||
Dry | <0.1 | 2.45 | 0.55 | 3.00 | 0.43 | 4.44 | 9.61 | 0.31 | 0.14 | |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 4.56 | N/A | N/A | ||
0.5–1 | 4.62 | 0.51 | 5.13 | 0.54 | 9.03 | 15.94 | 0.32 | 0.10 | ||
1–2.5 | 2.96 | 0.73 | 3.70 | 0.30 | 4.03 | 13.18 | 0.28 | 0.08 | ||
2.5–10 | 2.55 | 0.63 | 3.17 | 0.16 | 4.07 | 18.28 | 0.17 | 0.05 | ||
>10 | 0.42 | 0.11 | 0.53 | 0.03 | 3.82 | 8.77 | 0.06 | 0.06 | ||
Pekanbaru | Rainy | <0.1 | 3.22 | 0.71 | 3.93 | 0.55 | 4.55 | 10.92 | 0.36 | 0.14 |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 5.64 | N/A | N/A | ||
0.5–1 | 4.47 | 0.68 | 5.15 | 0.57 | 6.55 | 15.64 | 0.33 | 0.11 | ||
1–2.5 | 3.64 | 0.93 | 4.57 | 0.30 | 3.90 | 10.61 | 0.43 | 0.06 | ||
2.5–10 | 2.71 | 0.72 | 3.43 | 0.20 | 3.75 | 13.17 | 0.26 | 0.06 | ||
>10 | 0.28 | 0.10 | 0.37 | 0.04 | 2.82 | 5.35 | 0.07 | 0.10 | ||
Dry | <0.1 | 3.30 | 0.61 | 3.91 | 0.50 | 5.41 | 15.16 | 0.26 | 0.13 | |
0.1–0.5 | N/A | N/A | N/A | N/A | N/A | 4.70 | N/A | N/A | ||
0.5–1 | 5.39 | 1.29 | 6.69 | 0.59 | 4.17 | 21.48 | 0.31 | 0.09 | ||
1–2.5 | 5.27 | 1.27 | 6.54 | 0.51 | 4.16 | 17.79 | 0.37 | 0.08 | ||
2.5–10 | 5.53 | 1.88 | 7.41 | 0.59 | 2.95 | 20.20 | 0.37 | 0.08 | ||
>10 | 0.82 | 0.17 | 0.98 | 0.07 | 4.91 | 13.36 | 0.07 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Putri, R.M.; Handika, R.A.; Ullah, A.; Goembira, F.; Phairuang, W.; Ikemori, F.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia. Atmosphere 2021, 12, 1441. https://doi.org/10.3390/atmos12111441
Amin M, Putri RM, Handika RA, Ullah A, Goembira F, Phairuang W, Ikemori F, Hata M, Tekasakul P, Furuuchi M. Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia. Atmosphere. 2021; 12(11):1441. https://doi.org/10.3390/atmos12111441
Chicago/Turabian StyleAmin, Muhammad, Rahmi Mulia Putri, Rizki Andre Handika, Aulia Ullah, Fadjar Goembira, Worradorn Phairuang, Fumikazu Ikemori, Mitsuhiko Hata, Perapong Tekasakul, and Masami Furuuchi. 2021. "Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia" Atmosphere 12, no. 11: 1441. https://doi.org/10.3390/atmos12111441
APA StyleAmin, M., Putri, R. M., Handika, R. A., Ullah, A., Goembira, F., Phairuang, W., Ikemori, F., Hata, M., Tekasakul, P., & Furuuchi, M. (2021). Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia. Atmosphere, 12(11), 1441. https://doi.org/10.3390/atmos12111441